示例#1
0
Bool bignum_gcd1(BigNum b1, BigNum b2, BigNum *b0)
{
  //----  局所宣言
  BigNum e;
  BigNum t;
  int a;
  bignum_init(&e, 1);

  //----  計算処理
  while ( 1 ) {
    if ( bignum_zero(b1) ) { bignum_mlt(b2, e, b0);return; }
    if ( bignum_zero(b2) ) { bignum_mlt(b1, e, b0);return; }
    if ( bignum_cmp(b1, b2) == 0 ) { bignum_mlt(b1, e, b0);return; }
    if ( b1.num[0]%2 == 0 && b2.num[0]%2 == 0 ) {
      bignum_div2(b1, 2, &t, &a); b1 = t;
      bignum_div2(b2, 2, &t, &a); b2 = t;
      bignum_scl(&e, 2);
      continue;
    }
    if ( b1.num[0]%2 == 0 ) { bignum_div2(b1, 2, &t, &a); b1 = t; continue; }
    if ( b2.num[0]%2 == 0 ) { bignum_div2(b2, 2, &t, &a); b2 = t; continue; }
    if ( bignum_cmp(b1, b2) == 1 ) { bignum_sub(b1, b2, &t); b1 = t; }
    else { bignum_sub(b2, b1, &t); b2 = t; }
  }


  //----  返却処理
  return TRUE;    // 正常に処理完了
}
示例#2
0
Bool bignum_near(BigNum b1, BigNum b2, int a)
{
  //----  局所宣言
  BigNum t;

  //----  計算処理
  // |b1-b2|≦aの判定
  if ( bignum_cmp(b1, b2) > 0 ) { t = b1; b1 = b2; b2 = t; }
  bignum_inc(&b1, a);

  //----  返却処理
  return ( bignum_cmp(b2, b1) <= 0 );
}
示例#3
0
/*
 * DH stage 2-epsilon: given a number f, validate it to ensure it's in
 * range. (RFC 4253 section 8: "Values of 'e' or 'f' that are not in
 * the range [1, p-1] MUST NOT be sent or accepted by either side."
 * Also, we rule out 1 and p-1 too, since that's easy to do and since
 * they lead to obviously weak keys that even a passive eavesdropper
 * can figure out.)
 */
const char *dh_validate_f(void *handle, Bignum f)
{
    struct dh_ctx *ctx = (struct dh_ctx *)handle;
    if (bignum_cmp(f, One) <= 0) {
        return "f value received is too small";
    } else {
        Bignum pm1 = bigsub(ctx->p, One);
        int cmp = bignum_cmp(f, pm1);
        freebn(pm1);
        if (cmp >= 0)
            return "f value received is too large";
    }
    return NULL;
}
示例#4
0
/*
 * DH stage 1: invent a number x between 1 and q, and compute e =
 * g^x mod p. Return e.
 * 
 * If `nbits' is greater than zero, it is used as an upper limit
 * for the number of bits in x. This is safe provided that (a) you
 * use twice as many bits in x as the number of bits you expect to
 * use in your session key, and (b) the DH group is a safe prime
 * (which SSH demands that it must be).
 * 
 * P. C. van Oorschot, M. J. Wiener
 * "On Diffie-Hellman Key Agreement with Short Exponents".
 * Advances in Cryptology: Proceedings of Eurocrypt '96
 * Springer-Verlag, May 1996.
 */
Bignum dh_create_e(void *handle, int nbits)
{
    struct dh_ctx *ctx = (struct dh_ctx *)handle;
    int i;

    int nbytes;
    unsigned char *buf;

    nbytes = ssh1_bignum_length(ctx->qmask);
    buf = snewn(nbytes, unsigned char);

    do {
	/*
	 * Create a potential x, by ANDing a string of random bytes
	 * with qmask.
	 */
	if (ctx->x)
	    freebn(ctx->x);
	if (nbits == 0 || nbits > bignum_bitcount(ctx->qmask)) {
	    ssh1_write_bignum(buf, ctx->qmask);
	    for (i = 2; i < nbytes; i++)
		buf[i] &= random_byte();
	    ssh1_read_bignum(buf, nbytes, &ctx->x);   /* can't fail */
	} else {
	    int b, nb;
	    ctx->x = bn_power_2(nbits);
	    b = nb = 0;
	    for (i = 0; i < nbits; i++) {
		if (nb == 0) {
		    nb = 8;
		    b = random_byte();
		}
		bignum_set_bit(ctx->x, i, b & 1);
		b >>= 1;
		nb--;
	    }
	}
    } while (bignum_cmp(ctx->x, One) <= 0 || bignum_cmp(ctx->x, ctx->q) >= 0);

    sfree(buf);

    /*
     * Done. Now compute e = g^x mod p.
     */
    ctx->e = modpow(ctx->g, ctx->x, ctx->p);

    return ctx->e;
}
示例#5
0
文件: kex1.c 项目: caidongyun/libssh
/* returns 1 if the modulus of k1 is < than the one of k2 */
static int modulus_smaller(ssh_public_key k1, ssh_public_key k2){
    bignum n1;
    bignum n2;
    int res;
#ifdef HAVE_LIBGCRYPT
    gcry_sexp_t sexp;
    sexp=gcry_sexp_find_token(k1->rsa_pub,"n",0);
    n1=gcry_sexp_nth_mpi(sexp,1,GCRYMPI_FMT_USG);
    gcry_sexp_release(sexp);
    sexp=gcry_sexp_find_token(k2->rsa_pub,"n",0);
    n2=gcry_sexp_nth_mpi(sexp,1,GCRYMPI_FMT_USG);
    gcry_sexp_release(sexp);
#elif defined HAVE_LIBCRYPTO
    n1=k1->rsa_pub->n;
    n2=k2->rsa_pub->n;
#endif
    if(bignum_cmp(n1,n2)<0)
        res=1;
    else
        res=0;
#ifdef HAVE_LIBGCRYPT
    bignum_free(n1);
    bignum_free(n2);
#endif
    return res;
    
}
示例#6
0
int comb_sum_cmp(const void* comb1, const void* comb2)
{
    bignum_t op1, op2;
    comb_fast_sum(&op1, (const byte*)comb1);
    comb_fast_sum(&op2, (const byte*)comb2);
    return bignum_cmp(&op1, &op2);
}
示例#7
0
Bool bignum_div1(BigNum b1, BigNum b2, int *a3, BigNum *b4)
{
  //----  局所宣言
  BigNum t;    // 一時変数
  int k;       // 反復変数

