/* * EKF Attitude Estimator main function. * * Estimates the attitude recursively once started. * * @param argc number of commandline arguments (plus command name) * @param argv strings containing the arguments */ int attitude_estimator_ekf_thread_main(int argc, char *argv[]) { const unsigned int loop_interval_alarm = 6500; // loop interval in microseconds float dt = 0.005f; /* state vector x has the following entries [ax,ay,az||mx,my,mz||wox,woy,woz||wx,wy,wz]' */ float z_k[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 9.81f, 0.2f, -0.2f, 0.2f}; /**< Measurement vector */ float x_aposteriori_k[12]; /**< states */ float P_aposteriori_k[144] = {100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0f, 100.0f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0f, 0, 100.0f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0f, 0, 0, 100.0f, }; /**< init: diagonal matrix with big values */ float x_aposteriori[12]; float P_aposteriori[144]; /* output euler angles */ float euler[3] = {0.0f, 0.0f, 0.0f}; float Rot_matrix[9] = {1.f, 0, 0, 0, 1.f, 0, 0, 0, 1.f }; /**< init: identity matrix */ // print text printf("Extended Kalman Filter Attitude Estimator initialized..\n\n"); fflush(stdout); int overloadcounter = 19; /* Initialize filter */ attitudeKalmanfilter_initialize(); /* store start time to guard against too slow update rates */ uint64_t last_run = hrt_absolute_time(); struct sensor_combined_s raw; memset(&raw, 0, sizeof(raw)); struct vehicle_gps_position_s gps; memset(&gps, 0, sizeof(gps)); struct vehicle_global_position_s global_pos; memset(&global_pos, 0, sizeof(global_pos)); struct vehicle_attitude_s att; memset(&att, 0, sizeof(att)); struct vehicle_control_mode_s control_mode; memset(&control_mode, 0, sizeof(control_mode)); struct vehicle_vicon_position_s vicon_pos; // Added by Ross Allen memset(&vicon_pos, 0, sizeof(vicon_pos)); uint64_t last_data = 0; uint64_t last_measurement = 0; uint64_t last_vel_t = 0; /* Vicon parameters - Added by Ross Allen */ bool vicon_valid = false; //~ static const hrt_abstime vicon_topic_timeout = 500000; // vicon topic timeout = 0.25s /* current velocity */ math::Vector<3> vel; vel.zero(); /* previous velocity */ math::Vector<3> vel_prev; vel_prev.zero(); /* actual acceleration (by GPS velocity) in body frame */ math::Vector<3> acc; acc.zero(); /* rotation matrix */ math::Matrix<3, 3> R; R.identity(); /* subscribe to raw data */ int sub_raw = orb_subscribe(ORB_ID(sensor_combined)); /* rate-limit raw data updates to 333 Hz (sensors app publishes at 200, so this is just paranoid) */ orb_set_interval(sub_raw, 3); /* subscribe to GPS */ int sub_gps = orb_subscribe(ORB_ID(vehicle_gps_position)); /* subscribe to GPS */ int sub_global_pos = orb_subscribe(ORB_ID(vehicle_global_position)); /* subscribe to param changes */ int sub_params = orb_subscribe(ORB_ID(parameter_update)); /* subscribe to control mode*/ int sub_control_mode = orb_subscribe(ORB_ID(vehicle_control_mode)); /* subscribe to vicon position */ int vehicle_vicon_position_sub = orb_subscribe(ORB_ID(vehicle_vicon_position)); // Added by Ross Allen /* advertise attitude */ orb_advert_t pub_att = orb_advertise(ORB_ID(vehicle_attitude), &att); int loopcounter = 0; thread_running = true; /* advertise debug value */ // struct debug_key_value_s dbg = { .key = "", .value = 0.0f }; // orb_advert_t pub_dbg = -1; /* keep track of sensor updates */ uint64_t sensor_last_timestamp[3] = {0, 0, 0}; struct attitude_estimator_ekf_params ekf_params; struct attitude_estimator_ekf_param_handles ekf_param_handles; /* initialize parameter handles */ parameters_init(&ekf_param_handles); bool initialized = false; float gyro_offsets[3] = { 0.0f, 0.0f, 0.0f }; /* magnetic declination, in radians */ float mag_decl = 0.0f; /* rotation matrix for magnetic declination */ math::Matrix<3, 3> R_decl; R_decl.identity(); /* register the perf counter */ perf_counter_t ekf_loop_perf = perf_alloc(PC_ELAPSED, "attitude_estimator_ekf"); /* Main loop*/ while (!thread_should_exit) { struct pollfd fds[2]; fds[0].fd = sub_raw; fds[0].events = POLLIN; fds[1].fd = sub_params; fds[1].events = POLLIN; int ret = poll(fds, 2, 1000); /* Added by Ross Allen */ //~ hrt_abstime t = hrt_absolute_time(); bool updated; if (ret < 0) { /* XXX this is seriously bad - should be an emergency */ } else if (ret == 0) { /* check if we're in HIL - not getting sensor data is fine then */ orb_copy(ORB_ID(vehicle_control_mode), sub_control_mode, &control_mode); if (!control_mode.flag_system_hil_enabled) { fprintf(stderr, "[att ekf] WARNING: Not getting sensors - sensor app running?