示例#1
0
void inter_tx_task () {
    uint8_t i;
    nrk_sig_t tx_done_signal;
    while (!bmac_started ())
        nrk_wait_until_next_period ();
    tx_done_signal = bmac_get_tx_done_signal ();
    nrk_signal_register (tx_done_signal);
    bmac_addr_decode_enable();
    bmac_addr_decode_set_my_mac(MyOwnAddress);
    while (1) {
        if(ipQue>0) {
            if(itxPtr>queMax-1) {
                itxPtr=0;
            }
            bmac_addr_decode_enable();
            bmac_addr_decode_set_my_mac(MyOwnAddress);
            nrk_led_set(BLUE_LED);
            bmac_auto_ack_disable();
            for(i=0; i<ipLen[itxPtr]; i++) {
                itx_buf[i]=ipDat[itxPtr][i];
            }
            if(ipDes[itxPtr]==0xFF) {
                bmac_addr_decode_dest_mac(0xFFFF);
            }
            else {
                bmac_addr_decode_dest_mac(ipDes[itxPtr]);
            }
            bmac_tx_pkt((char*)itx_buf,ipLen[itxPtr]);
            ipQue--;
            itxPtr++;
            nrk_led_clr(BLUE_LED);
        }
        nrk_wait_until_next_period ();
    }
}
示例#2
0
void tx_task ()
{
		int r;
    uint8_t length, val;
  
    nrk_sig_t tx_done_signal;
    nrk_sig_mask_t ret;
    nrk_time_t r_period;
    while (!bmac_started ())
        nrk_wait_until_next_period ();

    tx_done_signal = bmac_get_tx_done_signal ();
    nrk_signal_register (tx_done_signal);     
    while(1) {
						nrk_wait_until_next_period();
			
						if(functionRecieved) {
							tx_buf[0] = MY_ID;
							tx_buf[1] = 100;
							length = 2;
							val=bmac_tx_pkt(tx_buf, length);
							r = copied_function();
							printf("Value returned from copied function is %d\n",r);
            }

        }
  
}
示例#3
0
文件: main.c 项目: adamselevan/dicio
void tx_task ()
{
  uint8_t j, i, val, len, cnt;
  volatile uint8_t start;
  uint16_t ticks,ticks_min,ticks_max;
  uint16_t iterations;
  uint16_t nrk_max_sleep_wakeup_time;
  nrk_sig_t tx_done_signal;
  nrk_sig_mask_t ret;

  iterations=0;
  ticks_min=-1;
  ticks_max=0;
  tx_data_ok=0;

  // Wait until the tx_task starts up bmac
  // This should be called by all tasks using bmac that
  // do not call bmac_init()...
  while (!bmac_started ())
    nrk_wait_until_next_period ();

  // Get and register the tx_done_signal if you want to
  // do non-blocking transmits
  tx_done_signal = bmac_get_tx_done_signal ();
  nrk_signal_register (tx_done_signal);

  cnt = 0;
  while (1) {
    // Build a TX packet
    sprintf (tx_buf, "This is a test %d", cnt);
    cnt++;

    // For blocking transmits, use the following function call.
    // For this there is no need to register  
    // val=bmac_tx_packet(tx_buf, strlen(tx_buf));

    // This function shows how to transmit packets in a
    // non-blocking manner  
    val = bmac_tx_pkt_nonblocking(tx_buf, strlen (tx_buf));
    // This functions waits on the tx_done_signal
    ret = nrk_event_wait (SIG(tx_done_signal));

    // Just check to be sure signal is okay
    if(ret & SIG(tx_done_signal) == 0 ) 
    	nrk_kprintf (PSTR ("TX done signal error\r\n"));
    else tx_data_ok=1;
    // Task gets control again after TX complete
    //nrk_kprintf (PSTR ("Tx task sent data!\r\n"));
    nrk_wait_until_next_period ();
  }
}
示例#4
0
文件: main.cpp 项目: ESE519/EVM-2013
/***************************************************************************
 *
 *
 *
 *Retransmission Task
 *
 *
 *
 ****************************************************************************/
void re_tx_task()
{

    int i=0;
    uint8_t val;
    nrk_sig_t tx_done_signal;

    while (!bmac_started ())
        nrk_wait_until_next_period ();

    tx_done_signal = bmac_get_tx_done_signal ();
    nrk_signal_register (tx_done_signal);
    //Retransmission
    while(1)
    {
        for(i=1;i<=MAX_MOLES;i++)
        {

            if(i==MY_ID)
            {
                continue;
            }
            switch(sendNextPacket[i])
            {
            case LAST_PACKET_ACK:
            case WAIT_ACK:
                val=bmac_tx_pkt(&tx_buf[TX_LOCATION(i)], transmittedPacketLength[i]);
                printf("Retransmitted\r\n");
                break;
            default:
                break;
            }