  //----  初期処理
  *a3 = 0;    // 整商の初期化
  *b4 = b1;   // 剰余の初期化

  //----  計算処理
  // b1からb2を引けるだけ引く
  for ( k = 0; bignum_cmp(b1, b2) >= 0; k++ ) {
    bignum_sub(b1, b2, b4);
    b1 = *b4;
    (*a3)++;
  }
  // 引いた回数が整商で残った値が剰余

  //----  事後処理
  if ( *a3 >= RAD ) { return FALSE; }    // 桁溢れ

  //----  返却処理
  return TRUE;    // 正常に処理完了
}
示例#8
0
/*
 * Verify that the public data in an RSA key matches the private
 * data. We also check the private data itself: we ensure that p >
 * q and that iqmp really is the inverse of q mod p.
 */
bool RSAKey::Check() const
{
	Bignum n, ed, pm1, qm1;
	int cmp;

	/* n must equal pq. */
	n = bigmul(this->p, this->q);
	cmp = bignum_cmp(n, this->modulus);
	freebn(n);
	if (cmp != 0)
		return 0;

	/* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
	pm1 = copybn(this->p);
	decbn(pm1);
	ed = modmul(this->exponent, this->private_exponent, pm1);
	cmp = bignum_cmp(ed, One);
	delete [] ed;
	if (cmp != 0)
		return 0;

	qm1 = copybn(this->q);
	decbn(qm1);
	ed = modmul(this->exponent, this->private_exponent, qm1);
	cmp = bignum_cmp(ed, One);
	delete [] ed;
	if (cmp != 0)
		return 0;

	/*
	 * Ensure p > q.
	 */
	if (bignum_cmp(this->p, this->q) <= 0)
		return 0;

	/*
	 * Ensure iqmp * q is congruent to 1, modulo p.
	 */
	n = modmul(this->iqmp, this->q, this->p);
	cmp = bignum_cmp(n, One);
	delete [] n;
	if (cmp != 0)
		return 0;

	return 1;
}
示例#9
0
/*
 * Verify that the public data in an RSA key matches the private
 * data. We also check the private data itself: we ensure that p >
 * q and that iqmp really is the inverse of q mod p.
 */
int rsa_verify(struct RSAKey *key)
{
    Bignum n, ed, pm1, qm1;
    int cmp;

    /* n must equal pq. */
    n = bigmul(key->p, key->q);
    cmp = bignum_cmp(n, key->modulus);
    freebn(n);
    if (cmp != 0)
	return 0;

    /* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
    pm1 = copybn(key->p);
    decbn(pm1);
    ed = modmul(key->exponent, key->private_exponent, pm1);
    cmp = bignum_cmp(ed, One);
    sfree(ed);
    if (cmp != 0)
	return 0;

    qm1 = copybn(key->q);
    decbn(qm1);
    ed = modmul(key->exponent, key->private_exponent, qm1);
    cmp = bignum_cmp(ed, One);
    sfree(ed);
    if (cmp != 0)
	return 0;

    /*
     * Ensure p > q.
     */
    if (bignum_cmp(key->p, key->q) <= 0)
	return 0;

    /*
     * Ensure iqmp * q is congruent to 1, modulo p.
     */
    n = modmul(key->iqmp, key->q, key->p);
    cmp = bignum_cmp(n, One);
    sfree(n);
    if (cmp != 0)
	return 0;

    return 1;
}
示例#10
0
Bool bignum_div3(BigNum b1, BigNum b2, BigNum *b3, BigNum *b4)
{
  //----  局所宣言
  BigNum low;    // 下端
  BigNum hig;    // 上端
  BigNum mid;    // 中央
  BigNum val;     // 計算値(除数と仮整商の積)
  BigNum t;      // 一時変数
  int sft;       // 上端の節数
  int cmp;       // 大小比較の結果

  //----  事前処理
  // 除数の吟味(0除算の禁止)
  if ( bignum_zero(b2) == TRUE ) { return FALSE; }

  //----  初期処理
  bignum_init(&low, 0);       // 下端の初期化(0)
  bignum_init(&hig, 1);       // 上端の仮値(1)
  sft = b1.uni-b2.uni+1;   // 上端の節数
  bignum_shift(&hig, sft);    // 上端の初期化(節移動)
  //----  計算処理
  //--  整商の計算
  while ( bignum_near(low, hig, 1) == 0 ) {
    //   上端と下端の中点として中央値をmidに格納
    bignum_add(low, hig, &mid);

    bignum_half(&mid);
    //   中央値midとb2の乗算をvalに格納l
    if ( bignum_mlt(mid, b2, &val) == FALSE ) {
      return FALSE;
    }
    //   b1とvalが等しければ脱出
    cmp = bignum_cmp(val, b1);
    if ( cmp == 0 ) {
      low = mid;
      break;
    }
    //   異なれば上端または下端を更新
    else if ( cmp > 0 ) {
      hig = mid;
    } else {
      low = mid;
    }
  }
  //--  整商の格納と剰余の計算
  // 下端値lowを整商*b3として格納
  *b3 = low;
  // 整商*b3とb2の乗算をvalに格納l
  bignum_mlt(*b3, b2, &val);
  // b1とvalの差を剰余として*b4に格納
  bignum_sub(b1, val, b4);
  //----  事後処理
  bignum_chk(b3);    // 節数の更新
  bignum_chk(b4);

  //----  返却処理
  return TRUE;    // 正常に処理完了
}
示例#11
0
int main (int argc, char ** argv) {
	if (argc != 2) {
		fprintf (stderr, "usage: %s <N>\n", argv[0]);
		return 1;
	}

	int N = atoi (argv[1]);

	if (N < 2)
		return 1;

	bignum_t * powers[(N - 1) * (N - 1)];
	size_t powers_count = 0;

	bool * primes = eratosthenes_sieve (N + 1);

	for (int a = 2; a <= N; a++) {
		bignum_t * power = NULL;

		for (int b = 2; b <= N; b++) {
			bignum_t * new_power = NULL;

			if (!power)
				new_power = bignum_get (a * a);
			else
				new_power = bignum_mult (power, a);

			if (b == 2)
				bignum_delete (power);

			int duplicate_at = -1;