\n"); } } else { /* only update parameters if they changed */ if (fds[1].revents & POLLIN) { /* read from param to clear updated flag */ struct parameter_update_s update; orb_copy(ORB_ID(parameter_update), sub_params, &update); /* update parameters */ parameters_update(&ekf_param_handles, &ekf_params); } /* only run filter if sensor values changed */ if (fds[0].revents & POLLIN) { /* get latest measurements */ orb_copy(ORB_ID(sensor_combined), sub_raw, &raw); bool gps_updated; orb_check(sub_gps, &gps_updated); if (gps_updated) { orb_copy(ORB_ID(vehicle_gps_position), sub_gps, &gps); if (gps.eph < 20.0f && hrt_elapsed_time(&gps.timestamp_position) < 1000000) { mag_decl = math::radians(get_mag_declination(gps.lat / 1e7f, gps.lon / 1e7f)); /* update mag declination rotation matrix */ R_decl.from_euler(0.0f, 0.0f, mag_decl); } } bool global_pos_updated; orb_check(sub_global_pos, &global_pos_updated); if (global_pos_updated) { orb_copy(ORB_ID(vehicle_global_position), sub_global_pos, &global_pos); } if (!initialized) { // XXX disabling init for now initialized = true; // gyro_offsets[0] += raw.gyro_rad_s[0]; // gyro_offsets[1] += raw.gyro_rad_s[1]; // gyro_offsets[2] += raw.gyro_rad_s[2]; // offset_count++; // if (hrt_absolute_time() - start_time > 3000000LL) { // initialized = true; // gyro_offsets[0] /= offset_count; // gyro_offsets[1] /= offset_count; // gyro_offsets[2] /= offset_count; // } } else { perf_begin(ekf_loop_perf); /* Calculate data time difference in seconds */ dt = (raw.timestamp - last_measurement) / 1000000.0f; last_measurement = raw.timestamp; uint8_t update_vect[3] = {0, 0, 0}; /* Fill in gyro measurements */ if (sensor_last_timestamp[0] != raw.timestamp) { update_vect[0] = 1; // sensor_update_hz[0] = 1e6f / (raw.timestamp - sensor_last_timestamp[0]); sensor_last_timestamp[0] = raw.timestamp; } z_k[0] = raw.gyro_rad_s[0] - gyro_offsets[0]; z_k[1] = raw.gyro_rad_s[1] - gyro_offsets[1]; z_k[2] = raw.gyro_rad_s[2] - gyro_offsets[2]; /* update accelerometer measurements */ if (sensor_last_timestamp[1] != raw.accelerometer_timestamp) { update_vect[1] = 1; // sensor_update_hz[1] = 1e6f / (raw.timestamp - sensor_last_timestamp[1]); sensor_last_timestamp[1] = raw.accelerometer_timestamp; } hrt_abstime vel_t = 0; bool vel_valid = false; if (ekf_params.acc_comp == 1 && gps.fix_type >= 3 && gps.eph < 10.0f && gps.vel_ned_valid && hrt_absolute_time() < gps.timestamp_velocity + 500000) { vel_valid = true; if (gps_updated) { vel_t = gps.timestamp_velocity; vel(0) = gps.vel_n_m_s; vel(1) = gps.vel_e_m_s; vel(2) = gps.vel_d_m_s; } } else if (ekf_params.acc_comp == 2 && gps.eph < 5.0f && global_pos.timestamp != 0 && hrt_absolute_time() < global_pos.timestamp + 20000) { vel_valid = true; if (global_pos_updated) { vel_t = global_pos.timestamp; vel(0) = global_pos.vel_n; vel(1) = global_pos.vel_e; vel(2) = global_pos.vel_d; } } if (vel_valid) { /* velocity is valid */ if (vel_t != 0) { /* velocity updated */ if (last_vel_t != 0 && vel_t != last_vel_t) { float vel_dt = (vel_t - last_vel_t) / 1000000.0f; /* calculate acceleration in body frame */ acc = R.transposed() * ((vel - vel_prev) / vel_dt); } last_vel_t = vel_t; vel_prev = vel; } } else { /* velocity is valid, reset acceleration */ acc.zero(); vel_prev.zero(); last_vel_t = 0; } z_k[3] = raw.accelerometer_m_s2[0] - acc(0); z_k[4] = raw.accelerometer_m_s2[1] - acc(1); z_k[5] = raw.accelerometer_m_s2[2] - acc(2); /* update magnetometer measurements */ if (sensor_last_timestamp[2] != raw.magnetometer_timestamp) { update_vect[2] = 1; // sensor_update_hz[2] = 1e6f / (raw.timestamp - sensor_last_timestamp[2]); sensor_last_timestamp[2] = raw.magnetometer_timestamp; } z_k[6] = raw.magnetometer_ga[0]; z_k[7] = raw.magnetometer_ga[1]; z_k[8] = raw.magnetometer_ga[2]; uint64_t now = hrt_absolute_time(); unsigned int time_elapsed = now - last_run; last_run = now; if (time_elapsed > loop_interval_alarm) { //TODO: add warning, cpu overload here // if (overloadcounter == 20) { // printf("CPU OVERLOAD DETECTED IN ATTITUDE ESTIMATOR EKF (%lu > %lu)\n", time_elapsed, loop_interval_alarm); // overloadcounter = 0; // } overloadcounter++; } static bool const_initialized = false; /* initialize with good values once we have a reasonable dt estimate */ if (!const_initialized && dt < 0.05f && dt > 0.001f) { dt = 0.005f; parameters_update(&ekf_param_handles, &ekf_params); /* update mag declination rotation matrix */ if (gps.eph < 20.0f && hrt_elapsed_time(&gps.timestamp_position) < 1000000) { mag_decl = math::radians(get_mag_declination(gps.lat / 1e7f, gps.lon / 1e7f)); } else { mag_decl = ekf_params.mag_decl; } /* update mag declination rotation matrix */ R_decl.from_euler(0.0f, 0.0f, mag_decl); x_aposteriori_k[0] = z_k[0]; x_aposteriori_k[1] = z_k[1]; x_aposteriori_k[2] = z_k[2]; x_aposteriori_k[3] = 0.0f; x_aposteriori_k[4] = 0.0f; x_aposteriori_k[5] = 0.0f; x_aposteriori_k[6] = z_k[3]; x_aposteriori_k[7] = z_k[4]; x_aposteriori_k[8] = z_k[5]; x_aposteriori_k[9] = z_k[6]; x_aposteriori_k[10] = z_k[7]; x_aposteriori_k[11] = z_k[8]; const_initialized = true; } /* do not execute the filter if not initialized */ if (!const_initialized) { continue; } attitudeKalmanfilter(update_vect, dt, z_k, x_aposteriori_k, P_aposteriori_k, ekf_params.q, ekf_params.r, euler, Rot_matrix, x_aposteriori, P_aposteriori); /* swap values for next iteration, check for fatal inputs */ if (isfinite(euler[0]) && isfinite(euler[1]) && isfinite(euler[2])) { memcpy(P_aposteriori_k, P_aposteriori, sizeof(P_aposteriori_k)); memcpy(x_aposteriori_k, x_aposteriori, sizeof(x_aposteriori_k)); } else { /* due to inputs or numerical failure the output is invalid, skip it */ continue; } if (last_data > 0 && raw.timestamp - last_data > 30000) printf("[attitude estimator ekf] sensor data missed! (%llu)\n", raw.timestamp - last_data); last_data = raw.timestamp; /* Check Vicon for attitude data*/ /* Added by Ross Allen */ orb_check(vehicle_vicon_position_sub, &updated); if (updated) { orb_copy(ORB_ID(vehicle_vicon_position), vehicle_vicon_position_sub, &vicon_pos); vicon_valid = vicon_pos.valid; } //~ if (vicon_valid && (t > (vicon_pos.timestamp + vicon_topic_timeout))) { //~ vicon_valid = false; //~ warnx("VICON timeout"); //~ } /* send out */ att.timestamp = raw.timestamp; att.roll = euler[0]; att.pitch = euler[1]; att.yaw = euler[2] + mag_decl; /* Use vicon yaw if valid and just overwrite*/ /* Added by Ross Allen */ if(vicon_valid) { att.yaw = vicon_pos.yaw; } att.rollspeed = x_aposteriori[0]; att.pitchspeed = x_aposteriori[1]; att.yawspeed = x_aposteriori[2]; att.rollacc = x_aposteriori[3]; att.pitchacc = x_aposteriori[4]; att.yawacc = x_aposteriori[5]; att.g_comp[0] = raw.accelerometer_m_s2[0] - acc(0); att.g_comp[1] = raw.accelerometer_m_s2[1] - acc(1); att.g_comp[2] = raw.accelerometer_m_s2[2] - acc(2); /* copy offsets */ memcpy(&att.rate_offsets, &(x_aposteriori[3]), sizeof(att.rate_offsets)); /* magnetic declination */ math::Matrix<3, 3> R_body = (&Rot_matrix[0]); R = R_decl * R_body; /* copy rotation matrix */ memcpy(&att.R[0][0], &R.data[0][0], sizeof(att.R)); att.R_valid = true; if (isfinite(att.roll) && isfinite(att.pitch) && isfinite(att.yaw)) { // Broadcast orb_publish(ORB_ID(vehicle_attitude), pub_att, &att); } else { warnx("NaN in roll/pitch/yaw estimate!"); } perf_end(ekf_loop_perf); } } } loopcounter++; } thread_running = false; return 0; }
/* * EKF Attitude Estimator main function. * * Estimates the attitude recursively once started. * * @param argc number of commandline arguments (plus command name) * @param argv strings containing the arguments */ int attitude_estimator_ekf_thread_main(int argc, char *argv[]) { const unsigned int loop_interval_alarm = 6500; // loop interval in microseconds float dt = 0.005f; /* state vector x has the following entries [ax,ay,az||mx,my,mz||wox,woy,woz||wx,wy,wz]' */ float z_k[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 9.81f, 0.2f, -0.2f, 0.2f}; /**< Measurement vector */ float x_aposteriori_k[12]; /**< states */ float P_aposteriori_k[144] = {100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0f, 100.0f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0f, 0, 100.0f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0f, 0, 0, 100.0f, }; /**< init: diagonal matrix with big values */ float x_aposteriori[12]; float P_aposteriori[144]; /* output euler angles */ float euler[3] = {0.0f, 0.0f, 0.0f}; float Rot_matrix[9] = {1.f, 0, 0, 0, 1.f, 0, 0, 0, 1.f }; /**< init: identity matrix */ // print text printf("Extended Kalman Filter Attitude Estimator initialized..