示例#1
0
static void avr_timer_tcnt_write(struct avr_t * avr, avr_io_addr_t addr, uint8_t v, void * param)
{
	avr_timer_t * p = (avr_timer_t *)param;
	avr_core_watch_write(avr, addr, v);
	uint16_t tcnt = _timer_get_tcnt(p);

	if (!p->tov_top)
		return;
		
	if (tcnt >= p->tov_top)
		tcnt = 0;
	
	// this involves some magicking
	// cancel the current timers, recalculate the "base" we should be at, reset the
	// timer base as it should, and re-schedule the timers using that base.
	
	avr_cycle_timer_cancel(avr, avr_timer_tov, p);
	avr_cycle_timer_cancel(avr, avr_timer_compa, p);
	avr_cycle_timer_cancel(avr, avr_timer_compb, p);
	avr_cycle_timer_cancel(avr, avr_timer_compc, p);

	uint64_t cycles = (tcnt * p->tov_cycles) / p->tov_top;

//	printf("%s-%c %d/%d -- cycles %d/%d\n", __FUNCTION__, p->name, tcnt, p->tov_top, (uint32_t)cycles, (uint32_t)p->tov_cycles);

	// this reset the timers bases to the new base
	if (p->tov_cycles > 1) {
		avr_cycle_timer_register(avr, p->tov_cycles - cycles, avr_timer_tov, p);
		p->tov_base = 0;
		avr_timer_tov(avr, avr->cycle - cycles, p);
	}

//	tcnt = ((avr->cycle - p->tov_base) * p->tov_top) / p->tov_cycles;
//	printf("%s-%c new tnt derive to %d\n", __FUNCTION__, p->name, tcnt);	
}
示例#2
0
static void avr_timer_reconfigure(avr_timer_t * p)
{
	avr_t * avr = p->io.avr;

	avr_timer_wgm_t zero={0};
	p->mode = zero;
	// cancel everything
	p->comp[AVR_TIMER_COMPA].comp_cycles = 0;
	p->comp[AVR_TIMER_COMPB].comp_cycles = 0;
	p->comp[AVR_TIMER_COMPC].comp_cycles = 0;
	p->tov_cycles = 0;
	
	avr_cycle_timer_cancel(avr, avr_timer_tov, p);
	avr_cycle_timer_cancel(avr, avr_timer_compa, p);
	avr_cycle_timer_cancel(avr, avr_timer_compb, p);
	avr_cycle_timer_cancel(avr, avr_timer_compc, p);

	long clock = avr->frequency;

	// only can exists on "asynchronous" 8 bits timers
	if (avr_regbit_get(avr, p->as2))
		clock = 32768;

	uint8_t cs = avr_regbit_get_array(avr, p->cs, ARRAY_SIZE(p->cs));
	if (cs == 0) {
		AVR_LOG(avr, LOG_TRACE, "TIMER: %s-%c clock turned off\n", __FUNCTION__, p->name);
		return;
	}

	uint8_t mode = avr_regbit_get_array(avr, p->wgm, ARRAY_SIZE(p->wgm));
	uint8_t cs_div = p->cs_div[cs];
	uint32_t f = clock >> cs_div;

	p->mode = p->wgm_op[mode];
	//printf("%s-%c clock %d, div %d(/%d) = %d ; mode %d\n", __FUNCTION__, p->name, clock, cs, 1 << cs_div, f, mode);
	switch (p->mode.kind) {
		case avr_timer_wgm_normal:
			avr_timer_configure(p, f, (1 << p->mode.size) - 1);
			break;
		case avr_timer_wgm_fc_pwm:
			avr_timer_configure(p, f, (1 << p->mode.size) - 1);
			break;
		case avr_timer_wgm_ctc: {
			avr_timer_configure(p, f, _timer_get_ocr(p, AVR_TIMER_COMPA));
		}	break;
		case avr_timer_wgm_pwm: {
			uint16_t top = p->mode.top == avr_timer_wgm_reg_ocra ? _timer_get_ocr(p, AVR_TIMER_COMPA) : _timer_get_icr(p);
			avr_timer_configure(p, f, top);
		}	break;
		case avr_timer_wgm_fast_pwm:
			avr_timer_configure(p, f, (1 << p->mode.size) - 1);
			break;
		default:
			AVR_LOG(avr, LOG_WARNING, "TIMER: %s-%c unsupported timer mode wgm=%d (%d)\n",
					__FUNCTION__, p->name, mode, p->mode.kind);
	}	
}
示例#3
0
static int avr_flash_ioctl(struct avr_io_t * port, uint32_t ctl, void * io_param)
{
	if (ctl != AVR_IOCTL_FLASH_SPM)
		return -1;

	avr_flash_t * p = (avr_flash_t *)port;
	avr_t * avr = p->io.avr;

	avr_flashaddr_t z = avr->data[R_ZL] | (avr->data[R_ZH] << 8);
	if (avr->rampz)
		z |= avr->data[avr->rampz] << 16;
	uint16_t r01 = avr->data[0] | (avr->data[1] << 8);