			// Powers of a prime base cannot be duplicates
			if (!primes[a])
				for (size_t i = 0; i < powers_count; i++)
					if (bignum_cmp (powers[i], new_power) == 0) {
						duplicate_at = i;
						break;
					}

			if (duplicate_at == -1) {
				powers[powers_count++] = new_power;
				power = new_power;
			} else {
				bignum_delete (new_power);
				power = powers[duplicate_at];
			}
		}
	}

	printf ("%d\n", (int) powers_count);

	bignum_free_array (powers, powers_count);
	free (primes);

	return 0;
}
示例#12
0
static void *dss_createkey(unsigned char *pub_blob, int pub_len,  unsigned char *priv_blob, int priv_len)
{
    dss_key *dss;
    char *pb = (char *) priv_blob;
    char *hash;
    int hashlen;
    SHA_State s;
    unsigned char digest[20];
    Bignum ytest;

    dss = dss_newkey((char *) pub_blob, pub_len);
    if (!dss)
        return NULL;
    dss->x = getmp(&pb, &priv_len);
    if (!dss->x) {
        dss_freekey(dss);
        return NULL;
    }

    /*
     * Check the obsolete hash in the old DSS key format.
     */
    hashlen = -1;
    getstring(&pb, &priv_len, &hash, &hashlen);
    if (hashlen == 20) 
	{
	SHA_Init(&s);
	sha_mpint(&s, dss->p);
	sha_mpint(&s, dss->q);
	sha_mpint(&s, dss->g);
	SHA_Final(&s, digest);

	if (0 != memcmp(hash, digest, 20)) 
	{
	    dss_freekey(dss);
	    return NULL;
	}
    }

    /*
     * Now ensure g^x mod p really is y.
     */
    ytest = modpow(dss->g, dss->x, dss->p);
    if (0 != bignum_cmp(ytest, dss->y)) 
	{
		dss_freekey(dss);
        freebn(ytest);
		return NULL;
    }
    freebn(ytest);

    return dss;
}
示例#13
0
static void *dss_newkey(char *data, int len)
{
    char *p;
    int slen;
    dss_key *dss;

    dss = snewn(1,dss_key);
    getstring(&data, &len, &p, &slen);

#ifdef DEBUG_DSS
    {
	int i;
	printf("key:");
	for (i = 0; i < len; i++)
	    printf("  %02x", (unsigned char) (data[i]));
	printf("\n");
    }
#endif

    if (!p || slen != 7 || memcmp(p, "ssh-dss", 7)) 
	{
	sfree(dss);
	return NULL;
    }

    dss->p = getmp(&data, &len);
    dss->q = getmp(&data, &len);
    dss->g = getmp(&data, &len);
    dss->y = getmp(&data, &len);
    dss->x = NULL;

    if (!dss->p || !dss->q || !dss->g || !dss->y ||  !bignum_cmp(dss->q, Zero) || !bignum_cmp(dss->p, Zero)) 
	{
        /* Invalid key. */
        dss_freekey(dss);
        return NULL;
    }

    return dss;
}
示例#14
0
int main (int argc, char ** argv) {
	if (argc != 2) {
		fprintf (stderr, "usage: %s <N>\n", argv[0]);
		return 1;
	}

	int N = atoi (argv[1]);

	if (N <= 0)
		return 1;

	/*
	 * C_n,r = n!/r!(n - r)!
	 * We need to check when C_n,r > LIMIT ~ n!/r! > LIMIT * (n - r)!
	 * Precompute the right side of the inequality in factorials[] and the left side in cancelled_factorials[]
	 * Given that C_n,r == C_n,n-r we only need to consider r <= n /2
	 */

	bignum_t * factorials[N + 1];

	factorials[0] = bignum_get (LIMIT);

	for (size_t i = 1; i < array_len (factorials); i++)
		factorials[i] = bignum_mult (factorials[i - 1], (int) i);

	int count = 0;

	for (int n = 1; n <= N; n++) {
		bignum_t * cancelled_factorials[n + 1];

		cancelled_factorials[n] = bignum_get (1);

		for (int i = n - 1; i >= 0; i--)
			cancelled_factorials[i] = bignum_mult (cancelled_factorials[i + 1], i + 1);

		for (int r = 1; r <= n / 2 ; r++)
			if (bignum_cmp (cancelled_factorials[r], factorials[n - r]) > 0) {
				if (r + r == n)
					count++;
				else
					count += 2;
			}

		bignum_free_array (cancelled_factorials, array_len (cancelled_factorials));
	}

	bignum_free_array (factorials, array_len (factorials));

	printf ("%d\n", count);

	return 0;
}
示例#15
0
文件: sshdss.c 项目: DAVe3283/PuTTY
static void *dss_openssh_createkey(unsigned char **blob, int *len)
{
    char **b = (char **) blob;
    struct dss_key *dss;

    dss = snew(struct dss_key);

    dss->p = getmp(b, len);
    dss->q = getmp(b, len);
    dss->g = getmp(b, len);
    dss->y = getmp(b, len);
    dss->x = getmp(b, len);

    if (!dss->p || !dss->q || !dss->g || !dss->y || !dss->x ||
        !bignum_cmp(dss->q, Zero) || !bignum_cmp(dss->p, Zero)) {
        /* Invalid key. */
        dss_freekey(dss);
        return NULL;
    }

    return dss;
}
示例#16
0
int RSAKey::Generate( int bits )
{
	Bignum pm1, qm1, phi_n;

	/*
	 * We don't generate e; we just use a standard one always.
	 */
	this->exponent = bignum_from_long(RSA_EXPONENT);

	/*
	 * Generate p and q: primes with combined length `bits', not
	 * congruent to 1 modulo e. (Strictly speaking, we wanted (p-1)
	 * and e to be coprime, and (q-1) and e to be coprime, but in
	 * general that's slightly more fiddly to arrange. By choosing
	 * a prime e, we can simplify the criterion.)
	 */
	this->p = primegen(bits / 2, RSA_EXPONENT, 1, NULL, 1);
	this->q = primegen(bits - bits / 2, RSA_EXPONENT, 1, NULL, 2);

	/*
	 * Ensure p > q, by swapping them if not.
	 */
	if (bignum_cmp(this->p, this->q) < 0)
		swap( p, q );

	/*
	 * Now we have p, q and e. All we need to do now is work out
	 * the other helpful quantities: n=pq, d=e^-1 mod (p-1)(q-1),
	 * and (q^-1 mod p).
	 */
	this->modulus = bigmul(this->p, this->q);
	pm1 = copybn(this->p);
	decbn(pm1);
	qm1 = copybn(this->q);
	decbn(qm1);
	phi_n = bigmul(pm1, qm1);
	freebn(pm1);
	freebn(qm1);
	this->private_exponent = modinv(this->exponent, phi_n);
	this->iqmp = modinv(this->q, this->p);

