示例#1
0
int ardrone_interface_thread_main(int argc, char *argv[])
{
	thread_running = true;

	char *device = "/dev/ttyS1";

	/* welcome user */
	printf("[ardrone_interface] Control started, taking over motors\n");

	/* File descriptors */
	int gpios;

	char *commandline_usage = "\tusage: ardrone_interface start|status|stop [-t for motor test (10%% thrust)]\n";

	bool motor_test_mode = false;
	int test_motor = -1;

	/* read commandline arguments */
	for (int i = 0; i < argc && argv[i]; i++) {
		if (strcmp(argv[i], "-t") == 0 || strcmp(argv[i], "--test") == 0) {
			motor_test_mode = true;
		}

		if (strcmp(argv[i], "-m") == 0 || strcmp(argv[i], "--motor") == 0) {
			if (i+1 < argc) {
				int motor = atoi(argv[i+1]);
				if (motor > 0 && motor < 5) {
					test_motor = motor;
				} else {
					thread_running = false;
					errx(1, "supply a motor # between 1 and 4. Example: -m 1\n %s", commandline_usage);
				}
			} else {
				thread_running = false;
				errx(1, "missing parameter to -m 1..4\n %s", commandline_usage);
			}
		}
		if (strcmp(argv[i], "-d") == 0 || strcmp(argv[i], "--device") == 0) { //device set
			if (argc > i + 1) {
				device = argv[i + 1];

			} else {
				thread_running = false;
				errx(1, "missing parameter to -m 1..4\n %s", commandline_usage);
			}
		}
	}

	struct termios uart_config_original;

	if (motor_test_mode) {
		printf("[ardrone_interface] Motor test mode enabled, setting 10 %% thrust.\n");
	}

	/* Led animation */
	int counter = 0;
	int led_counter = 0;

	/* declare and safely initialize all structs */
	struct vehicle_status_s state;
	memset(&state, 0, sizeof(state));
	struct actuator_controls_s actuator_controls;
	memset(&actuator_controls, 0, sizeof(actuator_controls));
	struct actuator_armed_s armed;
	armed.armed = false;

	/* subscribe to attitude, motor setpoints and system state */
	int actuator_controls_sub = orb_subscribe(ORB_ID_VEHICLE_ATTITUDE_CONTROLS);
	int state_sub = orb_subscribe(ORB_ID(vehicle_status));
	int armed_sub = orb_subscribe(ORB_ID(actuator_armed));

	printf("[ardrone_interface] Motors initialized - ready.\n");
	fflush(stdout);

	/* enable UART, writes potentially an empty buffer, but multiplexing is disabled */
	ardrone_write = ardrone_open_uart(device, &uart_config_original);

	/* initialize multiplexing, deactivate all outputs - must happen after UART open to claim GPIOs on PX4FMU */
	gpios = ar_multiplexing_init();

	if (ardrone_write < 0) {
		fprintf(stderr, "[ardrone_interface] Failed opening AR.Drone UART, exiting.\n");
		thread_running = false;
		exit(ERROR);
	}

	/* initialize motors */
	if (OK != ar_init_motors(ardrone_write, gpios)) {
		close(ardrone_write);
		fprintf(stderr, "[ardrone_interface] Failed initializing AR.Drone motors, exiting.\n");
		thread_running = false;
		exit(ERROR);
	}

	ardrone_write_motor_commands(ardrone_write, 0, 0, 0, 0);


	// XXX Re-done initialization to make sure it is accepted by the motors
	// XXX should be removed after more testing, but no harm

	/* close uarts */
	close(ardrone_write);

	/* enable UART, writes potentially an empty buffer, but multiplexing is disabled */
	ardrone_write = ardrone_open_uart(device, &uart_config_original);

	/* initialize multiplexing, deactivate all outputs - must happen after UART open to claim GPIOs on PX4FMU */
	gpios = ar_multiplexing_init();

	if (ardrone_write < 0) {
		fprintf(stderr, "[ardrone_interface] Failed opening AR.Drone UART, exiting.\n");
		thread_running = false;
		exit(ERROR);
	}

	/* initialize motors */
	if (OK != ar_init_motors(ardrone_write, gpios)) {
		close(ardrone_write);
		fprintf(stderr, "[ardrone_interface] Failed initializing AR.Drone motors, exiting.\n");
		thread_running = false;
		exit(ERROR);
	}

	while (!thread_should_exit) {

		if (motor_test_mode) {
			/* set motors to idle speed */
			if (test_motor > 0 && test_motor < 5) {
				int motors[4] = {0, 0, 0, 0};
				motors[test_motor - 1] = 10;
				ardrone_write_motor_commands(ardrone_write, motors[0], motors[1], motors[2], motors[3]);
			} else {
				ardrone_write_motor_commands(ardrone_write, 10, 10, 10, 10);
			}

		} else {
			/* MAIN OPERATION MODE */

			/* get a local copy of the vehicle state */
			orb_copy(ORB_ID(vehicle_status), state_sub, &state);
			/* get a local copy of the actuator controls */
			orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_controls_sub, &actuator_controls);
			orb_copy(ORB_ID(actuator_armed), armed_sub, &armed);
			
