示例#1
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("isolate_roots....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 40; iter++)
    {
        slong m, r, a, b, maxdepth, maxeval, maxfound, prec, i, j, num;
        arf_interval_ptr blocks;
        int * info;
        arf_interval_t interval;
        arb_t t;
        fmpz_t nn;

        prec = 2 + n_randint(state, 50);

        m = n_randint(state, 80);
        r = 1 + n_randint(state, 80);
        a = m - r;
        b = m + r;

        maxdepth = 1 + n_randint(state, 60);
        maxeval = 1 + n_randint(state, 5000);
        maxfound = 1 + n_randint(state, 100);

        arf_interval_init(interval);
        arb_init(t);
        fmpz_init(nn);

        arf_set_si(&interval->a, a);
        arf_set_si(&interval->b, b);

        num = arb_calc_isolate_roots(&blocks, &info, sin_pi2_x, NULL,
            interval, maxdepth, maxeval, maxfound, prec);

        /* check that all roots are accounted for */
        for (i = a; i <= b; i++)
        {
            if (i % 2 == 0)
            {
                int found = 0;

                for (j = 0; j < num; j++)
                {
                    arf_interval_get_arb(t, blocks + j, ARF_PREC_EXACT);

                    if (arb_contains_si(t, i))
                    {
                        found = 1;
                        break;
                    }
                }

                if (!found)
                {
                    flint_printf("FAIL: missing root %wd\n", i);
                    flint_printf("a = %wd, b = %wd, maxdepth = %wd, maxeval = %wd, maxfound = %wd, prec = %wd\n",
                        a, b, maxdepth, maxeval, maxfound, prec);

                    for (j = 0; j < num; j++)
                    {
                        arf_interval_printd(blocks + j, 15);
                        flint_printf("   %d \n", info[i]);
                    }

                    abort();
                }
            }
        }

        /* check that all reported single roots are good */
        for (i = 0; i < num; i++)
        {
            if (info[i] == 1)
            {
                /* b contains unique 2n -> b/2 contains unique n */
                arf_interval_get_arb(t, blocks + i, ARF_PREC_EXACT);
                arb_mul_2exp_si(t, t, -1);

                if (!arb_get_unique_fmpz(nn, t))
                {
                    flint_printf("FAIL: bad root %wd\n", i);
                    flint_printf("a = %wd, b = %wd, maxdepth = %wd, maxeval = %wd, maxfound = %wd, prec = %wd\n",
                        a, b, maxdepth, maxeval, maxfound, prec);

                    for (j = 0; j < num; j++)
                    {
                        arf_interval_printd(blocks + j, 15);
                        flint_printf("   %d \n", info[i]);
                    }

                    abort();
                }
            }
        }

        _arf_interval_vec_clear(blocks, num);
        flint_free(info);

        arf_interval_clear(interval);
        arb_clear(t);
        fmpz_clear(nn);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("legendre_p_ui_root....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 100 * arb_test_multiplier(); iter++)
    {
        ulong n, k;
        slong prec;
        arb_ptr roots, weights;
        arb_poly_t pol;
        arb_t s;
        fmpq_poly_t pol2;

        n = 1 + n_randint(state, 100);
        prec = 20 + n_randint(state, 500);

        roots = _arb_vec_init(n);
        weights = _arb_vec_init(n);
        arb_poly_init(pol);
        fmpq_poly_init(pol2);
        arb_init(s);

        for (k = 0; k < n; k++)
        {
            if (k > n / 2 && n_randint(state, 2))
            {
                arb_neg(roots + k, roots + n - k - 1);
                arb_set(weights + k, weights + n - k - 1);
            }
            else
            {
                arb_hypgeom_legendre_p_ui_root(roots + k, weights + k, n, k, prec);
            }
        }

        arb_poly_product_roots(pol, roots, n, prec);
        /* fmpq_poly_legendre_p(pol2, n); */
        arith_legendre_polynomial(pol2, n);
        arb_set_fmpz(s, pol2->coeffs + n);
        arb_div_fmpz(s, s, pol2->den, prec);
        arb_poly_scalar_mul(pol, pol, s, prec);