	/*
	 * Clean up temporary numbers.
	 */
	freebn(phi_n);

	return 1;
}
示例#17
0
Bool bignum_sqrt(BigNum b1, BigNum *b0)
{
  //----  局所宣言
  BigNum low;    // 下端
  BigNum hig;    // 上端
  BigNum mid;    // 中央
  BigNum val;    // 二乗値
  int sft;       // 上端の節数
  int cmp;       // 大小比較の結果

  //----  初期処理
  // lowを最下端0に初期化
  bignum_init(&low, 0);
  // higを最上端に初期化
  // 最上端は結果が含まれる範囲でキリの良い値
  // 1で初期化し、適当な節だけ左シフト
  sft = (UNI-1)/2;
  bignum_init(&hig, 1);
  bignum_shift(&hig, sft);
  //----  計算処理
  while ( bignum_near(hig, low, 1) == FALSE ) {
    //   上端と下端の中点として中央値midの計算
    bignum_add(low, hig, &mid);
    bignum_half(&mid);
    //   中央値midの二乗値val
    bignum_mlt(mid, mid, &val);
    //   二乗値valが入力値b1と等しければ脱出
    cmp = bignum_cmp(val, b1);
    if ( cmp == 0 ) {
      break;
    }//   異なれば上端または下端を更新
    else if ( cmp > 0 ) {
      hig = mid;
    } else {
      low = mid;
    }
  }

  //----  事後処理
  // 中央値midを結果b0に格納
  *b0 = mid;
  // 節数と桁数の更新
  bignum_chk(b0);
  //----  返却処理
  return TRUE;    // 正常に処理完了
}
示例#18
0
bool RSAKey::Verify( const CString &data, const CString &sig ) const
{
	Bignum in, out;
	int bytes, i, j;
	unsigned char hash[20];

	in = bignum_from_bytes( (const unsigned char *) sig.data(), sig.size() );

	/* Base (in) must be smaller than the modulus. */
	if( bignum_cmp(in, this->modulus) >= 0 )
	{
		freebn(in);
		return false;
	}
	out = modpow(in, this->exponent, this->modulus);
	freebn(in);

	bool ret = true;

	bytes = (bignum_bitcount(this->modulus)+7) / 8;
	/* Top (partial) byte should be zero. */
	if (bignum_byte(out, bytes - 1) != 0)
		ret = 0;
	/* First whole byte should be 1. */
	if (bignum_byte(out, bytes - 2) != 1)
		ret = 0;
	/* Most of the rest should be FF. */
	for (i = bytes - 3; i >= 20; i--) {
		if (bignum_byte(out, i) != 0xFF)
			ret = 0;
	}
	/* Finally, we expect to see the SHA-1 hash of the signed data. */
	SHA_Simple( data.data(), data.size(), hash );
	for (i = 19, j = 0; i >= 0; i--, j++) {
		if (bignum_byte(out, i) != hash[j])
			ret = false;
	}
	freebn(out);

	return ret;
}
示例#19
0
Bool bignum_plrt(BigNum b1, int e, BigNum *b0)
{
  //----  局所宣言
  BigNum low;    // 下端
  BigNum hig;    // 上端
  BigNum mid;    // 中央
  BigNum val;    // 累乗値
  int sft;       // 上端の節数
  int cmp;       // 大小比較の結果

  //----  初期処理
  bignum_init(&low, 0);
  bignum_init(&hig, 1);
  sft = (UNI-1)/e;
  bignum_shift(&hig, sft);

  //----  計算処理
  while ( bignum_near(low, hig, 1) == 0 ) {
    bignum_add(low, hig, &mid);
    bignum_half(&mid);

    bignum_pow(mid, e, &val);
    cmp = bignum_cmp(val, b1);
    if ( cmp == 0 ) {
      break;
    } else if ( cmp > 0 ) {
      hig = mid;
    } else {
      low = mid;
    }
  }

  //----  事後処理
  *b0 = mid;
  bignum_chk(b0);

  //----  返却処理
  return TRUE;    // 正常に処理完了
}
示例#20
0
文件: sshdss.c 项目: AshKash/kit-sink
static int dss_verifysig(void *key, char *sig, int siglen,
			 char *data, int datalen)
{
    struct dss_key *dss = (struct dss_key *) key;
    char *p;
    int slen;
    char hash[20];
    Bignum r, s, w, gu1p, yu2p, gu1yu2p, u1, u2, sha, v;
    int ret;

    if (!dss->p)
	return 0;

#ifdef DEBUG_DSS
    {
	int i;
	printf("sig:");
	for (i = 0; i < siglen; i++)
	    printf("  %02x", (unsigned char) (sig[i]));
	printf("\n");
    }
#endif
    /*
     * Commercial SSH (2.0.13) and OpenSSH disagree over the format
     * of a DSA signature. OpenSSH is in line with the IETF drafts:
     * it uses a string "ssh-dss", followed by a 40-byte string
     * containing two 160-bit integers end-to-end. Commercial SSH
     * can't be bothered with the header bit, and considers a DSA
     * signature blob to be _just_ the 40-byte string containing
     * the two 160-bit integers. We tell them apart by measuring
     * the length: length 40 means the commercial-SSH bug, anything
     * else is assumed to be IETF-compliant.
     */
    if (siglen != 40) {		       /* bug not present; read admin fields */
	getstring(&sig, &siglen, &p, &slen);
	if (!p || slen != 7 || memcmp(p, "ssh-dss", 7)) {
	    return 0;
	}
	sig += 4, siglen -= 4;	       /* skip yet another length field */
    }
    r = get160(&sig, &siglen);
    s = get160(&sig, &siglen);
    if (!r || !s)
	return 0;

    /*
     * Step 1. w <- s^-1 mod q.
     */
    w = modinv(s, dss->q);

    /*
     * Step 2. u1 <- SHA(message) * w mod q.
     */
    SHA_Simple(data, datalen, (unsigned char *)hash);
    p = hash;
    slen = 20;
    sha = get160(&p, &slen);
    u1 = modmul(sha, w, dss->q);

    /*
     * Step 3. u2 <- r * w mod q.
     */
    u2 = modmul(r, w, dss->q);

