示例#1
0
文件: aof.c 项目: Akuan1994/Mira
void stopAppendOnly(void){
    /*Called when the user switches from "appendonly yes" to "appendonly no"at runtime using the CONFIG command.*/
    assert(server.aof_state == XREDIS_AOF_OFF);
    /*force buffer contents to AOF file*/
    flushAppendOnlyFile(1);
    /*wait until disk writting is finished*/
    aof_fsync(server.aof_fd);
    /*set aof state*/
    server.aof_fd = -1;
    server.aof_selected_db = -1;
    server.aof_state = XREDIS_AOF_OFF;
    /*rewrite operation in progress? kill it, wait child exit*/
    if(server.aof_child_pid != -1){
        int statloc;

        xredisLog(XREDIS_NOTICE, "killing running AOF rewrite child: %ld", (long)server.aof_child_pid);
        if(kill(server.aof_child_pid, SIGKILL) != -1){
            wait3(&statloc, 0, NULL);
        }
        /* reset the buffer accumulating changes while the child saves */
        aofRewriteBufferReset();        //release rewrite buffer;
        aofRemoveTempFile(server.aof_child_pid);   //remove temp file;
        /*change server state*/
        server.aof_child_pid = -1;
        server.aof_rewrite_time_start = -1;
    }
}
示例#2
0
//操作线程运行的函数。根据操作类型从任务队列中取出任务并调用相关函数执行
void *bioProcessBackgroundJobs(void *arg) {
    struct bio_job *job;
    unsigned long type = (unsigned long) arg;
    sigset_t sigset;

    /* Make the thread killable at any time, so that bioKillThreads()
     * can work reliably. */
    //设置属性使线程可以在任意时候被杀死
    pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
    pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);

    pthread_mutex_lock(&bio_mutex[type]);
    /* Block SIGALRM so we are sure that only the main thread will
     * receive the watchdog signal. */
    //阻塞信号量SIGALRM
    sigemptyset(&sigset);
    sigaddset(&sigset, SIGALRM);
    if (pthread_sigmask(SIG_BLOCK, &sigset, NULL))
        redisLog(REDIS_WARNING,
            "Warning: can't mask SIGALRM in bio.c thread: %s", strerror(errno));

    while(1) {
        listNode *ln;

        /* The loop always starts with the lock hold. */
        //任务队列为空,等待新的任务的添加
        if (listLength(bio_jobs[type]) == 0) {
        	//注意,wait的时候会将mutex释放,否则会有死锁
            pthread_cond_wait(&bio_condvar[type],&bio_mutex[type]);
            continue;
        }
        /* Pop the job from the queue. */
        //从队列中取出一个任务
        ln = listFirst(bio_jobs[type]);
        job = ln->value;
        /* It is now possible to unlock the background system as we know have
         * a stand alone job structure to process.*/
        //对bio_jobs操作结束,可以解锁
        pthread_mutex_unlock(&bio_mutex[type]);

        /* Process the job accordingly to its type. */
        if (type == REDIS_BIO_CLOSE_FILE) {
        	//操作是close
            close((long)job->arg1);
        } else if (type == REDIS_BIO_AOF_FSYNC) {
        	//操作是fsync
            aof_fsync((long)job->arg1);
        } else {
            redisPanic("Wrong job type in bioProcessBackgroundJobs().");
        }
        zfree(job);

        /* Lock again before reiterating the loop, if there are no longer
         * jobs to process we'll block again in pthread_cond_wait(). */
        pthread_mutex_lock(&bio_mutex[type]);
        //从队列删除执行完的任务,将pending值减1
        listDelNode(bio_jobs[type],ln);
        bio_pending[type]--;
    }
}
示例#3
0
文件: aof.c 项目: LittleForker/redis
/* A background append only file rewriting (BGREWRITEAOF) terminated its work.
 * Handle this. */
void backgroundRewriteDoneHandler(int exitcode, int bysignal) {
    if (!bysignal && exitcode == 0) {
        int fd;
        char tmpfile[256];

        redisLog(REDIS_NOTICE,
            "Background append only file rewriting terminated with success");
        /* Now it's time to flush the differences accumulated by the parent */
        snprintf(tmpfile,256,"temp-rewriteaof-bg-%d.aof", (int) server.bgrewritechildpid);
        fd = open(tmpfile,O_WRONLY|O_APPEND);
        if (fd == -1) {
            redisLog(REDIS_WARNING, "Not able to open the temp append only file produced by the child: %s", strerror(errno));
            goto cleanup;
        }
        /* Flush our data... */
        if (write(fd,server.bgrewritebuf,sdslen(server.bgrewritebuf)) !=
                (signed) sdslen(server.bgrewritebuf)) {
            redisLog(REDIS_WARNING, "Error or short write trying to flush the parent diff of the append log file in the child temp file: %s", strerror(errno));
            close(fd);
            goto cleanup;
        }
        redisLog(REDIS_NOTICE,"Parent diff flushed into the new append log file with success (%lu bytes)",sdslen(server.bgrewritebuf));
        /* Now our work is to rename the temp file into the stable file. And
         * switch the file descriptor used by the server for append only. */
        if (rename(tmpfile,server.appendfilename) == -1) {
            redisLog(REDIS_WARNING,"Can't rename the temp append only file into the stable one: %s", strerror(errno));
            close(fd);
            goto cleanup;
        }
        /* Mission completed... almost */
        redisLog(REDIS_NOTICE,"Append only file successfully rewritten.");
        if (server.appendfd != -1) {
            /* If append only is actually enabled... */
            close(server.appendfd);
            server.appendfd = fd;
            if (server.appendfsync != APPENDFSYNC_NO) aof_fsync(fd);
            server.appendseldb = -1; /* Make sure it will issue SELECT */
            redisLog(REDIS_NOTICE,"The new append only file was selected for future appends.");
        } else {
            /* If append only is disabled we just generate a dump in this
             * format. Why not? */
            close(fd);
        }
    } else if (!bysignal && exitcode != 0) {
        redisLog(REDIS_WARNING, "Background append only file rewriting error");
    } else {
        redisLog(REDIS_WARNING,
            "Background append only file rewriting terminated by signal %d",
            bysignal);
    }
cleanup:
    sdsfree(server.bgrewritebuf);
    server.bgrewritebuf = sdsempty();
    aofRemoveTempFile(server.bgrewritechildpid);
    server.bgrewritechildpid = -1;
}
示例#4
0
文件: bio.c 项目: dyu/disque
void *bioProcessBackgroundJobs(void *arg) {
    struct bio_job *job;
    unsigned long type = (unsigned long) arg;
    sigset_t sigset;

