示例#1
0
    void BVH4Intersector8Single<types,robust, PrimitiveIntersector8>::occluded(avxb* valid_i, BVH4* bvh, Ray8& ray)
    {
      /* load ray */
      const avxb valid = *valid_i;
      avxb terminated = !valid;
      avx3f ray_org = ray.org, ray_dir = ray.dir;
      avxf ray_tnear = ray.tnear, ray_tfar  = ray.tfar;
      const avx3f rdir = rcp_safe(ray_dir);
      const avx3f org(ray_org), org_rdir = org * rdir;
      ray_tnear = select(valid,ray_tnear,avxf(pos_inf));
      ray_tfar  = select(valid,ray_tfar ,avxf(neg_inf));
      const avxf inf = avxf(pos_inf);
      Precalculations pre(valid,ray);

      /* compute near/far per ray */
      avx3i nearXYZ;
      nearXYZ.x = select(rdir.x >= 0.0f,avxi(0*(int)sizeof(ssef)),avxi(1*(int)sizeof(ssef)));
      nearXYZ.y = select(rdir.y >= 0.0f,avxi(2*(int)sizeof(ssef)),avxi(3*(int)sizeof(ssef)));
      nearXYZ.z = select(rdir.z >= 0.0f,avxi(4*(int)sizeof(ssef)),avxi(5*(int)sizeof(ssef)));

      /* we have no packet implementation for OBB nodes yet */
      size_t bits = movemask(valid);
      for (size_t i=__bsf(bits); bits!=0; bits=__btc(bits,i), i=__bsf(bits)) {
	if (occluded1(bvh,bvh->root,i,pre,ray,ray_org,ray_dir,rdir,ray_tnear,ray_tfar,nearXYZ))
	  terminated[i] = -1;
      }
      store8i(valid & terminated,&ray.geomID,0);
      AVX_ZERO_UPPER();
    }
示例#2
0
  __m256 BVH2Intersector8Chunk<TriangleIntersector>::occluded(const BVH2Intersector8Chunk* This, Ray8& ray, const __m256 valid_i)
  {
    avxb valid = valid_i;
    avxb terminated = !valid;
    const BVH2* bvh = This->bvh;
    STAT3(shadow.travs,1,popcnt(valid),8);

    NodeRef stack[1+BVH2::maxDepth]; //!< stack of nodes that still need to get traversed
    NodeRef* stackPtr = stack;                    //!< current stack pointer
    NodeRef cur = bvh->root;                      //!< in cur we track the ID of the current node

    /* let inactive rays miss all boxes */
    const avx3f rdir = rcp_safe(ray.dir);
    avxf rayFar  = select(terminated,avxf(neg_inf),ray.tfar);

    while (true)
    {
      /*! downtraversal loop */
      while (likely(cur.isNode()))
      {
        STAT3(normal.trav_nodes,1,popcnt(valid),8);

        /* intersect packet with box of both children */
        const Node* node = cur.node();
        const size_t hit0 = intersectBox(ray.org,rdir,ray.tnear,rayFar,node,0);
        const size_t hit1 = intersectBox(ray.org,rdir,ray.tnear,rayFar,node,1);
        
        /*! if two children are hit push both onto stack */
        if (likely(hit0 != 0 && hit1 != 0)) {
          *stackPtr = node->child(0); stackPtr++; cur = node->child(1);
        }
        
        /*! if one child hit, continue with that child */
        else {
          if      (likely(hit0 != 0)) cur = node->child(0);
          else if (likely(hit1 != 0)) cur = node->child(1);
          else goto pop_node;
        }
      }

      /*! leaf node, intersect all triangles */
      {
        STAT3(shadow.trav_leaves,1,popcnt(valid),8);
        size_t num; Triangle* tri = (Triangle*) cur.leaf(NULL,num);
        for (size_t i=0; i<num; i++) {
          terminated |= TriangleIntersector::occluded(valid,ray,tri[i],bvh->vertices);
          if (all(terminated)) return terminated;
        }

        /* let terminated rays miss all boxes */
        rayFar = select(terminated,avxf(neg_inf),rayFar);
      }

      /*! pop next node from stack */
pop_node:
      if (unlikely(stackPtr == stack)) break;
      cur = *(--stackPtr);
    }
    return terminated;
  }
示例#3
0
  /* ray/box intersection */
  __forceinline size_t intersectBox(const avx3f& org, const avx3f& rdir, const avxf& tnear, const avxf& tfar, const BVH2::Node* node, const int i) 
  {
    const avxf dminx = (avxf(node->lower_upper_x[i+0]) - org.x) * rdir.x;
    const avxf dminy = (avxf(node->lower_upper_y[i+0]) - org.y) * rdir.y;
    const avxf dminz = (avxf(node->lower_upper_z[i+0]) - org.z) * rdir.z;
    const avxf dmaxx = (avxf(node->lower_upper_x[i+2]) - org.x) * rdir.x;
    const avxf dmaxy = (avxf(node->lower_upper_y[i+2]) - org.y) * rdir.y;
    const avxf dmaxz = (avxf(node->lower_upper_z[i+2]) - org.z) * rdir.z;
    
    const avxf dlowerx = min(dminx,dmaxx);
    const avxf dlowery = min(dminy,dmaxy);
    const avxf dlowerz = min(dminz,dmaxz);

    const avxf dupperx = max(dminx,dmaxx);
    const avxf duppery = max(dminy,dmaxy);
    const avxf dupperz = max(dminz,dmaxz);
    
    const avxf near = max(dlowerx,dlowery,dlowerz,tnear);
    const avxf far  = min(dupperx,duppery,dupperz,tfar );
    
    return movemask(near <= far);
  }
    void BVH8Intersector8Chunk<PrimitiveIntersector8>::intersect(avxb* valid_i, BVH8* bvh, Ray8& ray)
    {
#if defined(__AVX__)
      