    /*
     * Step 4. v <- (g^u1 * y^u2 mod p) mod q.
     */
    gu1p = modpow(dss->g, u1, dss->p);
    yu2p = modpow(dss->y, u2, dss->p);
    gu1yu2p = modmul(gu1p, yu2p, dss->p);
    v = modmul(gu1yu2p, One, dss->q);

    /*
     * Step 5. v should now be equal to r.
     */

    ret = !bignum_cmp(v, r);

    freebn(w);
    freebn(sha);
    freebn(gu1p);
    freebn(yu2p);
    freebn(gu1yu2p);
    freebn(v);
    freebn(r);
    freebn(s);

    return ret;
}
示例#21
0
文件: sshrsag.c 项目: rdebath/sgt
int rsa_generate(struct RSAKey *key, struct RSAAux *aux, int bits,
                 progfn_t pfn, void *pfnparam) {
    Bignum pm1, qm1, phi_n;

    /*
     * Set up the phase limits for the progress report. We do this
     * by passing minus the phase number.
     *
     * For prime generation: our initial filter finds things
     * coprime to everything below 2^16. Computing the product of
     * (p-1)/p for all prime p below 2^16 gives about 20.33; so
     * among B-bit integers, one in every 20.33 will get through
     * the initial filter to be a candidate prime.
     *
     * Meanwhile, we are searching for primes in the region of 2^B;
     * since pi(x) ~ x/log(x), when x is in the region of 2^B, the
     * prime density will be d/dx pi(x) ~ 1/log(B), i.e. about
     * 1/0.6931B. So the chance of any given candidate being prime
     * is 20.33/0.6931B, which is roughly 29.34 divided by B.
     *
     * So now we have this probability P, we're looking at an
     * exponential distribution with parameter P: we will manage in
     * one attempt with probability P, in two with probability
     * P(1-P), in three with probability P(1-P)^2, etc. The
     * probability that we have still not managed to find a prime
     * after N attempts is (1-P)^N.
     * 
     * We therefore inform the progress indicator of the number B
     * (29.34/B), so that it knows how much to increment by each
     * time. We do this in 16-bit fixed point, so 29.34 becomes
     * 0x1D.57C4.
     */
    pfn(pfnparam, -1, -0x1D57C4/(bits/2));
    pfn(pfnparam, -2, -0x1D57C4/(bits-bits/2));
    pfn(pfnparam, -3, 5);

    /*
     * We don't generate e; we just use a standard one always.
     */
    key->exponent = bignum_from_short(RSA_EXPONENT);

    /*
     * Generate p and q: primes with combined length `bits', not
     * congruent to 1 modulo e. (Strictly speaking, we wanted (p-1)
     * and e to be coprime, and (q-1) and e to be coprime, but in
     * general that's slightly more fiddly to arrange. By choosing
     * a prime e, we can simplify the criterion.)
     */
    aux->p = primegen(bits/2, RSA_EXPONENT, 1, 1, pfn, pfnparam);
    aux->q = primegen(bits - bits/2, RSA_EXPONENT, 1, 2, pfn, pfnparam);

    /*
     * Ensure p > q, by swapping them if not.
     */
    if (bignum_cmp(aux->p, aux->q) < 0) {
        Bignum t = aux->p;
        aux->p = aux->q;
        aux->q = t;
    }

    /*
     * Now we have p, q and e. All we need to do now is work out
     * the other helpful quantities: n=pq, d=e^-1 mod (p-1)(q-1),
     * and (q^-1 mod p).
     */
    pfn(pfnparam, 3, 1);
    key->modulus = bigmul(aux->p, aux->q);
    pfn(pfnparam, 3, 2);
    pm1 = copybn(aux->p);
    decbn(pm1);
    qm1 = copybn(aux->q);
    decbn(qm1);
    phi_n = bigmul(pm1, qm1);
    pfn(pfnparam, 3, 3);
    freebn(pm1);
    freebn(qm1);
    key->private_exponent = modinv(key->exponent, phi_n);
    pfn(pfnparam, 3, 4);
    aux->iqmp = modinv(aux->q, aux->p);
    pfn(pfnparam, 3, 5);

    /*
     * Clean up temporary numbers.
     */
    freebn(phi_n);

    return 1;
}
示例#22
0
/*
 * This function is a wrapper on modpow(). It has the same effect
 * as modpow(), but employs RSA blinding to protect against timing
 * attacks.
 */
static Bignum rsa_privkey_op(Bignum input, struct RSAKey *key)
{
    Bignum random, random_encrypted, random_inverse;
    Bignum input_blinded, ret_blinded;
    Bignum ret;

    SHA512_State ss;
    unsigned char digest512[64];
    int digestused = lenof(digest512);
    int hashseq = 0;

    /*
     * Start by inventing a random number chosen uniformly from the
     * range 2..modulus-1. (We do this by preparing a random number
     * of the right length and retrying if it's greater than the
     * modulus, to prevent any potential Bleichenbacher-like
     * attacks making use of the uneven distribution within the
     * range that would arise from just reducing our number mod n.
     * There are timing implications to the potential retries, of
     * course, but all they tell you is the modulus, which you
     * already knew.)
     * 
     * To preserve determinism and avoid Pageant needing to share
     * the random number pool, we actually generate this `random'
     * number by hashing stuff with the private key.
     */
    while (1) {
	int bits, byte, bitsleft, v;
	random = copybn(key->modulus);
	/*
	 * Find the topmost set bit. (This function will return its
	 * index plus one.) Then we'll set all bits from that one
	 * downwards randomly.
	 */
	bits = bignum_bitcount(random);
	byte = 0;
	bitsleft = 0;
	while (bits--) {
	    if (bitsleft <= 0) {
		bitsleft = 8;
		/*
		 * Conceptually the following few lines are equivalent to
		 *    byte = random_byte();
		 */
		if (digestused >= lenof(digest512)) {
		    unsigned char seqbuf[4];
		    PUT_32BIT(seqbuf, hashseq);
		    pSHA512_Init(&ss);
		    SHA512_Bytes(&ss, "RSA deterministic blinding", 26);
		    SHA512_Bytes(&ss, seqbuf, sizeof(seqbuf));
		    sha512_mpint(&ss, key->private_exponent);
		    pSHA512_Final(&ss, digest512);
		    hashseq++;

		    /*
		     * Now hash that digest plus the signature
		     * input.
		     */
		    pSHA512_Init(&ss);
		    SHA512_Bytes(&ss, digest512, sizeof(digest512));
		    sha512_mpint(&ss, input);
		    pSHA512_Final(&ss, digest512);

		    digestused = 0;
		}
		byte = digest512[digestused++];
	    }
	    v = byte & 1;
	    byte >>= 1;
	    bitsleft--;
	    bignum_set_bit(random, bits, v);
	}