    /* Make the thread killable at any time, so that bioKillThreads()
     * can work reliably. */
    pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
    pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);

    pthread_mutex_lock(&bio_mutex[type]);
    /* Block SIGALRM so we are sure that only the main thread will
     * receive the watchdog signal. */
    sigemptyset(&sigset);
    sigaddset(&sigset, SIGALRM);
    if (pthread_sigmask(SIG_BLOCK, &sigset, NULL))
        serverLog(LL_WARNING,
                  "Warning: can't mask SIGALRM in bio.c thread: %s", strerror(errno));

    while(1) {
        listNode *ln;

        /* The loop always starts with the lock hold. */
        if (listLength(bio_jobs[type]) == 0) {
            pthread_cond_wait(&bio_newjob_cond[type],&bio_mutex[type]);
            continue;
        }
        /* Pop the job from the queue. */
        ln = listFirst(bio_jobs[type]);
        job = ln->value;
        /* It is now possible to unlock the background system as we know have
         * a stand alone job structure to process.*/
        pthread_mutex_unlock(&bio_mutex[type]);

        /* Process the job accordingly to its type. */
        if (type == BIO_CLOSE_FILE) {
            close((long)job->arg1);
        } else if (type == BIO_AOF_FSYNC) {
            aof_fsync((long)job->arg1);
        } else {
            serverPanic("Wrong job type in bioProcessBackgroundJobs().");
        }
        zfree(job);

        /* Unblock threads blocked on bioWaitStepOfType() if any. */
        pthread_cond_broadcast(&bio_step_cond[type]);

        /* Lock again before reiterating the loop, if there are no longer
         * jobs to process we'll block again in pthread_cond_wait(). */
        pthread_mutex_lock(&bio_mutex[type]);
        listDelNode(bio_jobs[type],ln);
        bio_pending[type]--;
    }
}
示例#5
0
void *bioProcessBackgroundJobs(void *arg) {
    struct bio_job *job;
#ifdef _WIN32
    size_t type = (size_t) arg;
#else
    unsigned long type = (unsigned long) arg;
#endif
    sigset_t sigset;

    pthread_detach(pthread_self());
    pthread_mutex_lock(&bio_mutex[type]);
    /* Block SIGALRM so we are sure that only the main thread will
     * receive the watchdog signal. */
    sigemptyset(&sigset);
    sigaddset(&sigset, SIGALRM);
    if (pthread_sigmask(SIG_BLOCK, &sigset, NULL))
        redisLog(REDIS_WARNING,
            "Warning: can't mask SIGALRM in bio.c thread: %s", strerror(errno));

    while(1) {
        listNode *ln;

        /* The loop always starts with the lock hold. */
        if (listLength(bio_jobs[type]) == 0) {
            pthread_cond_wait(&bio_condvar[type],&bio_mutex[type]);
            continue;
        }
        /* Pop the job from the queue. */
        ln = listFirst(bio_jobs[type]);
        job = ln->value;
        /* It is now possible to unlock the background system as we know have
         * a stand alone job structure to process.*/
        pthread_mutex_unlock(&bio_mutex[type]);

        /* Process the job accordingly to its type. */
        if (type == REDIS_BIO_CLOSE_FILE) {
            close((long)job->arg1);
        } else if (type == REDIS_BIO_AOF_FSYNC) {
            aof_fsync((long)job->arg1);
        } else {
            redisPanic("Wrong job type in bioProcessBackgroundJobs().");
        }
        zfree(job);

        /* Lock again before reiterating the loop, if there are no longer
         * jobs to process we'll block again in pthread_cond_wait(). */
        pthread_mutex_lock(&bio_mutex[type]);
        listDelNode(bio_jobs[type],ln);
        bio_pending[type]--;
    }
}
示例#6
0
void *bioProcessBackgroundJobs(void *arg) {
	//bioInit创建一个进程,用来刷文件。arg参数就是这个线程对应应该处理的任务号,用来索引bio_jobs[type]
    struct bio_job *job;
    unsigned long type = (unsigned long) arg;//实际上就是jobid。序号
    sigset_t sigset;

    pthread_detach(pthread_self());
    pthread_mutex_lock(&bio_mutex[type]);//先锁一下,待会pthread_cond_wait
    /* Block SIGALRM so we are sure that only the main thread will
     * receive the watchdog signal. */
    sigemptyset(&sigset);
    sigaddset(&sigset, SIGALRM);
    if (pthread_sigmask(SIG_BLOCK, &sigset, NULL))
        redisLog(REDIS_WARNING, "Warning: can't mask SIGALRM in bio.c thread: %s", strerror(errno));

    while(1) {
        listNode *ln;

        /* The loop always starts with the lock hold. */
        if (listLength(bio_jobs[type]) == 0) {
	//已经加锁了,进入等待bio_condvar[type]不为0,并立即解锁,等待。
	//等其他线程pthread_cond_signal的时候,会通知这个线程,别等待了,从而再次加锁,返回。
            pthread_cond_wait(&bio_condvar[type],&bio_mutex[type]);
            continue;
        }
        /* Pop the job from the queue. */
        ln = listFirst(bio_jobs[type]);//获取到了一个任务,处理值。
        job = ln->value;
        /* It is now possible to unlock the background system as we know have
         * a stand alone job structure to process.*/
        pthread_mutex_unlock(&bio_mutex[type]);

		//根据不同的任务类型,做响应的清理。
        /* Process the job accordingly to its type. */
        if (type == REDIS_BIO_CLOSE_FILE) {
            close((long)job->arg1);//关闭文件。
        } else if (type == REDIS_BIO_AOF_FSYNC) {
            aof_fsync((long)job->arg1);//同步刷新数据。
        } else {
            redisPanic("Wrong job type in bioProcessBackgroundJobs().");
        }
        zfree(job);

        /* Lock again before reiterating the loop, if there are no longer
         * jobs to process we'll block again in pthread_cond_wait(). */
        pthread_mutex_lock(&bio_mutex[type]);
        listDelNode(bio_jobs[type],ln);
        bio_pending[type]--;//递减这种类型的挂起计数。
    }
}
示例#7
0
/* Returns 1 or 0 for success/failure. */
static size_t rioFileWrite(rio *r, const void *buf, size_t len) {
    size_t retval;

    retval = fwrite(buf,len,1,r->io.file.fp);
    r->io.file.buffered += len;

    if (r->io.file.autosync &&
        r->io.file.buffered >= r->io.file.autosync)
    {
        aof_fsync(fileno(r->io.file.fp));
        r->io.file.buffered = 0;
    }
    return retval;
}
示例#8
0
/* Returns 1 or 0 for success/failure.
 *
 * 将长度为 len 的内容 buf 写入到文件 r 中。
 *
 * 成功返回 1 ,失败返回 0 。
 */
static size_t rioFileWrite(rio *r, const void *buf, size_t len)
{
    size_t retval;

    retval = fwrite(buf,len,1,r->io.file.fp);
    r->io.file.buffered += len;