//	printf("AVR_IOCTL_FLASH_SPM %02x Z:%04x R01:%04x\n", avr->data[p->r_spm], z,r01);
	avr_cycle_timer_cancel(avr, avr_progen_clear, p);
	avr_regbit_clear(avr, p->selfprgen);
	if (avr_regbit_get(avr, p->pgers)) {
		z &= ~1;
		AVR_LOG(avr, LOG_TRACE, "FLASH: Erasing page %04x (%d)\n", (z / p->spm_pagesize), p->spm_pagesize);
		for (int i = 0; i < p->spm_pagesize; i++)
			avr->flash[z++] = 0xff;
	} else if (avr_regbit_get(avr, p->pgwrt)) {
		z &= ~1;
		AVR_LOG(avr, LOG_TRACE, "FLASH: Writing page %04x (%d)\n", (z / p->spm_pagesize), p->spm_pagesize);
	} else if (avr_regbit_get(avr, p->blbset)) {
		AVR_LOG(avr, LOG_TRACE, "FLASH: Setting lock bits (ignored)\n");
	} else {
		z &= ~1;
		avr->flash[z++] = r01;
		avr->flash[z] = r01 >> 8;
	}
	return 0;
}
示例#4
0
static void
avr_watchdog_set_cycle_count_and_timer (avr_t * avr, avr_watchdog_t * p, uint8_t was_enabled, int8_t old_wdp)
{
  // If nothing else, always ensure we have a valid cycle count...
  uint8_t wdp = avr_regbit_get_array (avr, p->wdp, 4);

  p->cycle_count = 2048 << wdp;
  p->cycle_count = (p->cycle_count * avr->frequency) / 128000;

  uint8_t wde = avr_regbit_get (avr, p->wde);
  uint8_t wdie = avr_regbit_get (avr, p->watchdog.enable);

  uint8_t enable_changed = (was_enabled != (wde || wdie));

  uint8_t wdp_changed = ((old_wdp >= 0) ? (wdp != old_wdp) : 0);

  if (!enable_changed && !wdp_changed)
    return;

  static char *message[2][2] = { {0, "reset"}, {"enabled", "enabled and set"} };

  if (wde || wdie)
    {
      AVR_LOG (avr, LOG_TRACE, "WATCHDOG: %s to %d cycles @ 128kz (* %d) = %d CPU cycles.\n",
               message[enable_changed][wdp_changed], 2048 << wdp, 1 << wdp, (int) p->cycle_count);

      avr_cycle_timer_register (avr, p->cycle_count, avr_watchdog_timer, p);
    }
  else if (enable_changed)
    {
      AVR_LOG (avr, LOG_TRACE, "WATCHDOG: disabled\n");
      avr_cycle_timer_cancel (avr, avr_watchdog_timer, p);
    }
}
示例#5
0
static inline void
avr_timer_cancel_all_cycle_timers(
		struct avr_t * avr,
		avr_timer_t *timer,
		const uint8_t clear_timers)
{
	if(clear_timers) {
		for (int compi = 0; compi < AVR_TIMER_COMP_COUNT; compi++)
			timer->comp[compi].comp_cycles = 0;
		timer->tov_cycles = 0;
	}
	

	avr_cycle_timer_cancel(avr, avr_timer_tov, timer);
	avr_cycle_timer_cancel(avr, avr_timer_compa, timer);
	avr_cycle_timer_cancel(avr, avr_timer_compb, timer);
	avr_cycle_timer_cancel(avr, avr_timer_compc, timer);
}
示例#6
0
文件: avr_adc.c 项目: kevinf28/simavr
static void avr_adc_reset(avr_io_t * port)
{
	avr_adc_t * p = (avr_adc_t *)port;

	// stop ADC
	avr_cycle_timer_cancel(p->io.avr, avr_adc_int_raise, p);
	avr_regbit_clear(p->io.avr, p->adsc);

	for (int i = 0; i < ADC_IRQ_COUNT; i++)
		avr_irq_register_notify(p->io.irq + i, avr_adc_irq_notify, p);
}
示例#7
0
文件: avr_adc.c 项目: kevinf28/simavr
static void
avr_adc_write_adcsra(
		struct avr_t * avr, avr_io_addr_t addr, uint8_t v, void * param)
{
	avr_adc_configure_trigger(avr, addr, v, param);
	
	avr_adc_t * p = (avr_adc_t *)param;
	uint8_t adsc = avr_regbit_get(avr, p->adsc);
	uint8_t aden = avr_regbit_get(avr, p->aden);

	avr->data[p->adsc.reg] = v;