	/*
	 * Now check that this number is strictly greater than
	 * zero, and strictly less than modulus.
	 */
	if (bignum_cmp(random, Zero) <= 0 ||
	    bignum_cmp(random, key->modulus) >= 0) {
	    freebn(random);
	    continue;
	} else {
	    break;
	}
    }

    /*
     * RSA blinding relies on the fact that (xy)^d mod n is equal
     * to (x^d mod n) * (y^d mod n) mod n. We invent a random pair
     * y and y^d; then we multiply x by y, raise to the power d mod
     * n as usual, and divide by y^d to recover x^d. Thus an
     * attacker can't correlate the timing of the modpow with the
     * input, because they don't know anything about the number
     * that was input to the actual modpow.
     * 
     * The clever bit is that we don't have to do a huge modpow to
     * get y and y^d; we will use the number we just invented as
     * _y^d_, and use the _public_ exponent to compute (y^d)^e = y
     * from it, which is much faster to do.
     */
    random_encrypted = modpow(random, key->exponent, key->modulus);
    random_inverse = modinv(random, key->modulus);
    input_blinded = modmul(input, random_encrypted, key->modulus);
    ret_blinded = modpow(input_blinded, key->private_exponent, key->modulus);
    ret = modmul(ret_blinded, random_inverse, key->modulus);

    freebn(ret_blinded);
    freebn(input_blinded);
    freebn(random_inverse);
    freebn(random_encrypted);
    freebn(random);

    return ret;
}
示例#23
0
/**
 * crypto_rsa_exptmod - RSA modular exponentiation
 * @in: Input data
 * @inlen: Input data length
 * @out: Buffer for output data
 * @outlen: Maximum size of the output buffer and used size on success
 * @key: RSA key
 * @use_private: 1 = Use RSA private key, 0 = Use RSA public key
 * Returns: 0 on success, -1 on failure
 */
int crypto_rsa_exptmod(const u8 *in, size_t inlen, u8 *out, size_t *outlen,
		       struct crypto_rsa_key *key, int use_private)
{
	struct bignum *tmp, *a = NULL, *b = NULL;
	int ret = -1;
	size_t modlen;

	if (use_private && !key->private_key)
		return -1;

	tmp = bignum_init();
	if (tmp == NULL)
		return -1;

	if (bignum_set_unsigned_bin(tmp, in, inlen) < 0)
		goto error;
	if (bignum_cmp(key->n, tmp) < 0) {
		/* Too large input value for the RSA key modulus */
		goto error;
	}

	if (use_private) {
		/*
		 * Decrypt (or sign) using Chinese remainer theorem to speed
		 * up calculation. This is equivalent to tmp = tmp^d mod n
		 * (which would require more CPU to calculate directly).
		 *
		 * dmp1 = (1/e) mod (p-1)
		 * dmq1 = (1/e) mod (q-1)
		 * iqmp = (1/q) mod p, where p > q
		 * m1 = c^dmp1 mod p
		 * m2 = c^dmq1 mod q
		 * h = q^-1 (m1 - m2) mod p
		 * m = m2 + hq
		 */
		a = bignum_init();
		b = bignum_init();
		if (a == NULL || b == NULL)
			goto error;

		/* a = tmp^dmp1 mod p */
		if (bignum_exptmod(tmp, key->dmp1, key->p, a) < 0)
			goto error;

		/* b = tmp^dmq1 mod q */
		if (bignum_exptmod(tmp, key->dmq1, key->q, b) < 0)
			goto error;

		/* tmp = (a - b) * (1/q mod p) (mod p) */
		if (bignum_sub(a, b, tmp) < 0 ||
		    bignum_mulmod(tmp, key->iqmp, key->p, tmp) < 0)
			goto error;

		/* tmp = b + q * tmp */
		if (bignum_mul(tmp, key->q, tmp) < 0 ||
		    bignum_add(tmp, b, tmp) < 0)
			goto error;
	} else {
		/* Encrypt (or verify signature) */
		/* tmp = tmp^e mod N */
		if (bignum_exptmod(tmp, key->e, key->n, tmp) < 0)
			goto error;
	}

	modlen = crypto_rsa_get_modulus_len(key);
	if (modlen > *outlen) {
		*outlen = modlen;
		goto error;
	}

	if (bignum_get_unsigned_bin_len(tmp) > modlen)
		goto error; /* should never happen */

	*outlen = modlen;
	os_memset(out, 0, modlen);
	if (bignum_get_unsigned_bin(
		    tmp, out +
		    (modlen - bignum_get_unsigned_bin_len(tmp)), NULL) < 0)
		goto error;

	ret = 0;

error:
	bignum_deinit(tmp);
	bignum_deinit(a);
	bignum_deinit(b);
	return ret;
}
示例#24
0
int dsa_generate(struct dss_key *key, int bits, progfn_t pfn,
		 void *pfnparam)
{
    Bignum qm1, power, g, h, tmp;
    unsigned pfirst, qfirst;
    int progress;

    /*
     * Set up the phase limits for the progress report. We do this
     * by passing minus the phase number.
     *
     * For prime generation: our initial filter finds things
     * coprime to everything below 2^16. Computing the product of
     * (p-1)/p for all prime p below 2^16 gives about 20.33; so
     * among B-bit integers, one in every 20.33 will get through
     * the initial filter to be a candidate prime.
     *
     * Meanwhile, we are searching for primes in the region of 2^B;
     * since pi(x) ~ x/log(x), when x is in the region of 2^B, the
     * prime density will be d/dx pi(x) ~ 1/log(B), i.e. about
     * 1/0.6931B. So the chance of any given candidate being prime
     * is 20.33/0.6931B, which is roughly 29.34 divided by B.
     *
     * So now we have this probability P, we're looking at an
     * exponential distribution with parameter P: we will manage in
     * one attempt with probability P, in two with probability
     * P(1-P), in three with probability P(1-P)^2, etc. The
     * probability that we have still not managed to find a prime
     * after N attempts is (1-P)^N.
     * 
     * We therefore inform the progress indicator of the number B
     * (29.34/B), so that it knows how much to increment by each
     * time. We do this in 16-bit fixed point, so 29.34 becomes
     * 0x1D.57C4.
     */
    pfn(pfnparam, PROGFN_PHASE_EXTENT, 1, 0x2800);
    pfn(pfnparam, PROGFN_EXP_PHASE, 1, -0x1D57C4 / 160);
    pfn(pfnparam, PROGFN_PHASE_EXTENT, 2, 0x40 * bits);
    pfn(pfnparam, PROGFN_EXP_PHASE, 2, -0x1D57C4 / bits);