        if (!arb_poly_contains_fmpq_poly(pol, pol2))
        {
            flint_printf("FAIL: polynomial containment\n\n");
            flint_printf("n = %wu, prec = %wd\n\n", n, prec);
            flint_printf("pol = "); arb_poly_printd(pol, 30); flint_printf("\n\n");
            flint_printf("pol2 = "); fmpq_poly_print(pol2); flint_printf("\n\n");
            flint_abort();
        }

        arb_zero(s);
        for (k = 0; k < n; k++)
        {
            arb_add(s, s, weights + k, prec);
        }

        if (!arb_contains_si(s, 2))
        {
            flint_printf("FAIL: sum of weights\n\n");
            flint_printf("n = %wu, prec = %wd\n\n", n, prec);
            flint_printf("s = "); arb_printn(s, 30, 0); flint_printf("\n\n");
            flint_abort();
        }

        _arb_vec_clear(roots, n);
        _arb_vec_clear(weights, n);
        arb_poly_clear(pol);
        fmpq_poly_clear(pol2);
        arb_clear(s);
    }

    for (iter = 0; iter < 500 * arb_test_multiplier(); iter++)
    {
        arb_t x1, x2, w1, w2;
        ulong n, k;
        slong prec1, prec2;

        arb_init(x1);
        arb_init(x2);
        arb_init(w1);
        arb_init(w2);

        n = 1 + n_randtest(state) % 100000;
        if (n_randint(state, 2) || n == 1)
            k = n_randtest(state) % n;
        else
            k = n / 2 - (n_randtest(state) % (n / 2));

        prec1 = 2 + n_randtest(state) % 2000;
        prec2 = 2 + n_randtest(state) % 2000;

        arb_hypgeom_legendre_p_ui_root(x1, w1, n, k, prec1);
        if (n_randint(state, 10) == 0)
            arb_hypgeom_legendre_p_ui_root(x1, NULL, n, k, prec1);

        arb_hypgeom_legendre_p_ui_root(x2, w2, n, k, prec2);

        if (!arb_overlaps(x1, x2) || !arb_overlaps(w1, w2))
        {
            flint_printf("FAIL: overlap\n\n");
            flint_printf("n = %wu, k = %wu, prec1 = %wd, prec2 = %wd\n\n", n, k, prec1, prec2);
            flint_printf("x1 = "); arb_printn(x1, 100, 0); flint_printf("\n\n");
            flint_printf("x2 = "); arb_printn(x2, 100, 0); flint_printf("\n\n");
            flint_printf("w1 = "); arb_printn(w1, 100, 0); flint_printf("\n\n");
            flint_printf("w2 = "); arb_printn(w2, 100, 0); flint_printf("\n\n");
            flint_abort();
        }

        if (arb_rel_accuracy_bits(x1) < prec1 - 3 || arb_rel_accuracy_bits(w1) < prec1 - 3)
        {
            flint_printf("FAIL: accuracy\n\n");
            flint_printf("n = %wu, k = %wu, prec1 = %wd\n\n", n, k, prec1);
            flint_printf("acc(x1) = %wd, acc(w1) = %wd\n\n", arb_rel_accuracy_bits(x1), arb_rel_accuracy_bits(w1));
            flint_printf("x1 = "); arb_printn(x1, prec1, ARB_STR_CONDENSE * 30); flint_printf("\n\n");
            flint_printf("w1 = "); arb_printn(w1, prec1, ARB_STR_CONDENSE * 30); flint_printf("\n\n");
            flint_abort();
        }

        if (arb_rel_accuracy_bits(x2) < prec2 - 3 || arb_rel_accuracy_bits(w2) < prec2 - 3)
        {
            flint_printf("FAIL: accuracy 2\n\n");
            flint_printf("n = %wu, k = %wu, prec2 = %wd\n\n", n, k, prec2);
            flint_printf("acc(x2) = %wd, acc(w2) = %wd\n\n", arb_rel_accuracy_bits(x2), arb_rel_accuracy_bits(w2));
            flint_printf("x2 = "); arb_printn(x2, prec2, ARB_STR_CONDENSE * 30); flint_printf("\n\n");
            flint_printf("w2 = "); arb_printn(w2, prec2, ARB_STR_CONDENSE * 30); flint_printf("\n\n");
            flint_abort();
        }