      /* load ray */
      const avxb valid0 = *valid_i;
      const avx3f rdir = rcp_safe(ray.dir);
      const avx3f org_rdir = ray.org * rdir;
      avxf ray_tnear = select(valid0,ray.tnear,pos_inf);
      avxf ray_tfar  = select(valid0,ray.tfar ,neg_inf);
      const avxf inf = avxf(pos_inf);
      Precalculations pre(valid0,ray);
      
      /* allocate stack and push root node */
      avxf    stack_near[3*BVH8::maxDepth+1];
      NodeRef stack_node[3*BVH8::maxDepth+1];
      stack_node[0] = BVH8::invalidNode;
      stack_near[0] = inf;
      stack_node[1] = bvh->root;
      stack_near[1] = ray_tnear; 
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      avxf*    __restrict__ sptr_near = stack_near + 2;
      
      while (1)
      {
        /* pop next node from stack */
        sptr_node--;
        sptr_near--;
        NodeRef cur = *sptr_node;
        if (unlikely(cur == BVH8::invalidNode)) 
          break;
        
        /* cull node if behind closest hit point */
        avxf curDist = *sptr_near;
        if (unlikely(none(ray_tfar > curDist))) 
          continue;
        
        while (1)
        {
          /* test if this is a leaf node */
          if (unlikely(cur.isLeaf()))
            break;
          
          const avxb valid_node = ray_tfar > curDist;
          STAT3(normal.trav_nodes,1,popcnt(valid_node),8);
          const Node* __restrict__ const node = (BVH8::Node*)cur.node();
          
          /* pop of next node */
          sptr_node--;
          sptr_near--;
          cur = *sptr_node; // FIXME: this trick creates issues with stack depth
          curDist = *sptr_near;
          
          for (unsigned i=0; i<BVH8::N; i++)
          {
            const NodeRef child = node->children[i];
            if (unlikely(child == BVH8::emptyNode)) break;
            
#if defined(__AVX2__)
            const avxf lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x);
            const avxf lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y);
            const avxf lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z);
            const avxf lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x);
            const avxf lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y);
            const avxf lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z);
            const avxf lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ));
            const avxf lfarP  = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ));
            const avxb lhit   = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar);      
#else
            const avxf lclipMinX = node->lower_x[i] * rdir.x - org_rdir.x;
            const avxf lclipMinY = node->lower_y[i] * rdir.y - org_rdir.y;
            const avxf lclipMinZ = node->lower_z[i] * rdir.z - org_rdir.z;
            const avxf lclipMaxX = node->upper_x[i] * rdir.x - org_rdir.x;
            const avxf lclipMaxY = node->upper_y[i] * rdir.y - org_rdir.y;
            const avxf lclipMaxZ = node->upper_z[i] * rdir.z - org_rdir.z;
            const avxf lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ));
            const avxf lfarP  = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ));
            const avxb lhit   = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar);      
#endif
            
            /* if we hit the child we choose to continue with that child if it 
               is closer than the current next child, or we push it onto the stack */
            if (likely(any(lhit)))
            {
              const avxf childDist = select(lhit,lnearP,inf);
              const NodeRef child = node->children[i];
              
              /* push cur node onto stack and continue with hit child */
              if (any(childDist < curDist))
              {
                *sptr_node = cur;
                *sptr_near = curDist; 
		sptr_node++;
		sptr_near++;

                curDist = childDist;
                cur = child;
              }
              
              /* push hit child onto stack*/
              else {
                *sptr_node = child;
                *sptr_near = childDist; 
		sptr_node++;
		sptr_near++;

              }
              assert(sptr_node - stack_node < BVH8::maxDepth);
            }	      
          }
        }
        
        /* return if stack is empty */
        if (unlikely(cur == BVH8::invalidNode)) 
          break;
        
        /* intersect leaf */
	assert(cur != BVH8::emptyNode);
        const avxb valid_leaf = ray_tfar > curDist;
        STAT3(normal.trav_leaves,1,popcnt(valid_leaf),8);
        size_t items; const Triangle* tri  = (Triangle*) cur.leaf(items);
        PrimitiveIntersector8::intersect(valid_leaf,pre,ray,tri,items,bvh->geometry);
        ray_tfar = select(valid_leaf,ray.tfar,ray_tfar);
      }
      AVX_ZERO_UPPER();
#endif       
    }
示例#5
0
  void BVH2Intersector8Chunk<TriangleIntersector>::intersect(const BVH2Intersector8Chunk* This, Ray8& ray, const __m256 valid_i)
  {
    avxb valid = valid_i;
    const BVH2* bvh = This->bvh;
    STAT3(normal.travs,1,popcnt(valid),8);

    struct StackItem {
      NodeRef ptr;
      avxf dist;
    };
    
    StackItem stack[1+BVH2::maxDepth];   //!< stack of nodes that still need to get traversed
    StackItem* stackPtr = stack;                       //!< current stack pointer
    NodeRef cur = bvh->root;                        //!< in cur we track the ID of the current node

    /* let inactive rays miss all boxes */
    const avx3f rdir = rcp_safe(ray.dir);
    ray.tfar = select(valid,ray.tfar,avxf(neg_inf));

    while (true)
    {
      /*! downtraversal loop */
      while (likely(cur.isNode()))
      {
        STAT3(normal.trav_nodes,1,popcnt(valid),8);

        /* intersect packet with box of both children */
        const Node* node = cur.node();
        avxf dist0; size_t hit0 = intersectBox(ray.org,rdir,ray.tnear,ray.tfar,node,0,dist0);
        avxf dist1; size_t hit1 = intersectBox(ray.org,rdir,ray.tnear,ray.tfar,node,1,dist1);