    /*
     * In phase three we are finding an order-q element of the
     * multiplicative group of p, by finding an element whose order
     * is _divisible_ by q and raising it to the power of (p-1)/q.
     * _Most_ elements will have order divisible by q, since for a
     * start phi(p) of them will be primitive roots. So
     * realistically we don't need to set this much below 1 (64K).
     * Still, we'll set it to 1/2 (32K) to be on the safe side.
     */
    pfn(pfnparam, PROGFN_PHASE_EXTENT, 3, 0x2000);
    pfn(pfnparam, PROGFN_EXP_PHASE, 3, -32768);

    /*
     * In phase four we are finding an element x between 1 and q-1
     * (exclusive), by inventing 160 random bits and hoping they
     * come out to a plausible number; so assuming q is uniformly
     * distributed between 2^159 and 2^160, the chance of any given
     * attempt succeeding is somewhere between 0.5 and 1. Lacking
     * the energy to arrange to be able to specify this probability
     * _after_ generating q, we'll just set it to 0.75.
     */
    pfn(pfnparam, PROGFN_PHASE_EXTENT, 4, 0x2000);
    pfn(pfnparam, PROGFN_EXP_PHASE, 4, -49152);

    pfn(pfnparam, PROGFN_READY, 0, 0);

    invent_firstbits(&pfirst, &qfirst);
    /*
     * Generate q: a prime of length 160.
     */
    key->q = primegen(160, 2, 2, NULL, 1, pfn, pfnparam, qfirst);
    /*
     * Now generate p: a prime of length `bits', such that p-1 is
     * divisible by q.
     */
    key->p = primegen(bits-160, 2, 2, key->q, 2, pfn, pfnparam, pfirst);

    /*
     * Next we need g. Raise 2 to the power (p-1)/q modulo p, and
     * if that comes out to one then try 3, then 4 and so on. As
     * soon as we hit a non-unit (and non-zero!) one, that'll do
     * for g.
     */
    power = bigdiv(key->p, key->q);    /* this is floor(p/q) == (p-1)/q */
    h = bignum_from_long(1);
    progress = 0;
    while (1) {
	pfn(pfnparam, PROGFN_PROGRESS, 3, ++progress);
	g = modpow(h, power, key->p);
	if (bignum_cmp(g, One) > 0)
	    break;		       /* got one */
	tmp = h;
	h = bignum_add_long(h, 1);
	freebn(tmp);
    }
    key->g = g;
    freebn(h);

    /*
     * Now we're nearly done. All we need now is our private key x,
     * which should be a number between 1 and q-1 exclusive, and
     * our public key y = g^x mod p.
     */
    qm1 = copybn(key->q);
    decbn(qm1);
    progress = 0;
    while (1) {
	int i, v, byte, bitsleft;
	Bignum x;

	pfn(pfnparam, PROGFN_PROGRESS, 4, ++progress);
	x = bn_power_2(159);
	byte = 0;
	bitsleft = 0;

	for (i = 0; i < 160; i++) {
	    if (bitsleft <= 0)
		bitsleft = 8, byte = random_byte();
	    v = byte & 1;
	    byte >>= 1;
	    bitsleft--;
	    bignum_set_bit(x, i, v);
	}

	if (bignum_cmp(x, One) <= 0 || bignum_cmp(x, qm1) >= 0) {
	    freebn(x);
	    continue;
	} else {
	    key->x = x;
	    break;
	}
    }
    freebn(qm1);

    key->y = modpow(key->g, key->x, key->p);

    return 1;
}
示例#25
0
文件: sshprime.c 项目: rdebath/sgt
/*
 * Generate a prime. We arrange to select a prime with the property
 * (prime % modulus) != residue (to speed up use in RSA).
 */
Bignum primegen(int bits, int modulus, int residue,
                int phase, progfn_t pfn, void *pfnparam) {
    int i, k, v, byte, bitsleft, check, checks;
    unsigned long delta, moduli[NPRIMES+1], residues[NPRIMES+1];
    Bignum p, pm1, q, wqp, wqp2;
    int progress = 0;

    byte = 0; bitsleft = 0;

    STARTOVER:

    pfn(pfnparam, phase, ++progress);

    /*
     * Generate a k-bit random number with top and bottom bits set.
     */
    p = newbn((bits+15)/16);
    for (i = 0; i < bits; i++) {
        if (i == 0 || i == bits-1)
            v = 1;
        else {
            if (bitsleft <= 0)
                bitsleft = 8; byte = random_byte();
            v = byte & 1;
            byte >>= 1;
            bitsleft--;
        }
        bignum_set_bit(p, i, v);
    }

    /*
     * Ensure this random number is coprime to the first few
     * primes, by repeatedly adding 2 to it until it is.
     */
    for (i = 0; i < NPRIMES; i++) {
        moduli[i] = primes[i];
        residues[i] = bignum_mod_short(p, primes[i]);
    }
    moduli[NPRIMES] = modulus;
    residues[NPRIMES] = (bignum_mod_short(p, (unsigned short)modulus)
                         + modulus - residue);
    delta = 0;
    while (1) {
        for (i = 0; i < (sizeof(moduli) / sizeof(*moduli)); i++)
            if (!((residues[i] + delta) % moduli[i]))
                break;
        if (i < (sizeof(moduli) / sizeof(*moduli))) {/* we broke */
            delta += 2;
            if (delta < 2) {
                freebn(p);
                goto STARTOVER;
            }
            continue;
        }
        break;
    }
    q = p;
    p = bignum_add_long(q, delta);
    freebn(q);

    /*
     * Now apply the Miller-Rabin primality test a few times. First
     * work out how many checks are needed.
     */
    checks = 27;
    if (bits >= 150) checks = 18;
    if (bits >= 200) checks = 15;
    if (bits >= 250) checks = 12;
    if (bits >= 300) checks = 9;
    if (bits >= 350) checks = 8;
    if (bits >= 400) checks = 7;
    if (bits >= 450) checks = 6;
    if (bits >= 550) checks = 5;
    if (bits >= 650) checks = 4;
    if (bits >= 850) checks = 3;
    if (bits >= 1300) checks = 2;