    // 检查写入的字节数,看是否需要执行自动 sync
    if (r->io.file.autosync &&
            r->io.file.buffered >= r->io.file.autosync)
    {
        fflush(r->io.file.fp);
        aof_fsync(fileno(r->io.file.fp));
        r->io.file.buffered = 0;
    }

    return retval;
}
示例#9
0
文件: aof.c 项目: LittleForker/redis
/* Write the append only file buffer on disk.
 *
 * Since we are required to write the AOF before replying to the client,
 * and the only way the client socket can get a write is entering when the
 * the event loop, we accumulate all the AOF writes in a memory
 * buffer and write it on disk using this function just before entering
 * the event loop again. */
void flushAppendOnlyFile(void) {
    time_t now;
    ssize_t nwritten;

    if (sdslen(server.aofbuf) == 0) return;

    /* We want to perform a single write. This should be guaranteed atomic
     * at least if the filesystem we are writing is a real physical one.
     * While this will save us against the server being killed I don't think
     * there is much to do about the whole server stopping for power problems
     * or alike */
     nwritten = write(server.appendfd,server.aofbuf,sdslen(server.aofbuf));
     if (nwritten != (signed)sdslen(server.aofbuf)) {
        /* Ooops, we are in troubles. The best thing to do for now is
         * aborting instead of giving the illusion that everything is
         * working as expected. */
         if (nwritten == -1) {
            redisLog(REDIS_WARNING,"Exiting on error writing to the append-only file: %s",strerror(errno));
         } else {
            redisLog(REDIS_WARNING,"Exiting on short write while writing to the append-only file: %s",strerror(errno));
         }
         exit(1);
    }
    sdsfree(server.aofbuf);
    server.aofbuf = sdsempty();

    /* Don't Fsync if no-appendfsync-on-rewrite is set to yes and we have
     * childs performing heavy I/O on disk. */
    if (server.no_appendfsync_on_rewrite &&
        (server.bgrewritechildpid != -1 || server.bgsavechildpid != -1))
            return;
    /* Fsync if needed */
    now = time(NULL);
    if (server.appendfsync == APPENDFSYNC_ALWAYS ||
        (server.appendfsync == APPENDFSYNC_EVERYSEC &&
         now-server.lastfsync > 1))
    {
        /* aof_fsync is defined as fdatasync() for Linux in order to avoid
         * flushing metadata. */
        aof_fsync(server.appendfd); /* Let's try to get this data on the disk */
        server.lastfsync = now;
    }
}
示例#10
0
文件: bio.c 项目: ambakshi/redis
void *bioProcessBackgroundJobs(void *arg) {
    struct bio_job *job;
#ifdef _WIN32
    size_t type = (size_t) arg;
#else
    unsigned long type = (unsigned long) arg;
#endif

    pthread_detach(pthread_self());
    pthread_mutex_lock(&bio_mutex[type]);
    while(1) {
        listNode *ln;

        /* The loop always starts with the lock hold. */
        if (listLength(bio_jobs[type]) == 0) {
            pthread_cond_wait(&bio_condvar[type],&bio_mutex[type]);
            continue;
        }
        /* Pop the job from the queue. */
        ln = listFirst(bio_jobs[type]);
        job = ln->value;
        /* It is now possible to unlock the background system as we know have
         * a stand alone job structure to process.*/
        pthread_mutex_unlock(&bio_mutex[type]);

        /* Process the job accordingly to its type. */
        if (type == REDIS_BIO_CLOSE_FILE) {
            close((long)(size_t)job->arg1);
        } else if (type == REDIS_BIO_AOF_FSYNC) {
            aof_fsync((long)(size_t)job->arg1);
        } else {
            redisPanic("Wrong job type in bioProcessBackgroundJobs().");
        }
        zfree(job);

        /* Lock again before reiterating the loop, if there are no longer
         * jobs to process we'll block again in pthread_cond_wait(). */
        pthread_mutex_lock(&bio_mutex[type]);
        listDelNode(bio_jobs[type],ln);
        bio_pending[type]--;
    }
}
示例#11
0
/* Called when the user switches from "appendonly yes" to "appendonly no"
 * at runtime using the CONFIG command. */
void stopAppendOnly(void) {
    flushAppendOnlyFile(1);
    aof_fsync(server.appendfd);
    close(server.appendfd);

    server.appendfd = -1;
    server.appendseldb = -1;
    server.appendonly = 0;
    /* rewrite operation in progress? kill it, wait child exit */
    if (server.bgrewritechildpid != -1) {
        int statloc;

        if (kill(server.bgrewritechildpid,SIGKILL) != -1)
            wait3(&statloc,0,NULL);
        /* reset the buffer accumulating changes while the child saves */
        sdsfree(server.bgrewritebuf);
        server.bgrewritebuf = sdsempty();
        server.bgrewritechildpid = -1;
    }
}
示例#12
0
/* Called when the user switches from "appendonly yes" to "appendonly no"
 * at runtime using the CONFIG command. */
void stopAppendOnly(void) {
    redisAssert(server.aof_state != REDIS_AOF_OFF);
    flushAppendOnlyFile(1);
    aof_fsync(server.aof_fd);
    close(server.aof_fd);

    server.aof_fd = -1;
    server.aof_selected_db = -1;
    server.aof_state = REDIS_AOF_OFF;
    /* rewrite operation in progress? kill it, wait child exit */
    if (server.aof_child_pid != -1) {
        int statloc;

        redisLog(REDIS_NOTICE,"Killing running AOF rewrite child: %ld",
            (long) server.aof_child_pid);
        if (kill(server.aof_child_pid,SIGUSR1) != -1)
            wait3(&statloc,0,NULL);
        /* reset the buffer accumulating changes while the child saves */
        aofRewriteBufferReset();
        aofRemoveTempFile(server.aof_child_pid);
        server.aof_child_pid = -1;
        server.aof_rewrite_time_start = -1;
    }
}
示例#13
0
/* Write a sequence of commands able to fully rebuild the dataset into
 * "filename". Used both by REWRITEAOF and BGREWRITEAOF.
 *
 * In order to minimize the number of commands needed in the rewritten
 * log Redis uses variadic commands when possible, such as RPUSH, SADD
 * and ZADD. However at max REDIS_AOF_REWRITE_ITEMS_PER_CMD items per time
 * are inserted using a single command. */
int rewriteAppendOnlyFile(char *filename) {
    dictIterator *di = NULL;
    dictEntry *de;
    rio aof;
    FILE *fp;
    char tmpfile[256];
    int j;
    long long now = mstime();

    /* Note that we have to use a different temp name here compared to the
     * one used by rewriteAppendOnlyFileBackground() function. */
    snprintf(tmpfile,256,"temp-rewriteaof-%d.aof", (int) getpid());
    fp = fopen(tmpfile,"w");
    if (!fp) {
        redisLog(REDIS_WARNING, "Opening the temp file for AOF rewrite in rewriteAppendOnlyFile(): %s", strerror(errno));
        return REDIS_ERR;
    }

    rioInitWithFile(&aof,fp);
    for (j = 0; j < server.dbnum; j++) {
        char selectcmd[] = "*2\r\n$6\r\nSELECT\r\n";
        redisDb *db = server.db+j;
        dict *d = db->dict;
        if (dictSize(d) == 0) continue;
        di = dictGetSafeIterator(d);
        if (!di) {
            fclose(fp);
            return REDIS_ERR;
        }