        /*! if two children hit, push far node onto stack and continue with closer node */
        if (likely(hit0 != 0 && hit1 != 0)) {
          if (any(valid & (dist0 < dist1))) { 
            stackPtr->ptr = node->child(1); stackPtr->dist = dist1; stackPtr++; cur = node->child(0); 
          } else { 
            stackPtr->ptr = node->child(0); stackPtr->dist = dist0; stackPtr++; cur = node->child(1); 
          }
        }

        /*! if one child hit, continue with that child */
        else {
          if      (likely(hit0 != 0)) cur = node->child(0);
          else if (likely(hit1 != 0)) cur = node->child(1);
          else goto pop_node;
        }
      }

      /*! leaf node, intersect all triangles */
      {
        STAT3(normal.trav_leaves,1,popcnt(valid),8);
        size_t num; Triangle* tri = (Triangle*) cur.leaf(NULL,num);
        for (size_t i=0; i<num; i++) {
          TriangleIntersector::intersect(valid,ray,tri[i],bvh->vertices);
        }
      }

      /*! pop next node from stack */
pop_node:
      if (unlikely(stackPtr == stack)) break;
      --stackPtr;
      cur = stackPtr->ptr;
      if (unlikely(all(stackPtr->dist > ray.tfar))) goto pop_node;
    }
  }
    void BVH8iIntersector8Hybrid<TriangleIntersector8>::occluded(avxb* valid_i, BVH8i* bvh, Ray8& ray)
    {
      /* load ray */
      const avxb valid = *valid_i;
      avxb terminated = !valid;
      avx3f ray_org = ray.org, ray_dir = ray.dir;
      avxf ray_tnear = ray.tnear, ray_tfar  = ray.tfar;
#if defined(__FIX_RAYS__)
      const avxf float_range = 0.1f*FLT_MAX;
      ray_org = clamp(ray_org,avx3f(-float_range),avx3f(+float_range));
      ray_dir = clamp(ray_dir,avx3f(-float_range),avx3f(+float_range));
      ray_tnear = max(ray_tnear,FLT_MIN); 
      ray_tfar  = min(ray_tfar,float(inf)); 
#endif
      const avx3f rdir = rcp_safe(ray_dir);
      const avx3f org(ray_org), org_rdir = org * rdir;
      ray_tnear = select(valid,ray_tnear,avxf(pos_inf));
      ray_tfar  = select(valid,ray_tfar ,avxf(neg_inf));
      const avxf inf = avxf(pos_inf);
      
      /* compute near/far per ray */
      avx3i nearXYZ;
      nearXYZ.x = select(rdir.x >= 0.0f,avxi(0*(int)sizeof(avxf)),avxi(1*(int)sizeof(avxf)));
      nearXYZ.y = select(rdir.y >= 0.0f,avxi(2*(int)sizeof(avxf)),avxi(3*(int)sizeof(avxf)));
      nearXYZ.z = select(rdir.z >= 0.0f,avxi(4*(int)sizeof(avxf)),avxi(5*(int)sizeof(avxf)));

      /* allocate stack and push root node */
      avxf    stack_near[stackSizeChunk];
      NodeRef stack_node[stackSizeChunk];
      stack_node[0] = BVH4i::invalidNode;
      stack_near[0] = inf;
      stack_node[1] = bvh->root;
      stack_near[1] = ray_tnear; 
      NodeRef* stackEnd = stack_node+stackSizeChunk;
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      avxf*    __restrict__ sptr_near = stack_near + 2;

      const Node     * __restrict__ nodes = (Node    *)bvh->nodePtr();
      const Triangle * __restrict__ accel = (Triangle*)bvh->triPtr();
      
      while (1)
      {
        /* pop next node from stack */
        assert(sptr_node > stack_node);
        sptr_node--;
        sptr_near--;
        NodeRef curNode = *sptr_node;
        if (unlikely(curNode == BVH4i::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }

        /* cull node if behind closest hit point */
        avxf curDist = *sptr_near;
        const avxb active = curDist < ray_tfar;
        if (unlikely(none(active))) 
          continue;
        
        /* switch to single ray traversal */
#if !defined(__WIN32__) || defined(__X86_64__)
        size_t bits = movemask(active);
        if (unlikely(__popcnt(bits) <= SWITCH_THRESHOLD)) {
          for (size_t i=__bsf(bits); bits!=0; bits=__btc(bits,i), i=__bsf(bits)) {
            if (occluded1(bvh,curNode,i,ray,ray_org,ray_dir,rdir,ray_tnear,ray_tfar,nearXYZ))
              terminated[i] = -1;
          }
          if (all(terminated)) break;
          ray_tfar = select(terminated,avxf(neg_inf),ray_tfar);
          continue;
        }
#endif
                
        while (1)
        {
          /* test if this is a leaf node */
          if (unlikely(curNode.isLeaf()))
            break;
          
          const avxb valid_node = ray_tfar > curDist;
          STAT3(shadow.trav_nodes,1,popcnt(valid_node),8);
          const Node* __restrict__ const node = (Node*)curNode.node(nodes);
          
          /* pop of next node */
          assert(sptr_node > stack_node);
          sptr_node--;
          sptr_near--;
          curNode = *sptr_node;
          curDist = *sptr_near;
          
          for (unsigned i=0; i<8; i++)
          {
            const NodeRef child = node->children[i];
            if (unlikely(child == BVH4i::emptyNode)) break;
            