    /*
     * Next, write p-1 as q*2^k.
     */
    for (k = 0; bignum_bit(p, k) == !k; k++);   /* find first 1 bit in p-1 */
    q = bignum_rshift(p, k);
    /* And store p-1 itself, which we'll need. */
    pm1 = copybn(p);
    decbn(pm1);

    /*
     * Now, for each check ...
     */
    for (check = 0; check < checks; check++) {
        Bignum w;

        /*
         * Invent a random number between 1 and p-1 inclusive.
         */
        while (1) {
            w = newbn((bits+15)/16);
            for (i = 0; i < bits; i++) {
                if (bitsleft <= 0)
                    bitsleft = 8; byte = random_byte();
                v = byte & 1;
                byte >>= 1;
                bitsleft--;
                bignum_set_bit(w, i, v);
            }
            if (bignum_cmp(w, p) >= 0 || bignum_cmp(w, Zero) == 0) {
                freebn(w);
                continue;
            }
            break;
        }

        pfn(pfnparam, phase, ++progress);

        /*
         * Compute w^q mod p.
         */
        wqp = modpow(w, q, p);
        freebn(w);

        /*
         * See if this is 1, or if it is -1, or if it becomes -1
         * when squared at most k-1 times.
         */
        if (bignum_cmp(wqp, One) == 0 || bignum_cmp(wqp, pm1) == 0) {
            freebn(wqp);
            continue;
        }
        for (i = 0; i < k-1; i++) {
            wqp2 = modmul(wqp, wqp, p);
            freebn(wqp);
            wqp = wqp2;
            if (bignum_cmp(wqp, pm1) == 0)
                break;
        }
        if (i < k-1) {
            freebn(wqp);
            continue;
        }

        /*
         * It didn't. Therefore, w is a witness for the
         * compositeness of p.
         */
        freebn(p);
        freebn(pm1);
        freebn(q);
        goto STARTOVER;
    }

    /*
     * We have a prime!
     */
    freebn(q);
    freebn(pm1);
    return p;
}
示例#26
0
文件: sshdss.c 项目: DAVe3283/PuTTY
Bignum *dss_gen_k(const char *id_string, Bignum modulus, Bignum private_key,
                  unsigned char *digest, int digest_len)
{
    /*
     * The basic DSS signing algorithm is:
     * 
     *  - invent a random k between 1 and q-1 (exclusive).
     *  - Compute r = (g^k mod p) mod q.
     *  - Compute s = k^-1 * (hash + x*r) mod q.
     * 
     * This has the dangerous properties that:
     * 
     *  - if an attacker in possession of the public key _and_ the
     *    signature (for example, the host you just authenticated
     *    to) can guess your k, he can reverse the computation of s
     *    and work out x = r^-1 * (s*k - hash) mod q. That is, he
     *    can deduce the private half of your key, and masquerade
     *    as you for as long as the key is still valid.
     * 
     *  - since r is a function purely of k and the public key, if
     *    the attacker only has a _range of possibilities_ for k
     *    it's easy for him to work through them all and check each
     *    one against r; he'll never be unsure of whether he's got
     *    the right one.
     * 
     *  - if you ever sign two different hashes with the same k, it
     *    will be immediately obvious because the two signatures
     *    will have the same r, and moreover an attacker in
     *    possession of both signatures (and the public key of
     *    course) can compute k = (hash1-hash2) * (s1-s2)^-1 mod q,
     *    and from there deduce x as before.
     * 
     *  - the Bleichenbacher attack on DSA makes use of methods of
     *    generating k which are significantly non-uniformly
     *    distributed; in particular, generating a 160-bit random
     *    number and reducing it mod q is right out.
     * 
     * For this reason we must be pretty careful about how we
     * generate our k. Since this code runs on Windows, with no
     * particularly good system entropy sources, we can't trust our
     * RNG itself to produce properly unpredictable data. Hence, we
     * use a totally different scheme instead.
     * 
     * What we do is to take a SHA-512 (_big_) hash of the private
     * key x, and then feed this into another SHA-512 hash that
     * also includes the message hash being signed. That is:
     * 
     *   proto_k = SHA512 ( SHA512(x) || SHA160(message) )
     * 
     * This number is 512 bits long, so reducing it mod q won't be
     * noticeably non-uniform. So
     * 
     *   k = proto_k mod q
     * 
     * This has the interesting property that it's _deterministic_:
     * signing the same hash twice with the same key yields the
     * same signature.
     * 
     * Despite this determinism, it's still not predictable to an
     * attacker, because in order to repeat the SHA-512
     * construction that created it, the attacker would have to
     * know the private key value x - and by assumption he doesn't,
     * because if he knew that he wouldn't be attacking k!
     *
     * (This trick doesn't, _per se_, protect against reuse of k.
     * Reuse of k is left to chance; all it does is prevent
     * _excessively high_ chances of reuse of k due to entropy
     * problems.)
     * 
     * Thanks to Colin Plumb for the general idea of using x to
     * ensure k is hard to guess, and to the Cambridge University
     * Computer Security Group for helping to argue out all the
     * fine details.
     */
    SHA512_State ss;
    unsigned char digest512[64];
    Bignum proto_k, k;

    /*
     * Hash some identifying text plus x.
     */
    SHA512_Init(&ss);
    SHA512_Bytes(&ss, id_string, strlen(id_string) + 1);
    sha512_mpint(&ss, private_key);
    SHA512_Final(&ss, digest512);

    /*
     * Now hash that digest plus the message hash.
     */
    SHA512_Init(&ss);
    SHA512_Bytes(&ss, digest512, sizeof(digest512));
    SHA512_Bytes(&ss, digest, digest_len);

    while (1) {
        SHA512_State ss2 = ss;         /* structure copy */
        SHA512_Final(&ss2, digest512);

        smemclr(&ss2, sizeof(ss2));

        /*
         * Now convert the result into a bignum, and reduce it mod q.
         */
        proto_k = bignum_from_bytes(digest512, 64);
        k = bigmod(proto_k, modulus);
        freebn(proto_k);

        if (bignum_cmp(k, One) != 0 && bignum_cmp(k, Zero) != 0) {
            smemclr(&ss, sizeof(ss));
            smemclr(digest512, sizeof(digest512));
            return k;
        }

        /* Very unlikely we get here, but if so, k was unsuitable. */
        freebn(k);
        /* Perturb the hash to think of a different k. */
        SHA512_Bytes(&ss, "x", 1);
        /* Go round and try again. */
    }
}