        arb_clear(x1);
        arb_clear(x2);
        arb_clear(w1);
        arb_clear(w2);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
示例#3
0
void
acb_hypgeom_2f1_transform_nolimit(acb_t res, const acb_t a, const acb_t b,
    const acb_t c, const acb_t z, int regularized, int which, slong prec)
{
    acb_t ba, ca, cb, cab, ac1, bc1, ab1, ba1, w, t, u, v, s;

    if (acb_contains_zero(z) || !acb_is_finite(z))
    {
        acb_indeterminate(res);
        return;
    }

    if (arb_contains_si(acb_realref(z), 1) && arb_contains_zero(acb_imagref(z)))
    {
        acb_indeterminate(res);
        return;
    }

    if (!regularized)
    {
        acb_init(t);
        acb_gamma(t, c, prec);
        acb_hypgeom_2f1_transform_nolimit(res, a, b, c, z, 1, which, prec);
        acb_mul(res, res, t, prec);
        acb_clear(t);
        return;
    }

    acb_init(ba);
    acb_init(ca); acb_init(cb); acb_init(cab);
    acb_init(ac1); acb_init(bc1);
    acb_init(ab1); acb_init(ba1);
    acb_init(w); acb_init(t);
    acb_init(u); acb_init(v);
    acb_init(s);

    acb_add_si(s, z, -1, prec);   /* s = 1 - z */
    acb_neg(s, s);

    acb_sub(ba, b, a, prec);      /* ba = b - a */
    acb_sub(ca, c, a, prec);      /* ca = c - a */
    acb_sub(cb, c, b, prec);      /* cb = c - b */
    acb_sub(cab, ca, b, prec);    /* cab = c - a - b */

    acb_add_si(ac1, ca, -1, prec); acb_neg(ac1, ac1); /* ac1 = a - c + 1 */
    acb_add_si(bc1, cb, -1, prec); acb_neg(bc1, bc1); /* bc1 = b - c + 1 */
    acb_add_si(ab1, ba, -1, prec); acb_neg(ab1, ab1); /* ab1 = a - b + 1 */
    acb_add_si(ba1, ba, 1, prec);                     /* ba1 = b - a + 1 */

    /* t = left term, u = right term (DLMF 15.8.1 - 15.8.5) */
    if (which == 2)
    {
        acb_inv(w, z, prec);  /* w = 1/z */
        acb_hypgeom_2f1_direct(t, a, ac1, ab1, w, 1, prec);
        acb_hypgeom_2f1_direct(u, b, bc1, ba1, w, 1, prec);
    }
    else if (which == 3)
    {
        acb_inv(w, s, prec);  /* w = 1/(1-z) */
        acb_hypgeom_2f1_direct(t, a, cb, ab1, w, 1, prec);
        acb_hypgeom_2f1_direct(u, b, ca, ba1, w, 1, prec);
    }
    else if (which == 4)
    {
        acb_set(w, s);                  /* w = 1-z */
        acb_add(v, ac1, b, prec);       /* v = a+b-c+1 */
        acb_hypgeom_2f1_direct(t, a, b, v, w, 1, prec);
        acb_add_si(v, cab, 1, prec);    /* v = c-a-b+1 */
        acb_hypgeom_2f1_direct(u, ca, cb, v, w, 1, prec);
    }
    else if (which == 5)
    {
        acb_inv(w, z, prec);  /* w = 1-1/z */
        acb_neg(w, w);
        acb_add_si(w, w, 1, prec);
        acb_add(v, ac1, b, prec);       /* v = a+b-c+1 */
        acb_hypgeom_2f1_direct(t, a, ac1, v, w, 1, prec);
        acb_add_si(v, cab, 1, prec);    /* v = c-a-b+1 */
        acb_add_si(u, a, -1, prec);     /* u = 1-a */
        acb_neg(u, u);
        acb_hypgeom_2f1_direct(u, ca, u, v, w, 1, prec);
    }
    else
    {
        flint_printf("invalid transformation!\n");
        flint_abort();
    }