#if defined(__AVX2__)
            const avxf lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x);
            const avxf lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y);
            const avxf lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z);
            const avxf lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x);
            const avxf lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y);
            const avxf lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z);
            const avxf lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ));
            const avxf lfarP  = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ));
            const avxb lhit   = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar);      
#else
            const avxf lclipMinX = (node->lower_x[i] - org.x) * rdir.x;
            const avxf lclipMinY = (node->lower_y[i] - org.y) * rdir.y;
            const avxf lclipMinZ = (node->lower_z[i] - org.z) * rdir.z;
            const avxf lclipMaxX = (node->upper_x[i] - org.x) * rdir.x;
            const avxf lclipMaxY = (node->upper_y[i] - org.y) * rdir.y;
            const avxf lclipMaxZ = (node->upper_z[i] - org.z) * rdir.z;
            const avxf lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ));
            const avxf lfarP  = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ));
            const avxb lhit   = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar);      
#endif
            
            /* if we hit the child we choose to continue with that child if it 
               is closer than the current next child, or we push it onto the stack */
            if (likely(any(lhit)))
            {
              assert(sptr_node < stackEnd);
              assert(child != BVH4i::emptyNode);
              const avxf childDist = select(lhit,lnearP,inf);
              sptr_node++;
              sptr_near++;
              
              /* push cur node onto stack and continue with hit child */
              if (any(childDist < curDist))
              {
                *(sptr_node-1) = curNode;
                *(sptr_near-1) = curDist; 
                curDist = childDist;
                curNode = child;
              }
              
              /* push hit child onto stack */
              else {
                *(sptr_node-1) = child;
                *(sptr_near-1) = childDist; 
              }
            }	      
          }
        }
        
        /* return if stack is empty */
        if (unlikely(curNode == BVH4i::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }
        
        /* intersect leaf */
        const avxb valid_leaf = ray_tfar > curDist;
        STAT3(shadow.trav_leaves,1,popcnt(valid_leaf),8);
        size_t items; const Triangle* prim = (Triangle*) curNode.leaf(accel,items);
        terminated |= TriangleIntersector8::occluded(!terminated,ray,prim,items,bvh->geometry);
        if (all(terminated)) break;
        ray_tfar = select(terminated,avxf(neg_inf),ray_tfar);
      }
      store8i(valid & terminated,&ray.geomID,0);
      AVX_ZERO_UPPER();
    }
    void BVH4Intersector8Chunk<types, robust, PrimitiveIntersector8>::intersect(avxb* valid_i, BVH4* bvh, Ray8& ray)
    {
      /* load ray */
      const avxb valid0 = *valid_i;
      const avx3f rdir = rcp_safe(ray.dir);
      const avx3f org(ray.org), org_rdir = org * rdir;
      avxf ray_tnear = select(valid0,ray.tnear,pos_inf);
      avxf ray_tfar  = select(valid0,ray.tfar ,neg_inf);
      const avxf inf = avxf(pos_inf);
      Precalculations pre(valid0,ray);

      /* allocate stack and push root node */
      avxf    stack_near[stackSize];
      NodeRef stack_node[stackSize];
      stack_node[0] = BVH4::invalidNode;
      stack_near[0] = inf;
      stack_node[1] = bvh->root;
      stack_near[1] = ray_tnear; 
      NodeRef* stackEnd = stack_node+stackSize;
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      avxf*    __restrict__ sptr_near = stack_near + 2;
      
      while (1)
      {
        /* pop next node from stack */
        assert(sptr_node > stack_node);
        sptr_node--;
        sptr_near--;
        NodeRef cur = *sptr_node;
        if (unlikely(cur == BVH4::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }
        
        /* cull node if behind closest hit point */
        avxf curDist = *sptr_near;
        if (unlikely(none(ray_tfar > curDist))) 
          continue;
        
        while (1)
        {
          /* process normal nodes */
          if (likely((types & 0x1) && cur.isNode()))
          {
	    const avxb valid_node = ray_tfar > curDist;
	    STAT3(normal.trav_nodes,1,popcnt(valid_node),8);
	    const Node* __restrict__ const node = cur.node();
	    
	    /* pop of next node */
	    assert(sptr_node > stack_node);
	    sptr_node--;
	    sptr_near--;
	    cur = *sptr_node; 
	    curDist = *sptr_near;
	    
#pragma unroll(4)
	    for (unsigned i=0; i<BVH4::N; i++)
	    {
	      const NodeRef child = node->children[i];
	      if (unlikely(child == BVH4::emptyNode)) break;
	      avxf lnearP; const avxb lhit = node->intersect8<robust>(i,org,rdir,org_rdir,ray_tnear,ray_tfar,lnearP);
	      
	      /* if we hit the child we choose to continue with that child if it 
		 is closer than the current next child, or we push it onto the stack */
	      if (likely(any(lhit)))
	      {
		assert(sptr_node < stackEnd);
		assert(child != BVH4::emptyNode);
		const avxf childDist = select(lhit,lnearP,inf);
		sptr_node++;
		sptr_near++;
		
		/* push cur node onto stack and continue with hit child */
		if (any(childDist < curDist))
		{
		  *(sptr_node-1) = cur;
		  *(sptr_near-1) = curDist; 
		  curDist = childDist;
		  cur = child;
		}
		
		/* push hit child onto stack */
		else {
		  *(sptr_node-1) = child;
		  *(sptr_near-1) = childDist; 
		}
	      }     
	    }
	  }
	  
	  /* process motion blur nodes */
          else if (likely((types & 0x10) && cur.isNodeMB()))
	  {
	    const avxb valid_node = ray_tfar > curDist;
	    STAT3(normal.trav_nodes,1,popcnt(valid_node),8);
	    const BVH4::NodeMB* __restrict__ const node = cur.nodeMB();
          
	    /* pop of next node */
	    assert(sptr_node > stack_node);
	    sptr_node--;
	    sptr_near--;
	    cur = *sptr_node; 
	    curDist = *sptr_near;
	    
#pragma unroll(4)
	    for (unsigned i=0; i<BVH4::N; i++)
	    {
	      const NodeRef child = node->child(i);
	      if (unlikely(child == BVH4::emptyNode)) break;
	      avxf lnearP; const avxb lhit = node->intersect(i,org,rdir,org_rdir,ray_tnear,ray_tfar,ray.time,lnearP);
	      	      