			/* for now only spin if armed and immediately shut down
			 * if in failsafe
			 */
			if (armed.armed && !armed.lockdown) {
				ardrone_mixing_and_output(ardrone_write, &actuator_controls);

			} else {
				/* Silently lock down motor speeds to zero */
				ardrone_write_motor_commands(ardrone_write, 0, 0, 0, 0);
			}
		}

		if (counter % 24 == 0) {
			if (led_counter == 0) ar_set_leds(ardrone_write, 0, 1, 0, 0, 0, 0, 0 , 0);

			if (led_counter == 1) ar_set_leds(ardrone_write, 1, 1, 0, 0, 0, 0, 0 , 0);

			if (led_counter == 2) ar_set_leds(ardrone_write, 1, 0, 0, 0, 0, 0, 0 , 0);

			if (led_counter == 3) ar_set_leds(ardrone_write, 0, 0, 0, 1, 0, 0, 0 , 0);

			if (led_counter == 4) ar_set_leds(ardrone_write, 0, 0, 1, 1, 0, 0, 0 , 0);

			if (led_counter == 5) ar_set_leds(ardrone_write, 0, 0, 1, 0, 0, 0, 0 , 0);

			if (led_counter == 6) ar_set_leds(ardrone_write, 0, 0, 0, 0, 0, 1, 0 , 0);

			if (led_counter == 7) ar_set_leds(ardrone_write, 0, 0, 0, 0, 1, 1, 0 , 0);

			if (led_counter == 8) ar_set_leds(ardrone_write, 0, 0, 0, 0, 1, 0, 0 , 0);

			if (led_counter == 9) ar_set_leds(ardrone_write, 0, 0, 0, 0, 0, 0, 0 , 1);

			if (led_counter == 10) ar_set_leds(ardrone_write, 0, 0, 0, 0, 0, 0, 1 , 1);

			if (led_counter == 11) ar_set_leds(ardrone_write, 0, 0, 0, 0, 0, 0, 1 , 0);

			led_counter++;

			if (led_counter == 12) led_counter = 0;
		}

		/* run at approximately 200 Hz */
		usleep(4500);

		counter++;
	}

	/* restore old UART config */
	int termios_state;

	if ((termios_state = tcsetattr(ardrone_write, TCSANOW, &uart_config_original)) < 0) {
		fprintf(stderr, "[ardrone_interface] ERROR setting baudrate / termios config for (tcsetattr)\n");
	}

	printf("[ardrone_interface] Restored original UART config, exiting..\n");

	/* close uarts */
	close(ardrone_write);
	ar_multiplexing_deinit(gpios);

	fflush(stdout);

	thread_running = false;

	return OK;
}
void ar_init_motors(int ardrone_uart, int *gpios_pin)
{
	/* Initialize multiplexing */
	*gpios_pin = ar_multiplexing_init();

	/* Write ARDrone commands on UART2 */
	uint8_t initbuf[] = {0xE0, 0x91, 0xA1, 0x00, 0x40};
	uint8_t multicastbuf[] = {0xA0, 0xA0, 0xA0, 0xA0, 0xA0, 0xA0};

	/* initialize all motors
	 * - select one motor at a time
	 * - configure motor
	 */
	int i;
	int errcounter = 0;

	for (i = 1; i < 5; ++i) {
		/* Initialize motors 1-4 */
		initbuf[3] = i;
		errcounter += ar_select_motor(*gpios_pin, i);

		write(ardrone_uart, initbuf + 0, 1);

		/* sleep 400 ms */
		usleep(200000);
		usleep(200000);

		write(ardrone_uart, initbuf + 1, 1);
		/* wait 50 ms */
		usleep(50000);

		write(ardrone_uart, initbuf + 2, 1);
		/* wait 50 ms */
		usleep(50000);

		write(ardrone_uart, initbuf + 3, 1);
		/* wait 50 ms */
		usleep(50000);

		write(ardrone_uart, initbuf + 4, 1);
		/* wait 50 ms */
		usleep(50000);

		/* enable multicast */
		write(ardrone_uart, multicastbuf + 0, 1);
		/* wait 1 ms */
		usleep(1000);

		write(ardrone_uart, multicastbuf + 1, 1);
		/* wait 1 ms */
		usleep(1000);

		write(ardrone_uart, multicastbuf + 2, 1);
		/* wait 1 ms */
		usleep(1000);

		write(ardrone_uart, multicastbuf + 3, 1);
		/* wait 1 ms */
		usleep(1000);

		write(ardrone_uart, multicastbuf + 4, 1);
		/* wait 1 ms */
		usleep(1000);

		write(ardrone_uart, multicastbuf + 5, 1);
		/* wait 5 ms */
		usleep(50000);
	}

	/* start the multicast part */
	errcounter += ar_select_motor(*gpios_pin, 0);

	if (errcounter != 0) {
		printf("AR: init sequence incomplete, failed %d times", -errcounter);
		fflush(stdout);
	}
}