        /* SELECT the new DB */
        if (rioWrite(&aof,selectcmd,sizeof(selectcmd)-1) == 0) goto werr;
        if (rioWriteBulkLongLong(&aof,j) == 0) goto werr;

        /* Iterate this DB writing every entry */
        while((de = dictNext(di)) != NULL) {
            sds keystr;
            robj key, *o;
            long long expiretime;

            keystr = dictGetKey(de);
            o = dictGetVal(de);
            initStaticStringObject(key,keystr);

            expiretime = getExpire(db,&key);

            /* Save the key and associated value */
            if (o->type == REDIS_STRING) {
                /* Emit a SET command */
                char cmd[]="*3\r\n$3\r\nSET\r\n";
                if (rioWrite(&aof,cmd,sizeof(cmd)-1) == 0) goto werr;
                /* Key and value */
                if (rioWriteBulkObject(&aof,&key) == 0) goto werr;
                if (rioWriteBulkObject(&aof,o) == 0) goto werr;
            } else if (o->type == REDIS_LIST) {
                if (rewriteListObject(&aof,&key,o) == 0) goto werr;
            } else if (o->type == REDIS_SET) {
                if (rewriteSetObject(&aof,&key,o) == 0) goto werr;
            } else if (o->type == REDIS_ZSET) {
                if (rewriteSortedSetObject(&aof,&key,o) == 0) goto werr;
            } else if (o->type == REDIS_HASH) {
                if (rewriteHashObject(&aof,&key,o) == 0) goto werr;
            } else {
                redisPanic("Unknown object type");
            }
            /* Save the expire time */
            if (expiretime != -1) {
                char cmd[]="*3\r\n$9\r\nPEXPIREAT\r\n";
                /* If this key is already expired skip it */
                if (expiretime < now) continue;
                if (rioWrite(&aof,cmd,sizeof(cmd)-1) == 0) goto werr;
                if (rioWriteBulkObject(&aof,&key) == 0) goto werr;
                if (rioWriteBulkLongLong(&aof,expiretime) == 0) goto werr;
            }
        }
        dictReleaseIterator(di);
    }

    /* Make sure data will not remain on the OS's output buffers */
    fflush(fp);
    aof_fsync(fileno(fp));
    fclose(fp);

    /* Use RENAME to make sure the DB file is changed atomically only
     * if the generate DB file is ok. */
    if (rename(tmpfile,filename) == -1) {
        redisLog(REDIS_WARNING,"Error moving temp append only file on the final destination: %s", strerror(errno));
        unlink(tmpfile);
        return REDIS_ERR;
    }
    redisLog(REDIS_NOTICE,"SYNC append only file rewrite performed");
    return REDIS_OK;

werr:
    fclose(fp);
    unlink(tmpfile);
    redisLog(REDIS_WARNING,"Write error writing append only file on disk: %s", strerror(errno));
    if (di) dictReleaseIterator(di);
    return REDIS_ERR;
}
示例#14
0
/* Write the append only file buffer on disk.
 *
 * Since we are required to write the AOF before replying to the client,
 * and the only way the client socket can get a write is entering when the
 * the event loop, we accumulate all the AOF writes in a memory
 * buffer and write it on disk using this function just before entering
 * the event loop again.
 *
 * About the 'force' argument:
 *
 * When the fsync policy is set to 'everysec' we may delay the flush if there
 * is still an fsync() going on in the background thread, since for instance
 * on Linux write(2) will be blocked by the background fsync anyway.
 * When this happens we remember that there is some aof buffer to be
 * flushed ASAP, and will try to do that in the serverCron() function.
 *
 * However if force is set to 1 we'll write regardless of the background
 * fsync. */
void flushAppendOnlyFile(int force) {
    ssize_t nwritten;
    int sync_in_progress = 0;

    if (sdslen(server.aof_buf) == 0) return;

    if (server.aof_fsync == AOF_FSYNC_EVERYSEC)
        sync_in_progress = bioPendingJobsOfType(REDIS_BIO_AOF_FSYNC) != 0;

    if (server.aof_fsync == AOF_FSYNC_EVERYSEC && !force) {
        /* With this append fsync policy we do background fsyncing.
         * If the fsync is still in progress we can try to delay
         * the write for a couple of seconds. */
        if (sync_in_progress) {
            if (server.aof_flush_postponed_start == 0) {
                /* No previous write postponinig, remember that we are
                 * postponing the flush and return. */
                server.aof_flush_postponed_start = server.unixtime;
                return;
            } else if (server.unixtime - server.aof_flush_postponed_start < 2) {
                /* We were already waiting for fsync to finish, but for less
                 * than two seconds this is still ok. Postpone again. */
                return;
            }
            /* Otherwise fall trough, and go write since we can't wait
             * over two seconds. */
            server.aof_delayed_fsync++;
            redisLog(REDIS_NOTICE,"Asynchronous AOF fsync is taking too long (disk is busy?). Writing the AOF buffer without waiting for fsync to complete, this may slow down Redis.");
        }
    }
    /* If you are following this code path, then we are going to write so
     * set reset the postponed flush sentinel to zero. */
    server.aof_flush_postponed_start = 0;

    /* We want to perform a single write. This should be guaranteed atomic
     * at least if the filesystem we are writing is a real physical one.
     * While this will save us against the server being killed I don't think
     * there is much to do about the whole server stopping for power problems
     * or alike */
    nwritten = write(server.aof_fd,server.aof_buf,sdslen(server.aof_buf));
    if (nwritten != (signed)sdslen(server.aof_buf)) {
        /* Ooops, we are in troubles. The best thing to do for now is
         * aborting instead of giving the illusion that everything is
         * working as expected. */
        if (nwritten == -1) {
            redisLog(REDIS_WARNING,"Exiting on error writing to the append-only file: %s",strerror(errno));
        } else {
            redisLog(REDIS_WARNING,"Exiting on short write while writing to "
                                   "the append-only file: %s (nwritten=%ld, "
                                   "expected=%ld)",
                                   strerror(errno),
                                   (long)nwritten,
                                   (long)sdslen(server.aof_buf));

            if (ftruncate(server.aof_fd, server.aof_current_size) == -1) {
                redisLog(REDIS_WARNING, "Could not remove short write "
                         "from the append-only file.  Redis may refuse "
                         "to load the AOF the next time it starts.  "
                         "ftruncate: %s", strerror(errno));
            }
        }
        exit(1);
    }
    server.aof_current_size += nwritten;