	      /* if we hit the child we choose to continue with that child if it 
		 is closer than the current next child, or we push it onto the stack */
	      if (likely(any(lhit)))
	      {
		assert(sptr_node < stackEnd);
		assert(child != BVH4::emptyNode);
		const avxf childDist = select(lhit,lnearP,inf);
		sptr_node++;
		sptr_near++;
		
		/* push cur node onto stack and continue with hit child */
		if (any(childDist < curDist))
		{
		  *(sptr_node-1) = cur;
		  *(sptr_near-1) = curDist; 
		  curDist = childDist;
		  cur = child;
		}
		
		/* push hit child onto stack */
		else {
		  *(sptr_node-1) = child;
		  *(sptr_near-1) = childDist; 
		}
	      }	      
	    }
	  }
	  else 
	    break;
	}
  __forceinline void intersectT(const BVH4* bvh, Ray& ray)
  {
    typedef typename TriangleIntersector::Triangle Triangle;
    typedef StackItemT<size_t> StackItem;
    typedef typename BVH4::NodeRef NodeRef;
    typedef typename BVH4::Node Node;

    /*! stack state */
    StackItem stack[1+3*BVH4::maxDepth];  //!< stack of nodes 
    StackItem* stackPtr = stack+1;        //!< current stack pointer
    stack[0].ptr  = bvh->root;
    stack[0].dist = neg_inf;

    /*! load the ray into SIMD registers */
    const avxf pos_neg = avxf(ssef(+0.0f),ssef(-0.0f));
    const avxf neg_pos = avxf(ssef(-0.0f),ssef(+0.0f));
    const avxf flipSignX = swapX ? neg_pos : pos_neg;
    const avxf flipSignY = swapY ? neg_pos : pos_neg;
    const avxf flipSignZ = swapZ ? neg_pos : pos_neg;
    const Vector3f ray_rdir = rcp_safe(ray.dir);
    const avx3f norg(-ray.org.x,-ray.org.y,-ray.org.z);
    const avx3f rdir(ray_rdir.x^flipSignX,ray_rdir.y^flipSignY,ray_rdir.z^flipSignZ);
    const avx3f org_rdir(avx3f(ray.org.x,ray.org.y,ray.org.z)*rdir);
    avxf rayNearFar(ssef(ray.tnear),-ssef(ray.tfar));

    const void* nodePtr = bvh->nodePtr();
    const void* triPtr  = bvh->triPtr();
     
    /* pop loop */
    while (true) pop:
    {
      /*! pop next node */
      if (unlikely(stackPtr == stack)) break;
      stackPtr--;
      NodeRef cur = NodeRef(stackPtr->ptr);
      
      /*! if popped node is too far, pop next one */
      if (unlikely(stackPtr->dist > ray.tfar))
        continue;

      /* downtraversal loop */
      while (true)
      {
        /*! stop if we found a leaf */
        if (unlikely(cur.isLeaf())) break;
        STAT3(normal.trav_nodes,1,1,1);

        /*! single ray intersection with 4 boxes */
        const Node* node = cur.node(nodePtr);

#if defined (__AVX2__) || defined(__MIC__)
        const avxf tLowerUpperX = msub(avxf::load(&node->lower_x), rdir.x, org_rdir.x);
        const avxf tLowerUpperY = msub(avxf::load(&node->lower_y), rdir.y, org_rdir.y);
        const avxf tLowerUpperZ = msub(avxf::load(&node->lower_z), rdir.z, org_rdir.z);
#else
        const avxf tLowerUpperX = (norg.x + avxf::load(&node->lower_x)) * rdir.x;
        const avxf tLowerUpperY = (norg.y + avxf::load(&node->lower_y)) * rdir.y;
        const avxf tLowerUpperZ = (norg.z + avxf::load(&node->lower_z)) * rdir.z;
#endif
        const avxf tNearFarX = swapX ? shuffle<1,0>(tLowerUpperX) : tLowerUpperX;
        const avxf tNearFarY = swapY ? shuffle<1,0>(tLowerUpperY) : tLowerUpperY;
        const avxf tNearFarZ = swapZ ? shuffle<1,0>(tLowerUpperZ) : tLowerUpperZ;
        const avxf tNearFar = max(tNearFarX,tNearFarY,tNearFarZ,rayNearFar);
        const ssef tNear = extract<0>(tNearFar);
        const ssef tFar  = extract<1>(tNearFar);
        size_t mask = movemask(-tNear >= tFar);
                
        /*! if no child is hit, pop next node */
        if (unlikely(mask == 0))
          goto pop;

        /*! one child is hit, continue with that child */
        size_t r = __bsf(mask); mask = __btc(mask,r);
        if (likely(mask == 0)) {
          cur = node->child(r);
          continue;
        }

        /*! two children are hit, push far child, and continue with closer child */
        NodeRef c0 = node->child(r); const float d0 = tNear[r];
        r = __bsf(mask); mask = __btc(mask,r);
        NodeRef c1 = node->child(r); const float d1 = tNear[r];
        if (likely(mask == 0)) {
          if (d0 < d1) { stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++; cur = c0; continue; }
          else         { stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++; cur = c1; continue; }
        }

        /*! Here starts the slow path for 3 or 4 hit children. We push
         *  all nodes onto the stack to sort them there. */
        stackPtr->ptr = c0; stackPtr->dist = d0; stackPtr++;
        stackPtr->ptr = c1; stackPtr->dist = d1; stackPtr++;