    /* gamma factors */
    acb_rgamma(v, a, prec);
    acb_mul(u, u, v, prec);
    acb_rgamma(v, ca, prec);
    acb_mul(t, t, v, prec);

    acb_rgamma(v, b, prec);
    if (which == 2 || which == 3)
        acb_mul(t, t, v, prec);
    else
        acb_mul(u, u, v, prec);

    acb_rgamma(v, cb, prec);
    if (which == 2 || which == 3)
        acb_mul(u, u, v, prec);
    else
        acb_mul(t, t, v, prec);

    if (which == 2 || which == 3)
    {
        if (which == 2)
            acb_neg(s, z);  /* -z, otherwise 1-z since before */

        acb_neg(v, a);
        acb_pow(v, s, v, prec);
        acb_mul(t, t, v, prec);

        acb_neg(v, b);
        acb_pow(v, s, v, prec);
        acb_mul(u, u, v, prec);
    }
    else
    {
        acb_pow(v, s, cab, prec);
        acb_mul(u, u, v, prec);

        if (which == 5)
        {
            acb_neg(v, a);
            acb_pow(v, z, v, prec);
            acb_mul(t, t, v, prec);

            acb_neg(v, ca);
            acb_pow(v, z, v, prec);
            acb_mul(u, u, v, prec);
        }
    }

    acb_sub(t, t, u, prec);

    if (which == 2 || which == 3)
        acb_sin_pi(v, ba, prec);
    else
        acb_sin_pi(v, cab, prec);

    acb_div(t, t, v, prec);
    acb_const_pi(v, prec);
    acb_mul(t, t, v, prec);
    acb_set(res, t);

    acb_clear(ba);
    acb_clear(ca); acb_clear(cb); acb_clear(cab);
    acb_clear(ac1); acb_clear(bc1);
    acb_clear(ab1); acb_clear(ba1);
    acb_clear(w); acb_clear(t);
    acb_clear(u); acb_clear(v);
    acb_clear(s);
}
示例#4
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("chi....");
    fflush(stdout);
    flint_randinit(state);

    for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++)
    {
        acb_t zn1, zn2, zn1n2, zn1zn2;
        dirichlet_group_t G;
        dirichlet_char_t chi;
        ulong q, m, n1, n2, iter2;
        int res;

        q = 1 + n_randint(state, 1000);

        dirichlet_group_init(G, q);
        dirichlet_char_init(chi, G);
        acb_init(zn1);
        acb_init(zn2);
        acb_init(zn1n2);
        acb_init(zn1zn2);

        /* check chi(n1) chi(n2) = chi(n1 n2) */
        for (iter2 = 0; iter2 < 10; iter2++)
        {
            do {
                m = 1 + n_randint(state, q);
            } while (n_gcd(q, m) != 1);

            dirichlet_char_log(chi, G, m);

            n1 = n_randint(state, 1000);
            n2 = n_randint(state, 1000);

            acb_dirichlet_chi(zn1, G, chi, n1, 53);
            acb_dirichlet_pairing(zn2, G, m, n1, 53);
            if (!acb_overlaps(zn1, zn2))
            {
                flint_printf("FAIL: overlap\n\n");
                flint_printf("q = %wu\n\n", q);
                flint_printf("m = %wu\n\n", m);
                flint_printf("n = %wu\n\n", n1);
                flint_printf("char = "); acb_printd(zn1, 15); flint_printf("\n\n");
                flint_printf("pairing = "); acb_printd(zn2, 15); flint_printf("\n\n");
                dirichlet_char_print(G, chi);
                dirichlet_char_log(chi, G, m);
                flint_printf("log(m) = "); dirichlet_char_print(G, chi);
                dirichlet_char_log(chi, G, n1);
                flint_printf("log(n1) = "); dirichlet_char_print(G, chi);
                flint_abort();
            }

            acb_dirichlet_pairing(zn2, G, m, n2, 53);
            acb_dirichlet_pairing(zn1n2, G, m, n1 * n2, 53);
            acb_mul(zn1zn2, zn1, zn2, 53);