    /* Re-use AOF buffer when it is small enough. The maximum comes from the
     * arena size of 4k minus some overhead (but is otherwise arbitrary). */
    if ((sdslen(server.aof_buf)+sdsavail(server.aof_buf)) < 4000) {
        sdsclear(server.aof_buf);
    } else {
        sdsfree(server.aof_buf);
        server.aof_buf = sdsempty();
    }

    /* Don't fsync if no-appendfsync-on-rewrite is set to yes and there are
     * children doing I/O in the background. */
    if (server.aof_no_fsync_on_rewrite &&
        (server.aof_child_pid != -1 || server.rdb_child_pid != -1))
            return;

    /* Perform the fsync if needed. */
    if (server.aof_fsync == AOF_FSYNC_ALWAYS) {
        /* aof_fsync is defined as fdatasync() for Linux in order to avoid
         * flushing metadata. */
        aof_fsync(server.aof_fd); /* Let's try to get this data on the disk */
        server.aof_last_fsync = server.unixtime;
    } else if ((server.aof_fsync == AOF_FSYNC_EVERYSEC &&
                server.unixtime > server.aof_last_fsync)) {
        if (!sync_in_progress) aof_background_fsync(server.aof_fd);
        server.aof_last_fsync = server.unixtime;
    }
}
示例#15
0
/* A background append only file rewriting (BGREWRITEAOF) terminated its work.
 * Handle this. */
void backgroundRewriteDoneHandler(int exitcode, int bysignal) {
    if (!bysignal && exitcode == 0) {
        int newfd, oldfd;
        char tmpfile[256];
        long long now = ustime();

        redisLog(REDIS_NOTICE,
            "Background AOF rewrite terminated with success");

        /* Flush the differences accumulated by the parent to the
         * rewritten AOF. */
        snprintf(tmpfile,256,"temp-rewriteaof-bg-%d.aof",
            (int)server.aof_child_pid);
        newfd = open(tmpfile,O_WRONLY|O_APPEND);
        if (newfd == -1) {
            redisLog(REDIS_WARNING,
                "Unable to open the temporary AOF produced by the child: %s", strerror(errno));
            goto cleanup;
        }

        if (aofRewriteBufferWrite(newfd) == -1) {
            redisLog(REDIS_WARNING,
                "Error trying to flush the parent diff to the rewritten AOF: %s", strerror(errno));
            close(newfd);
            goto cleanup;
        }

        redisLog(REDIS_NOTICE,
            "Parent diff successfully flushed to the rewritten AOF (%lu bytes)", aofRewriteBufferSize());

        /* The only remaining thing to do is to rename the temporary file to
         * the configured file and switch the file descriptor used to do AOF
         * writes. We don't want close(2) or rename(2) calls to block the
         * server on old file deletion.
         *
         * There are two possible scenarios:
         *
         * 1) AOF is DISABLED and this was a one time rewrite. The temporary
         * file will be renamed to the configured file. When this file already
         * exists, it will be unlinked, which may block the server.
         *
         * 2) AOF is ENABLED and the rewritten AOF will immediately start
         * receiving writes. After the temporary file is renamed to the
         * configured file, the original AOF file descriptor will be closed.
         * Since this will be the last reference to that file, closing it
         * causes the underlying file to be unlinked, which may block the
         * server.
         *
         * To mitigate the blocking effect of the unlink operation (either
         * caused by rename(2) in scenario 1, or by close(2) in scenario 2), we
         * use a background thread to take care of this. First, we
         * make scenario 1 identical to scenario 2 by opening the target file
         * when it exists. The unlink operation after the rename(2) will then
         * be executed upon calling close(2) for its descriptor. Everything to
         * guarantee atomicity for this switch has already happened by then, so
         * we don't care what the outcome or duration of that close operation
         * is, as long as the file descriptor is released again. */
        if (server.aof_fd == -1) {
            /* AOF disabled */

             /* Don't care if this fails: oldfd will be -1 and we handle that.
              * One notable case of -1 return is if the old file does
              * not exist. */
             oldfd = open(server.aof_filename,O_RDONLY|O_NONBLOCK);
        } else {
            /* AOF enabled */
            oldfd = -1; /* We'll set this to the current AOF filedes later. */
        }

        /* Rename the temporary file. This will not unlink the target file if
         * it exists, because we reference it with "oldfd". */
        if (rename(tmpfile,server.aof_filename) == -1) {
            redisLog(REDIS_WARNING,
                "Error trying to rename the temporary AOF file: %s", strerror(errno));
            close(newfd);
            if (oldfd != -1) close(oldfd);
            goto cleanup;
        }

        if (server.aof_fd == -1) {
            /* AOF disabled, we don't need to set the AOF file descriptor
             * to this new file, so we can close it. */
            close(newfd);
        } else {
            /* AOF enabled, replace the old fd with the new one. */
            oldfd = server.aof_fd;
            server.aof_fd = newfd;
            if (server.aof_fsync == AOF_FSYNC_ALWAYS)
                aof_fsync(newfd);
            else if (server.aof_fsync == AOF_FSYNC_EVERYSEC)
                aof_background_fsync(newfd);
            server.aof_selected_db = -1; /* Make sure SELECT is re-issued */
            aofUpdateCurrentSize();
            server.aof_rewrite_base_size = server.aof_current_size;

            /* Clear regular AOF buffer since its contents was just written to
             * the new AOF from the background rewrite buffer. */
            sdsfree(server.aof_buf);
            server.aof_buf = sdsempty();
        }

        server.aof_lastbgrewrite_status = REDIS_OK;

        redisLog(REDIS_NOTICE, "Background AOF rewrite finished successfully");
        /* Change state from WAIT_REWRITE to ON if needed */
        if (server.aof_state == REDIS_AOF_WAIT_REWRITE)
            server.aof_state = REDIS_AOF_ON;

        /* Asynchronously close the overwritten AOF. */
        if (oldfd != -1) bioCreateBackgroundJob(REDIS_BIO_CLOSE_FILE,(void*)(long)oldfd,NULL,NULL);

        redisLog(REDIS_VERBOSE,
            "Background AOF rewrite signal handler took %lldus", ustime()-now);
    } else if (!bysignal && exitcode != 0) {
        server.aof_lastbgrewrite_status = REDIS_ERR;

        redisLog(REDIS_WARNING,
            "Background AOF rewrite terminated with error");
    } else {
        server.aof_lastbgrewrite_status = REDIS_ERR;

        redisLog(REDIS_WARNING,
            "Background AOF rewrite terminated by signal %d", bysignal);
    }

cleanup:
    aofRewriteBufferReset();
    aofRemoveTempFile(server.aof_child_pid);
    server.aof_child_pid = -1;
    server.aof_rewrite_time_last = time(NULL)-server.aof_rewrite_time_start;
    server.aof_rewrite_time_start = -1;
    /* Schedule a new rewrite if we are waiting for it to switch the AOF ON. */
    if (server.aof_state == REDIS_AOF_WAIT_REWRITE)
        server.aof_rewrite_scheduled = 1;
}
示例#16
0
/* Write a sequence of commands able to fully rebuild the dataset into
 * "filename". Used both by REWRITEAOF and BGREWRITEAOF. */
int rewriteAppendOnlyFile(char *filename) {
    dictIterator *di = NULL;
    dictEntry *de;
    FILE *fp;
    char tmpfile[256];
    int j;
    time_t now = time(NULL);