        /*! three children are hit, push all onto stack and sort 3 stack items, continue with closest child */
        r = __bsf(mask); mask = __btc(mask,r);
        NodeRef c = node->child(r); float d = tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
        if (likely(mask == 0)) {
          sort(stackPtr[-1],stackPtr[-2],stackPtr[-3]);
          cur = (NodeRef) stackPtr[-1].ptr; stackPtr--;
          continue;
        }

        /*! four children are hit, push all onto stack and sort 4 stack items, continue with closest child */
        r = __bsf(mask); mask = __btc(mask,r);
        c = node->child(r); d = tNear[r]; stackPtr->ptr = c; stackPtr->dist = d; stackPtr++;
        sort(stackPtr[-1],stackPtr[-2],stackPtr[-3],stackPtr[-4]);
        cur = (NodeRef) stackPtr[-1].ptr; stackPtr--;
      }

      /*! this is a leaf node */
      STAT3(normal.trav_leaves,1,1,1);
      size_t num; Triangle* tri = (Triangle*) cur.leaf(triPtr,num);
      for (size_t i=0; i<num; i++)
        TriangleIntersector::intersect(ray,tri[i],bvh->vertices);
      
      rayNearFar = insert<1>(rayNearFar,-ssef(ray.tfar));
    }
  }
  __forceinline bool occludedT(const BVH4* bvh, Ray& ray)
  {
    typedef typename TriangleIntersector::Triangle Triangle;
    typedef StackItemT<size_t> StackItem;
    typedef typename BVH4::NodeRef NodeRef;
    typedef typename BVH4::Node Node;

    /*! stack state */
    NodeRef stack[1+3*BVH4::maxDepth];  //!< stack of nodes that still need to get traversed
    NodeRef* stackPtr = stack+1;        //!< current stack pointer
    stack[0]  = bvh->root;
  
    /*! load the ray into SIMD registers */
    const avxf pos_neg = avxf(ssef(+0.0f),ssef(-0.0f));
    const avxf neg_pos = avxf(ssef(-0.0f),ssef(+0.0f));
    const avxf flipSignX = swapX ? neg_pos : pos_neg;
    const avxf flipSignY = swapY ? neg_pos : pos_neg;
    const avxf flipSignZ = swapZ ? neg_pos : pos_neg;
    const avx3f norg(-ray.org.x,-ray.org.y,-ray.org.z);
    const Vector3f ray_rdir = rcp_safe(ray.dir);
    const avx3f rdir(ray_rdir.x^flipSignX,ray_rdir.y^flipSignY,ray_rdir.z^flipSignZ);
    const avx3f org_rdir(avx3f(ray.org.x,ray.org.y,ray.org.z)*rdir);
    const avxf rayNearFar(ssef(ray.tnear),-ssef(ray.tfar));

    const void* nodePtr = bvh->nodePtr();
    const void* triPtr  = bvh->triPtr();
    
    /* pop loop */
    while (true) pop:
    {
      /*! pop next node */
      if (unlikely(stackPtr == stack)) break;
      stackPtr--;
      NodeRef cur = (NodeRef) *stackPtr;
      
      /* downtraversal loop */
      while (true)
      {
        /*! stop if we found a leaf */
        if (unlikely(cur.isLeaf())) break;
        STAT3(shadow.trav_nodes,1,1,1);
	
        /*! single ray intersection with 4 boxes */
        const Node* node = cur.node(nodePtr);
       
#if defined (__AVX2__) || defined(__MIC__)
        const avxf tLowerUpperX = msub(avxf::load(&node->lower_x), rdir.x, org_rdir.x);
        const avxf tLowerUpperY = msub(avxf::load(&node->lower_y), rdir.y, org_rdir.y);
        const avxf tLowerUpperZ = msub(avxf::load(&node->lower_z), rdir.z, org_rdir.z);
#else
        const avxf tLowerUpperX = (norg.x + avxf::load(&node->lower_x)) * rdir.x;
        const avxf tLowerUpperY = (norg.y + avxf::load(&node->lower_y)) * rdir.y;
        const avxf tLowerUpperZ = (norg.z + avxf::load(&node->lower_z)) * rdir.z;
#endif
        const avxf tNearFarX = swapX ? shuffle<1,0>(tLowerUpperX) : tLowerUpperX;
        const avxf tNearFarY = swapY ? shuffle<1,0>(tLowerUpperY) : tLowerUpperY;
        const avxf tNearFarZ = swapZ ? shuffle<1,0>(tLowerUpperZ) : tLowerUpperZ;
        const avxf tNearFar = max(tNearFarX,tNearFarY,tNearFarZ,rayNearFar);
        const ssef tNear = extract<0>(tNearFar);
        const ssef tFar  = extract<1>(tNearFar);
        size_t mask = movemask(-tNear >= tFar);
        
        /*! if no child is hit, pop next node */
        if (unlikely(mask == 0))
          goto pop;

        /*! one child is hit, continue with that child */
        size_t r = __bsf(mask); mask = __btc(mask,r);
        if (likely(mask == 0)) {
          cur = node->child(r);
          continue;
        }

        /*! two children are hit, push far child, and continue with closer child */
        NodeRef c0 = node->child(r); const float d0 = tNear[r];
        r = __bsf(mask); mask = __btc(mask,r);
        NodeRef c1 = node->child(r); const float d1 = tNear[r];
        if (likely(mask == 0)) {
          if (d0 < d1) { *stackPtr = c1; stackPtr++; cur = c0; continue; }
          else         { *stackPtr = c0; stackPtr++; cur = c1; continue; }
        }
        *stackPtr = c0; stackPtr++;
        *stackPtr = c1; stackPtr++;

        /*! three children are hit */
        r = __bsf(mask); mask = __btc(mask,r);
        cur = node->child(r); *stackPtr = cur; stackPtr++;
        if (likely(mask == 0)) {
          stackPtr--;
          continue;
        }