\n\n"); fflush(stdout); int overloadcounter = 19; /* Initialize filter */ attitudeKalmanfilter_initialize(); /* store start time to guard against too slow update rates */ uint64_t last_run = hrt_absolute_time(); struct sensor_combined_s raw; memset(&raw, 0, sizeof(raw)); struct vehicle_attitude_s att; memset(&att, 0, sizeof(att)); struct vehicle_status_s state; memset(&state, 0, sizeof(state)); uint64_t last_data = 0; uint64_t last_measurement = 0; /* subscribe to raw data */ int sub_raw = orb_subscribe(ORB_ID(sensor_combined)); /* rate-limit raw data updates to 200Hz */ orb_set_interval(sub_raw, 4); /* subscribe to param changes */ int sub_params = orb_subscribe(ORB_ID(parameter_update)); /* subscribe to system state*/ int sub_state = orb_subscribe(ORB_ID(vehicle_status)); /* advertise attitude */ orb_advert_t pub_att = orb_advertise(ORB_ID(vehicle_attitude), &att); int loopcounter = 0; int printcounter = 0; thread_running = true; /* advertise debug value */ // struct debug_key_value_s dbg = { .key = "", .value = 0.0f }; // orb_advert_t pub_dbg = -1; float sensor_update_hz[3] = {0.0f, 0.0f, 0.0f}; // XXX write this out to perf regs /* keep track of sensor updates */ uint32_t sensor_last_count[3] = {0, 0, 0}; uint64_t sensor_last_timestamp[3] = {0, 0, 0}; struct attitude_estimator_ekf_params ekf_params; struct attitude_estimator_ekf_param_handles ekf_param_handles; /* initialize parameter handles */ parameters_init(&ekf_param_handles); uint64_t start_time = hrt_absolute_time(); bool initialized = false; float gyro_offsets[3] = { 0.0f, 0.0f, 0.0f }; unsigned offset_count = 0; /* register the perf counter */ perf_counter_t ekf_loop_perf = perf_alloc(PC_ELAPSED, "attitude_estimator_ekf"); /* Main loop*/ while (!thread_should_exit) { struct pollfd fds[2]; fds[0].fd = sub_raw; fds[0].events = POLLIN; fds[1].fd = sub_params; fds[1].events = POLLIN; int ret = poll(fds, 2, 1000); if (ret < 0) { /* XXX this is seriously bad - should be an emergency */ } else if (ret == 0) { /* check if we're in HIL - not getting sensor data is fine then */ orb_copy(ORB_ID(vehicle_status), sub_state, &state); if (!state.flag_hil_enabled) { fprintf(stderr, "[att ekf] WARNING: Not getting sensors - sensor app running?\n"); } } else { /* only update parameters if they changed */ if (fds[1].revents & POLLIN) { /* read from param to clear updated flag */ struct parameter_update_s update; orb_copy(ORB_ID(parameter_update), sub_params, &update); /* update parameters */ parameters_update(&ekf_param_handles, &ekf_params); } /* only run filter if sensor values changed */ if (fds[0].revents & POLLIN) { /* get latest measurements */ orb_copy(ORB_ID(sensor_combined), sub_raw, &raw); if (!initialized) { gyro_offsets[0] += raw.gyro_rad_s[0]; gyro_offsets[1] += raw.gyro_rad_s[1]; gyro_offsets[2] += raw.gyro_rad_s[2]; offset_count++; if (hrt_absolute_time() - start_time > 3000000LL) { initialized = true; gyro_offsets[0] /= offset_count; gyro_offsets[1] /= offset_count; gyro_offsets[2] /= offset_count; } } else { perf_begin(ekf_loop_perf); /* Calculate data time difference in seconds */ dt = (raw.timestamp - last_measurement) / 1000000.0f; last_measurement = raw.timestamp; uint8_t update_vect[3] = {0, 0, 0}; /* Fill in gyro measurements */ if (sensor_last_count[0] != raw.gyro_counter) { update_vect[0] = 1; sensor_last_count[0] = raw.gyro_counter; sensor_update_hz[0] = 1e6f / (raw.timestamp - sensor_last_timestamp[0]); sensor_last_timestamp[0] = raw.timestamp; } z_k[0] = raw.gyro_rad_s[0] - gyro_offsets[0]; z_k[1] = raw.gyro_rad_s[1] - gyro_offsets[1]; z_k[2] = raw.gyro_rad_s[2] - gyro_offsets[2]; /* update accelerometer measurements */ if (sensor_last_count[1] != raw.accelerometer_counter) { update_vect[1] = 1; sensor_last_count[1] = raw.accelerometer_counter; sensor_update_hz[1] = 1e6f / (raw.timestamp - sensor_last_timestamp[1]); sensor_last_timestamp[1] = raw.timestamp; } z_k[3] = raw.accelerometer_m_s2[0]; z_k[4] = raw.accelerometer_m_s2[1]; z_k[5] = raw.accelerometer_m_s2[2]; /* update