    /* Note that we have to use a different temp name here compared to the
     * one used by rewriteAppendOnlyFileBackground() function. */
    snprintf(tmpfile,256,"temp-rewriteaof-%d.aof", (int) getpid());
    fp = fopen(tmpfile,"w");
    if (!fp) {
        redisLog(REDIS_WARNING, "Failed rewriting the append only file: %s", strerror(errno));
        return REDIS_ERR;
    }
    for (j = 0; j < server.dbnum; j++) {
        char selectcmd[] = "*2\r\n$6\r\nSELECT\r\n";
        redisDb *db = server.db+j;
        dict *d = db->dict;
        if (dictSize(d) == 0) continue;
        di = dictGetSafeIterator(d);
        if (!di) {
            fclose(fp);
            return REDIS_ERR;
        }

        /* SELECT the new DB */
        if (fwrite(selectcmd,sizeof(selectcmd)-1,1,fp) == 0) goto werr;
        if (fwriteBulkLongLong(fp,j) == 0) goto werr;

        /* Iterate this DB writing every entry */
        while((de = dictNext(di)) != NULL) {
            sds keystr = dictGetEntryKey(de);
            robj key, *o;
            time_t expiretime;
            int swapped;

            keystr = dictGetEntryKey(de);
            o = dictGetEntryVal(de);
            initStaticStringObject(key,keystr);
            /* If the value for this key is swapped, load a preview in memory.
             * We use a "swapped" flag to remember if we need to free the
             * value object instead to just increment the ref count anyway
             * in order to avoid copy-on-write of pages if we are forked() */
            if (!server.vm_enabled || o->storage == REDIS_VM_MEMORY ||
                o->storage == REDIS_VM_SWAPPING) {
                swapped = 0;
            } else {
                o = vmPreviewObject(o);
                swapped = 1;
            }
            expiretime = getExpire(db,&key);

            /* Save the key and associated value */
            if (o->type == REDIS_STRING) {
                /* Emit a SET command */
                char cmd[]="*3\r\n$3\r\nSET\r\n";
                if (fwrite(cmd,sizeof(cmd)-1,1,fp) == 0) goto werr;
                /* Key and value */
                if (fwriteBulkObject(fp,&key) == 0) goto werr;
                if (fwriteBulkObject(fp,o) == 0) goto werr;
            } else if (o->type == REDIS_LIST) {
                /* Emit the RPUSHes needed to rebuild the list */
                char cmd[]="*3\r\n$5\r\nRPUSH\r\n";
                if (o->encoding == REDIS_ENCODING_ZIPLIST) {
                    unsigned char *zl = o->ptr;
                    unsigned char *p = ziplistIndex(zl,0);
                    unsigned char *vstr;
                    unsigned int vlen;
                    long long vlong;

                    while(ziplistGet(p,&vstr,&vlen,&vlong)) {
                        if (fwrite(cmd,sizeof(cmd)-1,1,fp) == 0) goto werr;
                        if (fwriteBulkObject(fp,&key) == 0) goto werr;
                        if (vstr) {
                            if (fwriteBulkString(fp,(char*)vstr,vlen) == 0)
                                goto werr;
                        } else {
                            if (fwriteBulkLongLong(fp,vlong) == 0)
                                goto werr;
                        }
                        p = ziplistNext(zl,p);
                    }
                } else if (o->encoding == REDIS_ENCODING_LINKEDLIST) {
                    list *list = o->ptr;
                    listNode *ln;
                    listIter li;

                    listRewind(list,&li);
                    while((ln = listNext(&li))) {
                        robj *eleobj = listNodeValue(ln);

                        if (fwrite(cmd,sizeof(cmd)-1,1,fp) == 0) goto werr;
                        if (fwriteBulkObject(fp,&key) == 0) goto werr;
                        if (fwriteBulkObject(fp,eleobj) == 0) goto werr;
                    }
                } else {
                    redisPanic("Unknown list encoding");
                }
            } else if (o->type == REDIS_SET) {
                char cmd[]="*3\r\n$4\r\nSADD\r\n";

                /* Emit the SADDs needed to rebuild the set */
                if (o->encoding == REDIS_ENCODING_INTSET) {
                    int ii = 0;
                    int64_t llval;
                    while(intsetGet(o->ptr,ii++,&llval)) {
                        if (fwrite(cmd,sizeof(cmd)-1,1,fp) == 0) goto werr;
                        if (fwriteBulkObject(fp,&key) == 0) goto werr;
                        if (fwriteBulkLongLong(fp,llval) == 0) goto werr;
                    }
                } else if (o->encoding == REDIS_ENCODING_HT) {
                    dictIterator *di = dictGetIterator(o->ptr);
                    dictEntry *de;
                    while((de = dictNext(di)) != NULL) {
                        robj *eleobj = dictGetEntryKey(de);
                        if (fwrite(cmd,sizeof(cmd)-1,1,fp) == 0) goto werr;
                        if (fwriteBulkObject(fp,&key) == 0) goto werr;
                        if (fwriteBulkObject(fp,eleobj) == 0) goto werr;
                    }
                    dictReleaseIterator(di);
                } else {
                    redisPanic("Unknown set encoding");
                }
            } else if (o->type == REDIS_ZSET) {
                /* Emit the ZADDs needed to rebuild the sorted set */
                char cmd[]="*4\r\n$4\r\nZADD\r\n";

                if (o->encoding == REDIS_ENCODING_ZIPLIST) {
                    unsigned char *zl = o->ptr;
                    unsigned char *eptr, *sptr;
                    unsigned char *vstr;
                    unsigned int vlen;
                    long long vll;
                    double score;

                    eptr = ziplistIndex(zl,0);
                    redisAssert(eptr != NULL);
                    sptr = ziplistNext(zl,eptr);
                    redisAssert(sptr != NULL);

                    while (eptr != NULL) {
                        redisAssert(ziplistGet(eptr,&vstr,&vlen,&vll));
                        score = zzlGetScore(sptr);

                        if (fwrite(cmd,sizeof(cmd)-1,1,fp) == 0) goto werr;
                        if (fwriteBulkObject(fp,&key) == 0) goto werr;
                        if (fwriteBulkDouble(fp,score) == 0) goto werr;
                        if (vstr != NULL) {
                            if (fwriteBulkString(fp,(char*)vstr,vlen) == 0)
                                goto werr;
                        } else {
                            if (fwriteBulkLongLong(fp,vll) == 0)
                                goto werr;
                        }
                        zzlNext(zl,&eptr,&sptr);
                    }
                } else if (o->encoding == REDIS_ENCODING_SKIPLIST) {
                    zset *zs = o->ptr;
                    dictIterator *di = dictGetIterator(zs->dict);
                    dictEntry *de;

                    while((de = dictNext(di)) != NULL) {
                        robj *eleobj = dictGetEntryKey(de);
                        double *score = dictGetEntryVal(de);