            if (!acb_overlaps(zn1n2, zn1zn2))
            {
                flint_printf("FAIL: overlap\n\n");
                flint_printf("q = %wu\n\n", q);
                flint_printf("m = %wu\n\n", m);
                flint_printf("n1 = %wu\n\n", n1);
                flint_printf("n2 = %wu\n\n", n2);
                flint_printf("zn1 = "); acb_printd(zn1, 15); flint_printf("\n\n");
                flint_printf("zn2 = "); acb_printd(zn2, 15); flint_printf("\n\n");
                flint_printf("zn1n2 = "); acb_printd(zn1n2, 15); flint_printf("\n\n");
                flint_printf("zn1zn2 = "); acb_printd(zn1zn2, 15); flint_printf("\n\n");
                flint_abort();
            }
        }

        if (iter % 10 == 0)
        {
            /* check orthogonality */
            acb_zero(zn1);
            n1 = n_randint(state, 1000);
            for (m = 1; m <= q; m++)
            {
                if (n_gcd(q, m) == 1)
                {
                    acb_dirichlet_pairing(zn2, G, m, n1, 53);
                    acb_add(zn1, zn1, zn2, 53);
                }
            }

            if (n1 % q == 1 % q)
                res = arb_contains_si(acb_realref(zn1), n_euler_phi(q)) &&
                    arb_contains_zero(acb_imagref(zn1));
            else
                res = acb_contains_zero(zn1);

            if (!res)
            {
                flint_printf("FAIL: orthogonality\n\n");
                flint_printf("q = %wu\n\n", q);
                flint_printf("phi = %wu\n\n", n_euler_phi(q));
                flint_printf("n1 = %wu\n\n", n1);
                flint_printf("zn1 = "); acb_printd(zn1, 15); flint_printf("\n\n");
                flint_abort();
            }
        }

        dirichlet_group_clear(G);
        dirichlet_char_clear(chi);
        acb_clear(zn1);
        acb_clear(zn2);
        acb_clear(zn1n2);
        acb_clear(zn1zn2);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
示例#5
0
void
acb_hypgeom_2f1_transform_limit(acb_t res, const acb_t a, const acb_t b,
    const acb_t c, const acb_t z, int regularized, int which, slong prec)
{
    acb_poly_t aa, bb, cc, zz;
    acb_t t;

    if (acb_contains_zero(z) || !acb_is_finite(z))
    {
        acb_indeterminate(res);
        return;
    }

    if (arb_contains_si(acb_realref(z), 1) && arb_contains_zero(acb_imagref(z)))
    {
        acb_indeterminate(res);
        return;
    }

    if (!regularized)
    {
        acb_init(t);
        acb_gamma(t, c, prec);
        acb_hypgeom_2f1_transform_limit(res, a, b, c, z, 1, which, prec);
        acb_mul(res, res, t, prec);
        acb_clear(t);
        return;
    }

    acb_poly_init(aa);
    acb_poly_init(bb);
    acb_poly_init(cc);
    acb_poly_init(zz);
    acb_init(t);

    acb_poly_set_acb(aa, a);
    acb_poly_set_acb(bb, b);
    acb_poly_set_acb(cc, c);
    acb_poly_set_acb(zz, z);

    if (which == 2 || which == 3)
    {
        acb_sub(t, b, a, prec);
        acb_poly_set_coeff_si(aa, 1, 1);

        /* prefer b-a nonnegative (either is correct) to avoid
           expensive operations in the hypergeometric series */
        if (arb_is_nonnegative(acb_realref(t)))
            _acb_hypgeom_2f1_transform_limit(res, aa, bb, cc, zz, which, prec);
        else
            _acb_hypgeom_2f1_transform_limit(res, bb, aa, cc, zz, which, prec);
    }
    else
    {
        acb_poly_set_coeff_si(aa, 1, 1);
        _acb_hypgeom_2f1_transform_limit(res, aa, bb, cc, zz, which, prec);
    }

    acb_poly_clear(aa);
    acb_poly_clear(bb);
    acb_poly_clear(cc);
    acb_poly_clear(zz);
    acb_clear(t);
}