	// can't write zero to adsc
	if (adsc && !avr_regbit_get(avr, p->adsc)) {
		avr_regbit_set(avr, p->adsc);
		v = avr->data[p->adsc.reg];
	}
	if (!aden && avr_regbit_get(avr, p->aden)) {
		// first conversion
		p->first = 1;
		AVR_LOG(avr, LOG_TRACE, "ADC: Start AREF %d AVCC %d\n", avr->aref, avr->avcc);
	}
	if (aden && !avr_regbit_get(avr, p->aden)) {
		// stop ADC
		avr_cycle_timer_cancel(avr, avr_adc_int_raise, p);
		avr_regbit_clear(avr, p->adsc);
		v = avr->data[p->adsc.reg];	// Peter Ross [email protected]
	}
	if (!adsc && avr_regbit_get(avr, p->adsc)) {
		// start one!
		uint8_t muxi = avr_regbit_get_array(avr, p->mux, ARRAY_SIZE(p->mux));
		union {
			avr_adc_mux_t mux;
			uint32_t v;
		} e = { .mux = p->muxmode[muxi] };
		avr_raise_irq(p->io.irq + ADC_IRQ_OUT_TRIGGER, e.v);

		// clock prescaler are just a bit shift.. and 0 means 1
		uint32_t div = avr_regbit_get_array(avr, p->adps, ARRAY_SIZE(p->adps));
		if (!div) div++;

		div = avr->frequency >> div;
		if (p->first)
			AVR_LOG(avr, LOG_TRACE, "ADC: starting at %uKHz\n", div / 13 / 100);
		div /= p->first ? 25 : 13;	// first cycle is longer

		avr_cycle_timer_register(avr,
				avr_hz_to_cycles(avr, div),
				avr_adc_int_raise, p);
	}
	avr_core_watch_write(avr, addr, v);
}
示例#8
0
void
avr_cycle_timer_register(
		avr_t * avr,
		avr_cycle_count_t when,
		avr_cycle_timer_t timer,
		void * param)
{
	avr_cycle_timer_pool_t * pool = &avr->cycle_timers;

	// remove it if it was already scheduled
	avr_cycle_timer_cancel(avr, timer, param);

	if (!pool->timer_free) {
		AVR_LOG(avr, LOG_ERROR, "CYCLE: %s: pool is full (%d)!\n", __func__, MAX_CYCLE_TIMERS);
		return;
	}
	avr_cycle_timer_insert(avr, when, timer, param);
	avr_cycle_timer_reset_sleep_run_cycles_limited(avr);
}
示例#9
0
static void avr_watchdog_write(avr_t * avr, avr_io_addr_t addr, uint8_t v, void * param)
{
	avr_watchdog_t * p = (avr_watchdog_t *)param;
	// backup the registers
	// uint8_t wd = avr->data[p->wdce.reg];
	uint8_t wdce_o = avr_regbit_get(avr, p->wdce);	// old
	uint8_t wde_o = avr_regbit_get(avr, p->wde);
	uint8_t wdp_o[4];

//	printf("avr_watchdog_write %02x\n", v);
	for (int i = 0; i < 4; i++)
		wdp_o[i] = avr_regbit_get(avr, p->wdp[i]);

	avr->data[p->wdce.reg] = v;
	uint8_t wdce_n = avr_regbit_get(avr, p->wdce);	// new

	if (wdce_o /* || wdce_n */) {
		// make sure bit gets reset eventually
		if (wdce_n)
			avr_cycle_timer_register(avr, 4, avr_wdce_clear, p);

		uint8_t wdp = avr_regbit_get_array(avr, p->wdp, 4);
		p->cycle_count = 2048 << wdp;
		p->cycle_count = (p->cycle_count * avr->frequency) / 128000;
		if (avr_regbit_get(avr, p->wde)) {
			printf("Watchdog reset to %d cycles @ 128kz (* %d) = %d CPU cycles)\n", 2048 << wdp, 1 << wdp, (int)p->cycle_count);
			avr_cycle_timer_register(avr, p->cycle_count, avr_watchdog_timer, p);
		} else {
			printf("Watchdog disabled\n");
			avr_cycle_timer_cancel(avr, avr_watchdog_timer, p);
		}
	} else {
		// reset old values
		avr_regbit_setto(avr, p->wde, wde_o);
		for (int i = 0; i < 4; i++)
			avr_regbit_setto(avr, p->wdp[i], wdp_o[i]);
		v = avr->data[p->wdce.reg];
	}
	avr_core_watch_write(avr, addr, v);
}
示例#10
0
static void avr_timer_reset(avr_io_t * port)
{
	avr_timer_t * p = (avr_timer_t *)port;
	avr_cycle_timer_cancel(p->io.avr, avr_timer_tov, p);
	avr_cycle_timer_cancel(p->io.avr, avr_timer_compa, p);
	avr_cycle_timer_cancel(p->io.avr, avr_timer_compb, p);
	avr_cycle_timer_cancel(p->io.avr, avr_timer_compc, p);