                        if (fwrite(cmd,sizeof(cmd)-1,1,fp) == 0) goto werr;
                        if (fwriteBulkObject(fp,&key) == 0) goto werr;
                        if (fwriteBulkDouble(fp,*score) == 0) goto werr;
                        if (fwriteBulkObject(fp,eleobj) == 0) goto werr;
                    }
                    dictReleaseIterator(di);
                } else {
                    redisPanic("Unknown sorted set encoding");
                }
            } else if (o->type == REDIS_HASH) {
                char cmd[]="*4\r\n$4\r\nHSET\r\n";

                /* Emit the HSETs needed to rebuild the hash */
                if (o->encoding == REDIS_ENCODING_ZIPMAP) {
                    unsigned char *p = zipmapRewind(o->ptr);
                    unsigned char *field, *val;
                    unsigned int flen, vlen;

                    while((p = zipmapNext(p,&field,&flen,&val,&vlen)) != NULL) {
                        if (fwrite(cmd,sizeof(cmd)-1,1,fp) == 0) goto werr;
                        if (fwriteBulkObject(fp,&key) == 0) goto werr;
                        if (fwriteBulkString(fp,(char*)field,flen) == 0)
                            goto werr;
                        if (fwriteBulkString(fp,(char*)val,vlen) == 0)
                            goto werr;
                    }
                } else {
                    dictIterator *di = dictGetIterator(o->ptr);
                    dictEntry *de;

                    while((de = dictNext(di)) != NULL) {
                        robj *field = dictGetEntryKey(de);
                        robj *val = dictGetEntryVal(de);

                        if (fwrite(cmd,sizeof(cmd)-1,1,fp) == 0) goto werr;
                        if (fwriteBulkObject(fp,&key) == 0) goto werr;
                        if (fwriteBulkObject(fp,field) == 0) goto werr;
                        if (fwriteBulkObject(fp,val) == 0) goto werr;
                    }
                    dictReleaseIterator(di);
                }
            } else {
                redisPanic("Unknown object type");
            }
            /* Save the expire time */
            if (expiretime != -1) {
                char cmd[]="*3\r\n$8\r\nEXPIREAT\r\n";
                /* If this key is already expired skip it */
                if (expiretime < now) continue;
                if (fwrite(cmd,sizeof(cmd)-1,1,fp) == 0) goto werr;
                if (fwriteBulkObject(fp,&key) == 0) goto werr;
                if (fwriteBulkLongLong(fp,expiretime) == 0) goto werr;
            }
            if (swapped) decrRefCount(o);
        }
        dictReleaseIterator(di);
    }

    /* Make sure data will not remain on the OS's output buffers */
    fflush(fp);
    aof_fsync(fileno(fp));
    fclose(fp);

    /* Use RENAME to make sure the DB file is changed atomically only
     * if the generate DB file is ok. */
    if (rename(tmpfile,filename) == -1) {
        redisLog(REDIS_WARNING,"Error moving temp append only file on the final destination: %s", strerror(errno));
        unlink(tmpfile);
        return REDIS_ERR;
    }
    redisLog(REDIS_NOTICE,"SYNC append only file rewrite performed");
    return REDIS_OK;

werr:
    fclose(fp);
    unlink(tmpfile);
    redisLog(REDIS_WARNING,"Write error writing append only file on disk: %s", strerror(errno));
    if (di) dictReleaseIterator(di);
    return REDIS_ERR;
}
示例#17
0
void *bioProcessBackgroundJobs(void *arg) {
    struct bio_job *job;
    unsigned long type = (unsigned long) arg;
    sigset_t sigset;

    /* Make the thread killable at any time, so that bioKillThreads()
     * can work reliably. */
    /**
    pthread_setcancelstate()函数用来设置当前线程的“可取消性”状态,并且将先前的状态返回到oldstate引用中。
“可取消性”状态的合法值分别是:PTHREAD_CANCEL_ENABLE 和 PTHREAD_CANCEL_DISABLE。
这个函数还可以查询当前线程的“可取消性”状态,即把第一个参数设为NULL。
     */
    pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
    /**
     pthread_setcanceltype() 函数用来设置当前线程的“可取消类型”,并且将先前的类型返回到oldtype引用中。

“可取消类型”的合法值分别是:

        PTHREAD_CANCEL_DEFERRED :线程接收到取消操作后,直到运行到“可取消点”后取消。

        PTHREAD_CANCEL_ASYNCHRONOUS :线程接收到取消操作后,立即取消。
     */
    pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
    pthread_mutex_lock(&bio_mutex[type]);
    /* Block SIGALRM so we are sure that only the main thread will
     * receive the watchdog signal. */
    sigemptyset(&sigset);
    sigaddset(&sigset, SIGALRM);
    /**
    在多线程的程序里,希望只在主线程中处理信号,可以使用
函数:
int pthread_sigmask (int how,
const sigset_t *set,
sigset_t *oset)
      用作在主调线程里控制信号掩码。
How:
SIG_BLOCK:     结果集是当前集合参数集的并集
SIG_UNBLOCK:  结果集是当前集合参数集的差集
SIG_SETMASK:  结果集是由参数集指向的集
     */
    if (pthread_sigmask(SIG_BLOCK, &sigset, NULL))
        redisLog(REDIS_WARNING,
            "Warning: can't mask SIGALRM in bio.c thread: %s", strerror(errno));

    while(1) {
        listNode *ln;

        /* The loop always starts with the lock hold. */
        if (listLength(bio_jobs[type]) == 0) {
        	/**
        	条件变量是利用线程间共享的全局变量进行同步的一种机制,主要包括两个动作:一个线程等待"条件变量的条件成立"而挂起;另一个线程使"条件成立"(给出条件成立信号)。
        	为了防止竞争,条件变量的使用总是和一个互斥锁结合在一起。
        	 */
            pthread_cond_wait(&bio_condvar[type],&bio_mutex[type]);
            continue;
        }
        /* Pop the job from the queue. */
        ln = listFirst(bio_jobs[type]);
        job = ln->value;
        /* It is now possible to unlock the background system as we know have
         * a stand alone job structure to process.*/
        pthread_mutex_unlock(&bio_mutex[type]);

        /* Process the job accordingly to its type. */
        if (type == REDIS_BIO_CLOSE_FILE) {
            close((long)job->arg1);
        } else if (type == REDIS_BIO_AOF_FSYNC) {
            aof_fsync((long)job->arg1);
        } else {
            redisPanic("Wrong job type in bioProcessBackgroundJobs().");
        }
        zfree(job);

