示例#1
0
int main(){
	
	const int length = 5;
	float input[length] = {-0.665365, -0.329988, 0.164465, 0.043962, 0.295885};
	
	float output[length];           	// array for storing Kalman processed values
	float temp[length];             	// array for storing subtraction results
	float temp2[length];	
	float miscresult[2] = {0, 0};   	// array for storing mean and std dev results
	float holder[length];           	// array for storing convolution results
	int i, j;
	float corr_temp[1] = {0};

	/*START OF PART II*/
	kalman_state kstate;
	reset(&kstate);
	//Kalmanfilter_C(input, output, &kstate, length);
	Kalmanfilter_asm(output, input, length, &kstate);
	printf("\n");
	/*END OF PART II*/

	/*START OF PART III*/	
	// subtract
	printf("subtraction:\n");
	subtract(temp, input, output, length);
	arm_sub_f32(input, output, temp2, length);
	for(j = 0; j < length; j++){
		printf("My implementation: %f CMSIS: %f\n", temp[j], temp2[j]);
	}

	// misc
	printf("\n");
	//misc(miscresult, temp, length);
	arm_mean_f32(temp, length, &miscresult[0]);
	arm_std_f32(temp, length, &miscresult[1]);
	printf("mean: %f stdev: %f\n", miscresult[0], miscresult[1]);

	// correlation
	//corr_temp[0] = correlation(input, output, length);
	arm_correlate_f32(input, length, output, length, &corr_temp[0]);
	printf("correlation: %f\n", corr_temp[0]);
	

	// convolution
	printf("\n");
	for(i = 0; i < length; i++){
		holder[i] = 0;
	}
	convolve(holder, input, output, length);
	//arm_conv_f32(input, length, output, length, holder);
	for(i = 0; i < length; i++){
		printf("convolution %f \n", holder[i]);
	}
	/*END OF PART III*/

	return 0;
}
示例#2
0
void FloatArray::correlateInitialized(FloatArray operand2, FloatArray destination){
  ASSERT(destination.size >= size+operand2.size-1, "Destination array too small"); //TODO: change CMSIS docs, which state a different size
/// @note When built for ARM Cortex-M processor series, this method uses the optimized <a href="http://www.keil.com/pack/doc/CMSIS/General/html/index.html">CMSIS library</a>
#ifdef ARM_CORTEX
  arm_correlate_f32(data, size, operand2.data, operand2.size, destination);
#else
  //correlation is the same as a convolution where one of the signals is flipped in time
  //so we flip in time operand2 
  operand2.reverse();
  //and convolve it with fa to obtain the correlation
  convolve(operand2, destination);
  //and we flip back operand2, so that the input is not modified
  operand2.reverse();
#endif /* ARM_CORTEX */  
}
示例#3
0
文件: main.c 项目: lsoldano93/ECSE426
// ARM DSP Function ****************************************************************************************
int dsp_arm(float* inputArray, float* outputArray, dsp_t* analysisOut) {
	
	// Get diffence Array
	arm_sub_f32(outputArray, inputArray, analysisOut->diffArr, ARRAY_LENGTH);
	
	// Get mean
	arm_mean_f32(analysisOut->diffArr, (uint32_t) ARRAY_LENGTH, &analysisOut->meanDiff);
	
	// Get standard deviation
	arm_std_f32(analysisOut->diffArr, (uint32_t) ARRAY_LENGTH, &analysisOut->standDevDiff);
	
	// Get correlation
	arm_correlate_f32(inputArray, ARRAY_LENGTH, outputArray, ARRAY_LENGTH, analysisOut->corrArr);
	
	// Get convolution
	arm_conv_f32(inputArray, ARRAY_LENGTH, outputArray, ARRAY_LENGTH, analysisOut->convolArr);
	
	
	return 0;
}
int main()
{
	//initialize testing array
	float testVector[] = {0.1f,0.2f,0.3f,0.4f,0.5f};
	
	/*COMMENTED OUT LENGTH PARAM AS IT IS INCLUDED IN HEADER FILE*/
	//get the size of the array
	//int length = sizeof(testVector)/sizeof(float);