	// check to see if the comparators have a pin output. If they do,
	// (try) to get the ioport corresponding IRQ and connect them
	// they will automagically be triggered when the comparator raises
	// it's own IRQ
	for (int compi = 0; compi < AVR_TIMER_COMP_COUNT; compi++) {
		p->comp[compi].comp_cycles = 0;

		avr_ioport_getirq_t req = {
			.bit = p->comp[compi].com_pin
		};
		if (avr_ioctl(port->avr, AVR_IOCTL_IOPORT_GETIRQ_REGBIT, &req) > 0) {
			// cool, got an IRQ
//			printf("%s-%c COMP%c Connecting PIN IRQ %d\n", __FUNCTION__, p->name, 'A'+compi, req.irq[0]->irq);
			avr_connect_irq(&port->irq[TIMER_IRQ_OUT_COMP + compi], req.irq[0]);
		}
	}
	avr_ioport_getirq_t req = {
		.bit = p->icp
	};
	if (avr_ioctl(port->avr, AVR_IOCTL_IOPORT_GETIRQ_REGBIT, &req) > 0) {
		// cool, got an IRQ for the input capture pin
//		printf("%s-%c ICP Connecting PIN IRQ %d\n", __FUNCTION__, p->name, req.irq[0]->irq);
		avr_irq_register_notify(req.irq[0], avr_timer_irq_icp, p);
	}

}

static const char * irq_names[TIMER_IRQ_COUNT] = {
	[TIMER_IRQ_OUT_PWM0] = "8>pwm0",
	[TIMER_IRQ_OUT_PWM1] = "8>pwm1",
	[TIMER_IRQ_OUT_COMP + 0] = ">compa",
	[TIMER_IRQ_OUT_COMP + 1] = ">compb",
	[TIMER_IRQ_OUT_COMP + 2] = ">compc",
};

static	avr_io_t	_io = {
	.kind = "timer",
	.reset = avr_timer_reset,
	.irq_names = irq_names,
};

void avr_timer_init(avr_t * avr, avr_timer_t * p)
{
	p->io = _io;

	avr_register_io(avr, &p->io);
	avr_register_vector(avr, &p->overflow);
	avr_register_vector(avr, &p->icr);

	// allocate this module's IRQ
	avr_io_setirqs(&p->io, AVR_IOCTL_TIMER_GETIRQ(p->name), TIMER_IRQ_COUNT, NULL);

	// marking IRQs as "filtered" means they don't propagate if the
	// new value raised is the same as the last one.. in the case of the
	// pwm value it makes sense not to bother.
	p->io.irq[TIMER_IRQ_OUT_PWM0].flags |= IRQ_FLAG_FILTERED;
	p->io.irq[TIMER_IRQ_OUT_PWM1].flags |= IRQ_FLAG_FILTERED;

	if (p->wgm[0].reg) // these are not present on older AVRs
		avr_register_io_write(avr, p->wgm[0].reg, avr_timer_write, p);
	avr_register_io_write(avr, p->cs[0].reg, avr_timer_write, p);

	// this assumes all the "pending" interrupt bits are in the same
	// register. Might not be true on all devices ?
	avr_register_io_write(avr, p->overflow.raised.reg, avr_timer_write_pending, p);

	/*
	 * Even if the timer is 16 bits, we don't care to have watches on the
	 * high bytes because the datasheet says that the low address is always
	 * the trigger.
	 */
	for (int compi = 0; compi < AVR_TIMER_COMP_COUNT; compi++) {
		avr_register_vector(avr, &p->comp[compi].interrupt);

		if (p->comp[compi].r_ocr) // not all timers have all comparators
			avr_register_io_write(avr, p->comp[compi].r_ocr, avr_timer_write_ocr, p);
	}
	avr_register_io_write(avr, p->r_tcnt, avr_timer_tcnt_write, p);
	avr_register_io_read(avr, p->r_tcnt, avr_timer_tcnt_read, p);
}