        /*! four children are hit */
        cur = node->child(3);
      }

      /*! this is a leaf node */
      STAT3(shadow.trav_leaves,1,1,1);
      size_t num; Triangle* tri = (Triangle*) cur.leaf(triPtr,num);
      for (size_t i=0; i<num; i++) {
        if (TriangleIntersector::occluded(ray,tri[i],bvh->vertices)) {
          AVX_ZERO_UPPER();
          return true;
        }
      }
    }
   
    AVX_ZERO_UPPER();
    return false;
  }
    void BVH4Intersector8Hybrid<PrimitiveIntersector8>::intersect(avxb* valid_i, BVH4* bvh, Ray8& ray)
    {
      /* load ray */
      const avxb valid0 = *valid_i;
      avx3f ray_org = ray.org, ray_dir = ray.dir;
      avxf ray_tnear = ray.tnear, ray_tfar  = ray.tfar;
#if defined(__FIX_RAYS__)
      const avxf float_range = 1.8E19;
      ray_org = clamp(ray_org,avx3f(-float_range),avx3f(+float_range));
      ray_dir = clamp(ray_dir,avx3f(-float_range),avx3f(+float_range));
      ray_tnear = max(ray_tnear,FLT_MIN); 
      ray_tfar  = min(ray_tfar,float(inf)); 
#endif
      const avx3f rdir = rcp_safe(ray_dir);
      const avx3f org(ray_org), org_rdir = org * rdir;
      ray_tnear = select(valid0,ray_tnear,avxf(pos_inf));
      ray_tfar  = select(valid0,ray_tfar ,avxf(neg_inf));
      const avxf inf = avxf(pos_inf);

      /* allocate stack and push root node */
      avxf    stack_near[stackSizeChunk];
      NodeRef stack_node[stackSizeChunk];
      stack_node[0] = BVH4::invalidNode;
      stack_near[0] = inf;
      stack_node[1] = bvh->root;
      stack_near[1] = ray_tnear; 
      NodeRef* stackEnd = stack_node+stackSizeChunk;
      NodeRef* __restrict__ sptr_node = stack_node + 2;
      avxf*    __restrict__ sptr_near = stack_near + 2;
      
      while (1)
      {
        /* pop next node from stack */
        assert(sptr_node > stack_node);
        sptr_node--;
        sptr_near--;
        NodeRef curNode = *sptr_node;
        if (unlikely(curNode == BVH4::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }
        
        /* cull node if behind closest hit point */
        avxf curDist = *sptr_near;
        const avxb active = curDist < ray_tfar;
        if (unlikely(none(active)))
          continue;
        
        /* switch to single ray traversal */
#if !defined(__WIN32__) || defined(__X86_64__)
        size_t bits = movemask(active);
        if (unlikely(__popcnt(bits) <= SWITCH_THRESHOLD)) {
          for (size_t i=__bsf(bits); bits!=0; bits=__btc(bits,i), i=__bsf(bits)) {
            intersect1(bvh,curNode,i,ray,ray_org,ray_dir,rdir,ray_tnear,ray_tfar);
          }
          ray_tfar = ray.tfar;
          continue;
        }
#endif

        while (1)
        {
          /* test if this is a leaf node */
          if (unlikely(curNode.isLeaf()))
            break;
          
          const avxb valid_node = ray_tfar > curDist;
          STAT3(normal.trav_nodes,1,popcnt(valid_node),8);
          const Node* __restrict__ const node = curNode.node();
          
          /* pop of next node */
          assert(sptr_node > stack_node);
          sptr_node--;
          sptr_near--;
          curNode = *sptr_node;
          curDist = *sptr_near;
          
#pragma unroll(4)
          for (unsigned i=0; i<4; i++)
          {
            const NodeRef child = node->children[i];
            if (unlikely(child == BVH4::emptyNode)) break;
            
#if defined(__AVX2__)
            const avxf lclipMinX = msub(node->lower_x[i],rdir.x,org_rdir.x);
            const avxf lclipMinY = msub(node->lower_y[i],rdir.y,org_rdir.y);
            const avxf lclipMinZ = msub(node->lower_z[i],rdir.z,org_rdir.z);
            const avxf lclipMaxX = msub(node->upper_x[i],rdir.x,org_rdir.x);
            const avxf lclipMaxY = msub(node->upper_y[i],rdir.y,org_rdir.y);
            const avxf lclipMaxZ = msub(node->upper_z[i],rdir.z,org_rdir.z);
            const avxf lnearP = maxi(maxi(mini(lclipMinX, lclipMaxX), mini(lclipMinY, lclipMaxY)), mini(lclipMinZ, lclipMaxZ));
            const avxf lfarP  = mini(mini(maxi(lclipMinX, lclipMaxX), maxi(lclipMinY, lclipMaxY)), maxi(lclipMinZ, lclipMaxZ));
            const avxb lhit   = maxi(lnearP,ray_tnear) <= mini(lfarP,ray_tfar);      
#else
            const avxf lclipMinX = (node->lower_x[i] - org.x) * rdir.x;
            const avxf lclipMinY = (node->lower_y[i] - org.y) * rdir.y;
            const avxf lclipMinZ = (node->lower_z[i] - org.z) * rdir.z;
            const avxf lclipMaxX = (node->upper_x[i] - org.x) * rdir.x;
            const avxf lclipMaxY = (node->upper_y[i] - org.y) * rdir.y;
            const avxf lclipMaxZ = (node->upper_z[i] - org.z) * rdir.z;
            const avxf lnearP = max(max(min(lclipMinX, lclipMaxX), min(lclipMinY, lclipMaxY)), min(lclipMinZ, lclipMaxZ));
            const avxf lfarP  = min(min(max(lclipMinX, lclipMaxX), max(lclipMinY, lclipMaxY)), max(lclipMinZ, lclipMaxZ));
            const avxb lhit   = max(lnearP,ray_tnear) <= min(lfarP,ray_tfar);      
#endif
            