	//initiate empty output array of size length
	float outputArrayC[length];
	//initialize the struct at p=r=q 0.1 and x=k=0 
	kalman_state currentState = {0.1f, 0.1f, 0.0f , 0.1f, 0.0f};
	//call function Kalmanfilter_C
	Kalmanfilter_C(measurements, outputArrayC, &currentState, length);
	
	//initiate empty output array of size length
	float outputArrayASM[length];
	
	//reinitialize the struct at p=r=q 0.1 and x=k=0 
	currentState.p = DEF_p; 
	currentState.r = DEF_r; 	
	currentState.k = DEF_k;
	currentState.q = DEF_q; 
	currentState.x = DEF_x; 
	
	//call subroutine Kalmanfilter_asm
	Kalmanfilter_asm(measurements, outputArrayASM, &currentState, length );

	//Check for correctness with a error tolerance of 0.000001
	float errorTolerance = 0.000001f;
	float errorPercentage = 0.01;

	//is_valid(outputArrayC, outputArrayASM, length, errorTolerance, "c vs asm");
	//is_valid_relative(outputArrayC, outputArrayASM, length, errorTolerance, errorPercentage,"c vs asm");

	int p;

	//print KalmanFilter output
	for ( p = 0; p < length;  p++ )
	{
		printf("OutputASM: %f & OutputC %f\n", outputArrayASM[p], outputArrayC[p]); 
	}

	float differenceC[length];
	float differenceCMSIS[length];
	
	//Difference
	arm_sub_f32 (measurements, outputArrayC, differenceCMSIS, length);
	c_sub(measurements, outputArrayC, differenceC, length);
	
	//is_valid(differenceC, differenceCMSIS, length, errorTolerance, "Difference");
	//is_valid_relative(differenceC, differenceCMSIS, length, errorTolerance, errorPercentage,"Difference");
	
	//Print difference vector
	for ( p = 0; p < length;  p++ )
	{
		printf("DifferenceC: %f & DifferenceCMSIS %f \n", differenceC[p], differenceCMSIS[p]); 
	}


	//Mean
	float meanCMSIS;
	float meanC; 
	arm_mean_f32 (differenceCMSIS, length , &meanCMSIS);
	c_mean(differenceC,length, &meanC); 
	//is_valid(&meanC, &meanCMSIS, 1, errorTolerance, "mean"); 
	//is_valid_relative(&meanC, &meanCMSIS, 1, errorTolerance, errorPercentage, "mean"); 
	
	//Print mean values
	printf("MeanC: %f & MeanCMSIS %f \n", meanC, meanCMSIS); 
	
	//STD
	float stdC;
	float stdCMSIS;
	arm_std_f32 (differenceCMSIS, length, &stdCMSIS);
	c_std(differenceC, length, &stdC);
	//is_valid(&stdC, &stdCMSIS, 1, errorTolerance, "STD");
	//is_valid_relative(&stdC, &stdCMSIS, 1, errorTolerance, errorPercentage,"STD");

	//Print std values
	printf("StandardDevC: %f & StandardDevCMSIS %f \n", stdC, stdCMSIS); 

	//correlation
	float corC[2*length-1];
	float corCMSIS[2*length-1];
	arm_correlate_f32 (measurements, length, outputArrayC, length, corCMSIS);
	c_correlate(measurements, outputArrayC, corC, length);
	//is_valid(corC, corCMSIS, 2*length-1, errorTolerance, "correlation"); 
	//is_valid_relative(corC, corCMSIS, 2*length-1, errorTolerance, errorPercentage, "correlation"); 
	
	//convolution
	float convC[2*length-1];
	float convCMSIS[2*length-1];
	arm_conv_f32 (measurements, length, outputArrayC, length, convCMSIS);
	c_conv(measurements, outputArrayC, convC, length);
	//is_valid(convC, convCMSIS, 2*length-1, errorTolerance, "convolution"); 
	//is_valid_relative(convC, convCMSIS, 2*length-1, errorTolerance, errorPercentage, "convolution"); 

	//Print correlation and convolution values
	for ( p = 0; p < (2*length-1);  p++ )
	{
		printf("ConvC: %f & ConvCMSIS: %f \n", convC[p], convCMSIS[p]); 
	}
	for ( p = 0; p < (2*length-1);  p++ )
	{
		printf("CorrelateC: %f & CorrelatCMSIS: %f \n", corC[p], corCMSIS[p]); 
	}

	return 0;
}