magnetometer measurements */ if (sensor_last_count[2] != raw.magnetometer_counter) { update_vect[2] = 1; sensor_last_count[2] = raw.magnetometer_counter; sensor_update_hz[2] = 1e6f / (raw.timestamp - sensor_last_timestamp[2]); sensor_last_timestamp[2] = raw.timestamp; } z_k[6] = raw.magnetometer_ga[0]; z_k[7] = raw.magnetometer_ga[1]; z_k[8] = raw.magnetometer_ga[2]; uint64_t now = hrt_absolute_time(); unsigned int time_elapsed = now - last_run; last_run = now; if (time_elapsed > loop_interval_alarm) { //TODO: add warning, cpu overload here // if (overloadcounter == 20) { // printf("CPU OVERLOAD DETECTED IN ATTITUDE ESTIMATOR EKF (%lu > %lu)\n", time_elapsed, loop_interval_alarm); // overloadcounter = 0; // } overloadcounter++; } static bool const_initialized = false; /* initialize with good values once we have a reasonable dt estimate */ if (!const_initialized && dt < 0.05f && dt > 0.005f) { dt = 0.005f; parameters_update(&ekf_param_handles, &ekf_params); x_aposteriori_k[0] = z_k[0]; x_aposteriori_k[1] = z_k[1]; x_aposteriori_k[2] = z_k[2]; x_aposteriori_k[3] = 0.0f; x_aposteriori_k[4] = 0.0f; x_aposteriori_k[5] = 0.0f; x_aposteriori_k[6] = z_k[3]; x_aposteriori_k[7] = z_k[4]; x_aposteriori_k[8] = z_k[5]; x_aposteriori_k[9] = z_k[6]; x_aposteriori_k[10] = z_k[7]; x_aposteriori_k[11] = z_k[8]; const_initialized = true; } /* do not execute the filter if not initialized */ if (!const_initialized) { continue; } uint64_t timing_start = hrt_absolute_time(); attitudeKalmanfilter(update_vect, dt, z_k, x_aposteriori_k, P_aposteriori_k, ekf_params.q, ekf_params.r, euler, Rot_matrix, x_aposteriori, P_aposteriori); /* swap values for next iteration, check for fatal inputs */ if (isfinite(euler[0]) && isfinite(euler[1]) && isfinite(euler[2])) { memcpy(P_aposteriori_k, P_aposteriori, sizeof(P_aposteriori_k)); memcpy(x_aposteriori_k, x_aposteriori, sizeof(x_aposteriori_k)); } else { /* due to inputs or numerical failure the output is invalid, skip it */ continue; } if (last_data > 0 && raw.timestamp - last_data > 12000) printf("[attitude estimator ekf] sensor data missed! (%llu)\n", raw.timestamp - last_data); last_data = raw.timestamp; /* send out */ att.timestamp = raw.timestamp; // XXX Apply the same transformation to the rotation matrix att.roll = euler[0] - ekf_params.roll_off; att.pitch = euler[1] - ekf_params.pitch_off; att.yaw = euler[2] - ekf_params.yaw_off; att.rollspeed = x_aposteriori[0]; att.pitchspeed = x_aposteriori[1]; att.yawspeed = x_aposteriori[2]; att.rollacc = x_aposteriori[3]; att.pitchacc = x_aposteriori[4]; att.yawacc = x_aposteriori[5]; //att.yawspeed =z_k[2] ; /* copy offsets */ memcpy(&att.rate_offsets, &(x_aposteriori[3]), sizeof(att.rate_offsets)); /* copy rotation matrix */ memcpy(&att.R, Rot_matrix, sizeof(Rot_matrix)); att.R_valid = true; if (isfinite(att.roll) && isfinite(att.pitch) && isfinite(att.yaw)) { // Broadcast orb_publish(ORB_ID(vehicle_attitude), pub_att, &att); } else { warnx("NaN in roll/pitch/yaw estimate!"); } perf_end(ekf_loop_perf); } } } loopcounter++; } thread_running = false; return 0; }
/* * EKF Attitude Estimator main function. * * Estimates the attitude recursively once started. * * @param argc number of commandline arguments (plus command name) * @param argv strings containing the arguments */ int attitude_estimator_ekf_thread_main(int argc, char *argv[]) { // print text printf("Extended Kalman Filter Attitude Estimator initialized..\n\n"); fflush(stdout); int overloadcounter = 19; /* Initialize filter */ attitudeKalmanfilter_initialize(); /* store start time to guard against too slow update rates */ uint64_t last_run = hrt_absolute_time(); struct sensor_combined_s raw; struct vehicle_attitude_s att; uint64_t last_data = 0; uint64_t last_measurement = 0; /* subscribe to raw data */ int sub_raw = orb_subscribe(ORB_ID(sensor_combined)); /* rate-limit raw data updates to 200Hz */ orb_set_interval(sub_raw, 4); /* subscribe to param changes */ int sub_params = orb_subscribe(ORB_ID(parameter_update)); /* advertise attitude */ orb_advert_t pub_att = orb_advertise(ORB_ID(vehicle_attitude), &att); int loopcounter = 0; int printcounter = 0; thread_running = true; /* advertise debug value */ struct debug_key_value_s dbg = { .key = "", .value = 0.0f }; orb_advert_t pub_dbg = orb_advertise(ORB_ID(debug_key_value), &dbg); /* keep track of sensor updates */ uint32_t sensor_last_count[3] = {0, 0, 0}; uint64_t sensor_last_timestamp[3] = {0, 0, 0}; float sensor_update_hz[3] = {0.0f, 0.0f, 0.0f}; struct attitude_estimator_ekf_params ekf_params; struct attitude_estimator_ekf_param_handles ekf_param_handles; /* initialize parameter handles */ parameters_init(&ekf_param_handles); /* Main loop*/ while (!thread_should_exit) { struct pollfd fds[2] = { { .fd = sub_raw, .events = POLLIN }, { .fd = sub_params, .events = POLLIN } }; int ret = poll(fds, 2, 1000); if (ret < 0) { /* XXX this is seriously bad - should be an emergency */ } else if (ret == 0) { /* XXX this means no sensor data - should be critical or emergency */ printf("[attitude estimator ekf] WARNING: Not getting sensor data - sensor app running?\n"); } else { /* only update parameters if they changed */ if (fds[1].revents & POLLIN) { /* read from param to clear updated flag */ struct parameter_update_s update; orb_copy(ORB_ID(parameter_update), sub_params, &update); /* update parameters */ parameters_update(&ekf_param_handles, &ekf_params); } /* only run filter if sensor values changed */ if (fds[0].revents & POLLIN) { /* get latest measurements */ orb_copy(ORB_ID(sensor_combined), sub_raw, &raw); /* Calculate data time difference in seconds */ dt = (raw.timestamp - last_measurement) / 1000000.0f; last_measurement = raw.timestamp; uint8_t update_vect[3] = {0, 0, 0}; /* Fill in gyro measurements */ if (sensor_last_count[0] != raw.gyro_counter) { update_vect[0] = 1; sensor_last_count[0] = raw.gyro_counter; sensor_update_hz[0] = 1e6f / (raw.timestamp - sensor_last_timestamp[0]); sensor_last_timestamp[0] = raw.timestamp; } z_k[0] = raw.gyro_rad_s[0]; z_k[1] = raw.gyro_rad_s[1]; z_k[2] = raw.gyro_rad_s[2]; /* update accelerometer measurements */ if (sensor_last_count[1] != raw.accelerometer_counter) { update_vect[1] = 1; sensor_last_count[1] = raw.accelerometer_counter; sensor_update_hz[1] = 1e6f / (raw.timestamp - sensor_last_timestamp[1]); sensor_last_timestamp[1] = raw.timestamp; } z_k[3] = raw.accelerometer_m_s2[0]; z_k[4] = raw.accelerometer_m_s2[1]; z_k[5] = raw.accelerometer_m_s2[2]; /* update magnetometer measurements */ if (sensor_last_count[2] != raw.magnetometer_counter) { update_vect[2] = 1; sensor_last_count[2] = raw.magnetometer_counter; sensor_update_hz[2] = 1e6f / (raw.timestamp - sensor_last_timestamp[2]); sensor_last_timestamp[2] = raw.timestamp; } z_k[6] = raw.magnetometer_ga[0]; z_k[7] = raw.magnetometer_ga[1]; z_k[8] = raw.magnetometer_ga[2]; uint64_t now = hrt_absolute_time(); unsigned int time_elapsed = now - last_run; last_run = now; if (time_elapsed > loop_interval_alarm) { //TODO: add warning, cpu overload here // if (overloadcounter == 20) { // printf("CPU OVERLOAD DETECTED IN ATTITUDE ESTIMATOR EKF (%lu > %lu)\n", time_elapsed, loop_interval_alarm); // overloadcounter = 0; // } overloadcounter++; } int32_t z_k_sizes = 9; // float u[4] = {0.0f, 0.0f, 0.0f, 0.0f}; static bool const_initialized = false; /* initialize with good values once we have a reasonable dt estimate */ if (!const_initialized /*&& dt < 0.05 && dt > 0.005*/) { dt = 0.005f; parameters_update(&ekf_param_handles, &ekf_params); x_aposteriori_k[0] = z_k[0]; x_aposteriori_k[1] = z_k[1]; x_aposteriori_k[2] = z_k[2]; x_aposteriori_k[3] = 0.0f; x_aposteriori_k[4] = 0.0f; x_aposteriori_k[5] = 0.0f; x_aposteriori_k[6] = z_k[3]; x_aposteriori_k[7] = z_k[4]; x_aposteriori_k[8] = z_k[5]; x_aposteriori_k[9] = z_k[6]; x_aposteriori_k[10] = z_k[7]; x_aposteriori_k[11] = z_k[8]; const_initialized = true; } /* do not execute the filter if not initialized */ if (!const_initialized) { continue; } dt = 0.004f; uint64_t timing_start = hrt_absolute_time(); // attitudeKalmanfilter(dt, update_vect, z_k, &z_k_sizes, u, x_aposteriori_k, P_aposteriori_k, knownConst, euler, // Rot_matrix, x_aposteriori, P_aposteriori); attitudeKalmanfilter(update_vect, dt, z_k, x_aposteriori_k, P_aposteriori_k, ekf_params.q, ekf_params.r, euler, Rot_matrix, x_aposteriori, P_aposteriori); /* swap values for next iteration */ memcpy(P_aposteriori_k, P_aposteriori, sizeof(P_aposteriori_k)); memcpy(x_aposteriori_k, x_aposteriori, sizeof(x_aposteriori_k)); uint64_t