            /* if we hit the child we choose to continue with that child if it 
               is closer than the current next child, or we push it onto the stack */
            if (likely(any(lhit)))
            {
              assert(sptr_node < stackEnd);
              const avxf childDist = select(lhit,lnearP,inf);
              const NodeRef child = node->children[i];
              assert(child != BVH4::emptyNode);
              sptr_node++;
              sptr_near++;
              
              /* push cur node onto stack and continue with hit child */
              if (any(childDist < curDist))
              {
                *(sptr_node-1) = curNode;
                *(sptr_near-1) = curDist; 
                curDist = childDist;
                curNode = child;
              }
              
              /* push hit child onto stack */
              else {
                *(sptr_node-1) = child;
                *(sptr_near-1) = childDist; 
              }
            }	      
          }
        }
        
        /* return if stack is empty */
        if (unlikely(curNode == BVH4::invalidNode)) {
          assert(sptr_node == stack_node);
          break;
        }
        
        /* intersect leaf */
        const avxb valid_leaf = ray_tfar > curDist;
        STAT3(normal.trav_leaves,1,popcnt(valid_leaf),8);
        size_t items; const Primitive* prim = (Primitive*) curNode.leaf(items);
        PrimitiveIntersector8::intersect(valid_leaf,ray,prim,items,bvh->geometry);
        ray_tfar = select(valid_leaf,ray.tfar,ray_tfar);
      }
      AVX_ZERO_UPPER();
    }
  void BVH4Intersector8Chunk<TriangleIntersector8>::intersect(const BVH4Intersector8Chunk* This, Ray8& ray, const __m256 valid_i)
  {
    avxb valid = valid_i;
    NodeRef invalid = (NodeRef)1;
    const BVH4* bvh = This->bvh;

    /* load ray into registers */
    avxf ray_near = select(valid,ray.tnear,pos_inf);
    avxf ray_far  = select(valid,ray.tfar ,neg_inf);
    avx3f rdir = rcp_safe(ray.dir);
    ray.tfar = ray_far;

    /* allocate stack and push root node */
    NodeRef stack_node[3*BVH4::maxDepth+1];
    avxf  stack_near[3*BVH4::maxDepth+1];
    stack_node[0] = invalid;
    stack_near[0] = inf;
    stack_node[1] = bvh->root;
    stack_near[1] = ray_near;
    NodeRef* sptr_node = stack_node+2;
    avxf * sptr_near = stack_near+2;
 
    while (1)
    {
      /* pop next node from stack */
      sptr_node--;
      sptr_near--;
      avxf  curDist = *sptr_near;
      NodeRef curNode = *sptr_node;
      if (unlikely(curNode == invalid))
        break;

      /* cull node if behind closest hit point */
      const avxb m_dist = curDist < ray_far;
      if (unlikely(none(m_dist))) 
        continue;

      while (1)
      {
        /* test if this is a leaf node */
        if (unlikely(curNode.isLeaf())) 
          break;
        
        const Node* const node = curNode.node(bvh->nodePtr()); //NodeRef(curNode).node(nodes);
        //prefetch<PFHINT_L1>((avxf*)node + 1); // depth first order prefetch	
        
        /* pop of next node */
        sptr_node--;
        sptr_near--;
        curNode = *sptr_node;
        curDist = *sptr_near;
                
        for (unsigned i=0;i<4;i++)
	{
          const avxf dminx = (avxf(node->lower_x[i]) - ray.org.x) * rdir.x;
          const avxf dmaxx = (avxf(node->upper_x[i]) - ray.org.x) * rdir.x;
          const avxf dminy = (avxf(node->lower_y[i]) - ray.org.y) * rdir.y;
          const avxf dmaxy = (avxf(node->upper_y[i]) - ray.org.y) * rdir.y;
          const avxf dminz = (avxf(node->lower_z[i]) - ray.org.z) * rdir.z;
          const avxf dmaxz = (avxf(node->upper_z[i]) - ray.org.z) * rdir.z;
          
          const avxf dlowerx = min(dminx,dmaxx);
          const avxf dupperx = max(dminx,dmaxx);
          const avxf dlowery = min(dminy,dmaxy);
          const avxf duppery = max(dminy,dmaxy);
          const avxf dlowerz = min(dminz,dmaxz);
          const avxf dupperz = max(dminz,dmaxz);
          
          const avxf near = max(dlowerx,dlowery,dlowerz,ray_near);
          const avxf far  = min(dupperx,duppery,dupperz,ray_far );
          const avxb mhit = near <= far;
          
          const avxf childDist = select(mhit,near,inf);
          const avxb closer = childDist < curDist;

          /* if we hit the child we choose to continue with that child if it 
             is closer than the current next child, or we push it onto the stack */
          if (likely(any(mhit)))
          {
            const NodeRef child = node->child(i);
            //if (child != invalid)
            {
              sptr_node++;
              sptr_near++;
            
              /* push cur node onto stack and continue with hit child */
              if (any(closer)) {
                *(sptr_node-1) = curNode;
                *(sptr_near-1) = curDist; 
                curDist = childDist;
                curNode = child;
              } 
              
              /* push hit child onto stack*/
              else {
                *(sptr_node-1) = child;
                *(sptr_near-1) = childDist; 
              }          
            }	      
          }
        }
      }
      
      /* return if stack is empty */
      if (unlikely(curNode == invalid)) 
        break;
      
      /* decode leaf node */
      size_t num;
      Triangle* tri = (Triangle*) curNode.leaf(bvh->triPtr(),num);
      
      /* intersect triangles */
      for (size_t i=0; i<num; i++)
        TriangleIntersector8::intersect(valid,ray,tri[i],bvh->vertices);
      
      ray_far = ray.tfar;
    }
  }