        /* Lock again before reiterating the loop, if there are no longer
         * jobs to process we'll block again in pthread_cond_wait(). */
        pthread_mutex_lock(&bio_mutex[type]);
        listDelNode(bio_jobs[type],ln);
        bio_pending[type]--;
    }
}
示例#18
0
/* Write the append only file buffer on disk.
 *
 * Since we are required to write the AOF before replying to the client,
 * and the only way the client socket can get a write is entering when the
 * the event loop, we accumulate all the AOF writes in a memory
 * buffer and write it on disk using this function just before entering
 * the event loop again.
 *
 * About the 'force' argument:
 *
 * When the fsync policy is set to 'everysec' we may delay the flush if there
 * is still an fsync() going on in the background thread, since for instance
 * on Linux write(2) will be blocked by the background fsync anyway.
 * When this happens we remember that there is some aof buffer to be
 * flushed ASAP, and will try to do that in the serverCron() function.
 *
 * However if force is set to 1 we'll write regardless of the background
 * fsync. */
#define AOF_WRITE_LOG_ERROR_RATE 30 /* Seconds between errors logging. */
void flushAppendOnlyFile(int force) {
    ssize_t nwritten;
    int sync_in_progress = 0;

    if (sdslen(server.aof_buf) == 0) return;

    if (server.aof_fsync == AOF_FSYNC_EVERYSEC)
        sync_in_progress = bioPendingJobsOfType(REDIS_BIO_AOF_FSYNC) != 0;

    if (server.aof_fsync == AOF_FSYNC_EVERYSEC && !force) {
        /* With this append fsync policy we do background fsyncing.
         * If the fsync is still in progress we can try to delay
         * the write for a couple of seconds. */
        if (sync_in_progress) {
            if (server.aof_flush_postponed_start == 0) {
                /* No previous write postponinig, remember that we are
                 * postponing the flush and return. */
                server.aof_flush_postponed_start = server.unixtime;
                return;
            } else if (server.unixtime - server.aof_flush_postponed_start < 2) {
                /* We were already waiting for fsync to finish, but for less
                 * than two seconds this is still ok. Postpone again. */
                return;
            }
            /* Otherwise fall trough, and go write since we can't wait
             * over two seconds. */
            server.aof_delayed_fsync++;
            redisLog(REDIS_NOTICE,"Asynchronous AOF fsync is taking too long (disk is busy?). Writing the AOF buffer without waiting for fsync to complete, this may slow down Redis.");
        }
    }
    /* If you are following this code path, then we are going to write so
     * set reset the postponed flush sentinel to zero. */
    server.aof_flush_postponed_start = 0;

    /* We want to perform a single write. This should be guaranteed atomic
     * at least if the filesystem we are writing is a real physical one.
     * While this will save us against the server being killed I don't think
     * there is much to do about the whole server stopping for power problems
     * or alike */
    nwritten = write(server.aof_fd,server.aof_buf,sdslen(server.aof_buf));
    if (nwritten != (signed)sdslen(server.aof_buf)) {
        static time_t last_write_error_log = 0;
        int can_log = 0;

        /* Limit logging rate to 1 line per AOF_WRITE_LOG_ERROR_RATE seconds. */
        if ((server.unixtime - last_write_error_log) > AOF_WRITE_LOG_ERROR_RATE) {
            can_log = 1;
            last_write_error_log = server.unixtime;
        }

        /* Lof the AOF write error and record the error code. */
        if (nwritten == -1) {
            if (can_log) {
                redisLog(REDIS_WARNING,"Error writing to the AOF file: %s",
                    strerror(errno));
                server.aof_last_write_errno = errno;
            }
        } else {
            if (can_log) {
                redisLog(REDIS_WARNING,"Short write while writing to "
                                       "the AOF file: (nwritten=%lld, "
                                       "expected=%lld)",
                                       (long long)nwritten,
                                       (long long)sdslen(server.aof_buf));
            }

            if (ftruncate(server.aof_fd, server.aof_current_size) == -1) {
                if (can_log) {
                    redisLog(REDIS_WARNING, "Could not remove short write "
                             "from the append-only file.  Redis may refuse "
                             "to load the AOF the next time it starts.  "
                             "ftruncate: %s", strerror(errno));
                }
            } else {
                /* If the ftrunacate() succeeded we can set nwritten to
                 * -1 since there is no longer partial data into the AOF. */
                nwritten = -1;
            }
            server.aof_last_write_errno = ENOSPC;
        }

        /* Handle the AOF write error. */
        if (server.aof_fsync == AOF_FSYNC_ALWAYS) {
            /* We can't recover when the fsync policy is ALWAYS since the
             * reply for the client is already in the output buffers, and we
             * have the contract with the user that on acknowledged write data
             * is synched on disk. */
            redisLog(REDIS_WARNING,"Can't recover from AOF write error when the AOF fsync policy is 'always'. Exiting...");
            exit(1);
        } else {
            /* Recover from failed write leaving data into the buffer. However
             * set an error to stop accepting writes as long as the error
             * condition is not cleared. */
            server.aof_last_write_status = REDIS_ERR;

            /* Trim the sds buffer if there was a partial write, and there
             * was no way to undo it with ftruncate(2). */
            if (nwritten > 0) {
                server.aof_current_size += nwritten;
                sdsrange(server.aof_buf,nwritten,-1);
            }
            return; /* We'll try again on the next call... */
        }
    } else {
        /* Successful write(2). If AOF was in error state, restore the
         * OK state and log the event. */
        if (server.aof_last_write_status == REDIS_ERR) {
            redisLog(REDIS_WARNING,
                "AOF write error looks solved, Redis can write again.");
            server.aof_last_write_status = REDIS_OK;
        }
    }
    server.aof_current_size += nwritten;

    /* Re-use AOF buffer when it is small enough. The maximum comes from the
     * arena size of 4k minus some overhead (but is otherwise arbitrary). */
    if ((sdslen(server.aof_buf)+sdsavail(server.aof_buf)) < 4000) {
        sdsclear(server.aof_buf);
    } else {
        sdsfree(server.aof_buf);
        server.aof_buf = sdsempty();
    }

    /* Don't fsync if no-appendfsync-on-rewrite is set to yes and there are
     * children doing I/O in the background. */
    if (server.aof_no_fsync_on_rewrite &&
        (server.aof_child_pid != -1 || server.rdb_child_pid != -1))
            return;

    /* Perform the fsync if needed. */
    if (server.aof_fsync == AOF_FSYNC_ALWAYS) {
        /* aof_fsync is defined as fdatasync() for Linux in order to avoid
         * flushing metadata. */
        aof_fsync(server.aof_fd); /* Let's try to get this data on the disk */
        server.aof_last_fsync = server.unixtime;
    } else if ((server.aof_fsync == AOF_FSYNC_EVERYSEC &&
                server.unixtime > server.aof_last_fsync)) {
        if (!sync_in_progress) aof_background_fsync(server.aof_fd);
        server.aof_last_fsync = server.unixtime;
    }
}