timing_diff = hrt_absolute_time() - timing_start; // /* print rotation matrix every 200th time */ if (printcounter % 200 == 0) { // printf("x apo:\n%8.4f\t%8.4f\t%8.4f\n%8.4f\t%8.4f\t%8.4f\n%8.4f\t%8.4f\t%8.4f\n", // x_aposteriori[0], x_aposteriori[1], x_aposteriori[2], // x_aposteriori[3], x_aposteriori[4], x_aposteriori[5], // x_aposteriori[6], x_aposteriori[7], x_aposteriori[8]); // } //printf("EKF attitude iteration: %d, runtime: %d us, dt: %d us (%d Hz)\n", loopcounter, (int)timing_diff, (int)(dt * 1000000.0f), (int)(1.0f / dt)); //printf("roll: %8.4f\tpitch: %8.4f\tyaw:%8.4f\n", (double)euler[0], (double)euler[1], (double)euler[2]); //printf("update rates gyro: %8.4f\taccel: %8.4f\tmag:%8.4f\n", (double)sensor_update_hz[0], (double)sensor_update_hz[1], (double)sensor_update_hz[2]); // printf("\n%d\t%d\t%d\n%d\t%d\t%d\n%d\t%d\t%d\n", (int)(Rot_matrix[0] * 100), (int)(Rot_matrix[1] * 100), (int)(Rot_matrix[2] * 100), // (int)(Rot_matrix[3] * 100), (int)(Rot_matrix[4] * 100), (int)(Rot_matrix[5] * 100), // (int)(Rot_matrix[6] * 100), (int)(Rot_matrix[7] * 100), (int)(Rot_matrix[8] * 100)); } // int i = printcounter % 9; // // for (int i = 0; i < 9; i++) { // char name[10]; // sprintf(name, "xapo #%d", i); // memcpy(dbg.key, name, sizeof(dbg.key)); // dbg.value = x_aposteriori[i]; // orb_publish(ORB_ID(debug_key_value), pub_dbg, &dbg); printcounter++; if (last_data > 0 && raw.timestamp - last_data > 12000) printf("[attitude estimator ekf] sensor data missed! (%llu)\n", raw.timestamp - last_data); last_data = raw.timestamp; /* send out */ att.timestamp = raw.timestamp; att.roll = euler[0]; att.pitch = euler[1]; att.yaw = euler[2]; // XXX replace with x_apo after fix to filter att.rollspeed = raw.gyro_rad_s[0]; //x_aposteriori[0]; att.pitchspeed = raw.gyro_rad_s[1]; //x_aposteriori[1]; att.yawspeed = raw.gyro_rad_s[2]; //x_aposteriori[2]; /* copy offsets */ memcpy(&att.rate_offsets, &(x_aposteriori[3]), sizeof(att.rate_offsets)); /* copy rotation matrix */ memcpy(&att.R, Rot_matrix, sizeof(Rot_matrix)); att.R_valid = true; // Broadcast orb_publish(ORB_ID(vehicle_attitude), pub_att, &att); } } loopcounter++; }
/* * EKF Attitude Estimator main function. * * Estimates the attitude recursively once started. * * @param argc number of commandline arguments (plus command name) * @param argv strings containing the arguments */ void app_att_est_ekf_main(void* parameter) { const unsigned int loop_interval_alarm = 6500; // loop interval in microseconds float dt = 0.005f; /* state vector x has the following entries [ax,ay,az||mx,my,mz||wox,woy,woz||wx,wy,wz]' */ float z_k[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 9.81f, 0.2f, -0.2f, 0.2f}; /**< Measurement vector */ float x_aposteriori_k[12]; /**< states */ float P_aposteriori_k[144] = {100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0f, 100.0f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0f, 0, 100.0f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0f, 0, 0, 100.0f, }; /**< init: diagonal matrix with big values */ float x_aposteriori[12]; float P_aposteriori[144]; /* output euler angles */ float euler[3] = {0.0f, 0.0f, 0.0f}; float Rot_matrix[9] = {1.f, 0, 0, 0, 1.f, 0, 0, 0, 1.f }; /**< init: identity matrix */ // print text printf("Extended Kalman Filter Attitude Estimator initialized..\n\n"); fflush(stdout); int overloadcounter = 19; /* Initialize filter */ attitudeKalmanfilter_initialize(); /* store start time to guard against too slow update rates */ uint64_t last_run = hrt_absolute_time(); sensor_combined_s raw; rt_memset(&raw, 0, sizeof(raw)); //struct vehicle_gps_position_s gps; //rt_memset(&gps, 0, sizeof(gps)); //struct vehicle_global_position_s global_pos; //rt_memset(&global_pos, 0, sizeof(global_pos)); vehicle_attitude_s att; rt_memset(&att, 0, sizeof(att)); //struct vehicle_control_mode_s control_mode; //rt_memset(&control_mode, 0, sizeof(control_mode)); uint64_t last_data = 0; uint64_t last_measurement = 0; rt_uint32_t sensors_sub = 0; uint64_t last_timestamp_acc = 0; uint64_t last_timestamp_gyro = 0; uint64_t last_timestamp_mag = 0; /* rotation matrix */ float R[3][3] = {1,0,0, 0,1,0, 0,0,1}; /* subscribe to raw data */ orb_subscribe(ORB_ID(sensor_combined),&sensors_sub); orb_advertise(ORB_ID(vehicle_attitude), &att); att_est_ekf_running = true; bool initialized = false; /* magnetic declination, in radians */ float mag_decl = 0.0f; /* rotation matrix for magnetic declination */ float R_mag[3][3] = {1,0,0, 0,1,0, 0,0,1}; uint8_t update_vect[3] = {0, 0, 0}; rt_memset(&ekf_params, 0, sizeof(ekf_params)); ekf_params.q[0] = 1e-4f; ekf_params.q[1] = 0.08f; ekf_params.q[2] = 0.009f; ekf_params.q[3] = 0.005f; ekf_params.q[4] = 0.0f; ekf_params.r[0] = 0.0008f; ekf_params.r[1] = 10000.0f; ekf_params.r[2] = 100.0f; ekf_params.r[3] = 0.0f; /* Main loop*/ while (!att_est_ekf_should_exit) { /* only run filter if sensor values changed */ if (orb_check(&sensors_sub,5000) == RT_EOK) { /* get latest measurements */ orb_copy(ORB_ID(sensor_combined), &raw); } else{ rt_kprintf("sensors data lost!\n"); } if (!initialized) { initialized = true; } else { /* Calculate data time difference in seconds */ dt = (raw.acc_timestamp - last_measurement) / 1000000.0f; last_measurement = raw.acc_timestamp; if(raw.gyro_timestamp != last_timestamp_gyro) { update_vect[0] = 1; last_timestamp_gyro = raw.gyro_timestamp; } if(raw.acc_timestamp != last_timestamp_acc) { update_vect[1] = 1; last_timestamp_acc = raw.acc_timestamp; } if(raw.mag_timestamp != last_timestamp_mag) { update_vect[2] = 1; last_timestamp_mag = raw.mag_timestamp; } z_k[0] = raw.gyro_rad_s[0]; z_k[1] = raw.gyro_rad_s[1]; z_k[2] = raw.gyro_rad_s[2]; z_k[3] = raw.acc_m_s2[0]; z_k[4] = raw.acc_m_s2[1]; z_k[5] = raw.acc_m_s2[2]; z_k[6] = raw.mag_ga[0]; z_k[7] = raw.mag_ga[1]; z_k[8] = raw.mag_ga[2]; uint64_t now = hrt_absolute_time(); unsigned int time_elapsed = now - last_run; last_run = now; if (time_elapsed > loop_interval_alarm) { /* cpu overload */ overloadcounter++; } static bool const_initialized = false; /* initialize with good values once we have a reasonable dt estimate */ if (!const_initialized && dt < 0.05f && dt > 0.001f) { dt = 0.005f; /* update mag declination rotation matrix */ euler_to_rot_mat(R_mag,0.0f, 0.0f, mag_decl); x_aposteriori_k[0] = z_k[0]; x_aposteriori_k[1] = z_k[1]; x_aposteriori_k[2] = z_k[2]; x_aposteriori_k[3] = 0.0f; x_aposteriori_k[4] = 0.0f; x_aposteriori_k[5] = 0.0f; x_aposteriori_k[6] = z_k[3]; x_aposteriori_k[7] = z_k[4]; x_aposteriori_k[8] = z_k[5]; x_aposteriori_k[9] = z_k[6]; x_aposteriori_k[10] = z_k[7]; x_aposteriori_k[11] = z_k[8]; const_initialized = true; } /* do not execute the filter if not initialized */ if (!const_initialized) { continue; } attitudeKalmanfilter(update_vect, dt, z_k, x_aposteriori_k, P_aposteriori_k, ekf_params.q, ekf_params.r, euler, Rot_matrix, x_aposteriori, P_aposteriori); for(int i = 0;i < 3;i++) { update_vect[i] = 0; } /* swap values for next iteration, check for fatal inputs */ if (isfinite(euler[0]) && isfinite(euler[1]) && isfinite(euler[2])) { rt_memcpy(P_aposteriori_k, P_aposteriori, sizeof(P_aposteriori_k)); rt_memcpy(x_aposteriori_k, x_aposteriori, sizeof(x_aposteriori_k)); } else { /* due to inputs or numerical failure the output is invalid, skip it */ continue; } if (last_data > 0 && raw.acc_timestamp - last_data > 30000) printf("[attitude estimator ekf] sensor data missed! (%llu)\n", raw.acc_timestamp - last_data); last_data = raw.acc_timestamp; /* send out */ att.timestamp = raw.acc_timestamp; att.roll = euler[0]; att.pitch = euler[1]; att.yaw = euler[2] + mag_decl; att.rollspeed = x_aposteriori[0]; att.pitchspeed = x_aposteriori[1]; att.yawspeed = x_aposteriori[2]; att.rollacc = x_aposteriori[3]; att.pitchacc = x_aposteriori[4]; att.yawacc = x_aposteriori[5]; att.g_comp[0] = raw.acc_m_s2[0]; att.g_comp[1] = raw.acc_m_s2[1]; att.g_comp[2] = raw.acc_m_s2[2]; /* copy offsets */ rt_memcpy(&att.rate_offsets, &(x_aposteriori[3]), sizeof(att.rate_offsets)); /* magnetic declination */ float R_body[3][3] = {0}; rt_memcpy(&R_body, &Rot_matrix, sizeof(R_body)); //R = R_mag * R_body; for(int i = 0;i < 3;i++){ for(int j = 0;j < 3;i++) { R[i][j] = 0; for(int k = 0;k < 3;k++) R[i][j] += R_mag[i][k] * R_body[k][j]; } } /* copy rotation matrix */ rt_memcpy(&att.R, &R, sizeof(att.R)); att.R_valid = true; if (isfinite(att.roll) && isfinite(att.pitch) && isfinite(att.yaw)) { // Broadcast orb_publish(ORB_ID(vehicle_attitude), &att); } else { rt_kprintf("NaN in roll/pitch/yaw estimate!"); } } } att_est_ekf_running = false; }