        }
        nrk_wait_until_next_period();



    }
}
示例#5
0
文件: main.cpp 项目: ESE519/SenseX
void tx_task ()
{
  uint8_t j, i, val, len;
  int8_t v;
  nrk_sig_t tx_done_signal;
  nrk_sig_mask_t ret;
  nrk_time_t r_period;
	
	
  while (!bmac_started ())
    nrk_wait_until_next_period ();

  tx_done_signal = bmac_get_tx_done_signal ();
  nrk_signal_register (tx_done_signal);

  ctr_cnt[0]=0; ctr_cnt[1]=0; ctr_cnt[2]=0; ctr_cnt[3]=0;
  tx_count = 0;
  while (1) {
		if (tx_count >= 300) {
		printf("Total packets sent : %d \r\n", tx_count);
		}
    // Build a TX packet
		if (tx_count < 300) {
			sprintf(tx_buf, "Hello World");
			nrk_led_set (BLUE_LED);
		   
			bmac_auto_ack_disable();

			val=bmac_tx_pkt(tx_buf, strlen(tx_buf));
			if(val==NRK_OK) tx_count++;		 
			else printf("NO ack or Reserve Violated! \r\n");		
		 
			printf("Tx task sent data!\r\n");
			nrk_led_clr (BLUE_LED);
			printf("tx_task PID=%d\r\n", nrk_get_pid ());
		}
		nrk_wait_until_next_period ();
  }
}
示例#6
0
void slaveDiscovery_task(){
    uint8_t val;
    nrk_sig_t sd_done_signal; // Signal registering to get transmission done

    //Wait till BMAC is ready
    while (!bmac_started ())
        nrk_wait_until_next_period ();
    //Set the tx signal
    sd_done_signal = bmac_get_tx_done_signal ();
    nrk_signal_register (sd_done_signal);




    while(1){
        tx_buf[0] = MY_ID;                  // indicates packet from master
        tx_buf[1] = SLAVE_DISCOVERY;        // slave discovery message
        tx_buf[2] = sequenceNumber;         // sequenceNumber of the packet
        sequenceNumber++;                   // incrementing the sequence Number
        val=bmac_tx_pkt(tx_buf,3);          // transmitting the packet
        checkIfReceivedResponse();
        nrk_wait_until_next_period ();
    }
}
示例#7
0
void tx_task () {
    uint8_t i;
    nrk_sig_t tx_done_signal;
    while (!bmac_started ())
        nrk_wait_until_next_period ();
    tx_done_signal = bmac_get_tx_done_signal ();
    nrk_signal_register (tx_done_signal);
    bmac_addr_decode_enable();
    bmac_addr_decode_set_my_mac(MyOwnAddress);
    while (1) {
        if(updateCnt==0) {
            updateCnt = updateCntMax;
            for(i=0; i<MaxuIDTrack; i++) {
                uniqueIDsRREQ[i]=0;
            }
            for(i=0; i<MaxuIDTrack; i++) {
                uniqueIDsRSAL[i]=0;
            }
            for(i=0; i<MaxuIDTrack; i++) {
                if(ackTrackR[i]==ackTrackS[i]) {
                    ackTrackR[i]=0;
                    ackTrackS[i]=0;
                    ackTrack[i]=0;
                }
            }
            for(i=0; i<MaxuIDTrack; i++) {
                if(ackTrack[i]!=0) {
                    if(cache[1]==ackTrack[i]) {
                        cache[0]=0;
                    }
                    ackTrackS[i]=0;
                    ackTrackR[i]=0;
                    RsalInitiate(ackTrack[i]);
                    ackTrack[i]=0;
                }
            }
            for(i=0; i<MaxuIDTrack; i++) {
                ackTrack[i]=ackTrackS[i];
            }
        }
        else {
            updateCnt--;
        }
        if(cache[0]==0) {
            if(rDiscCnt==0) {
                RouteDiscovery();
                rDiscCnt=rDiscCntMax;
            }
            else {
                rDiscCnt--;
            }
        }
        else {
            DataInitiate();
            rDiscCnt=0;
        }
        if(pQue>0) {
            if(txPtr>queMax-1) {
                txPtr=0;
            }
            bmac_addr_decode_enable();
            bmac_addr_decode_set_my_mac(MyOwnAddress);
            nrk_led_set(GREEN_LED);
            bmac_auto_ack_disable();
            for(i=0; i<pLen[txPtr]; i++) {
                tx_buf[i]=pDat[txPtr][i];
            }
            if(pDes[txPtr]==0xFF) {
                bmac_addr_decode_dest_mac(0xFFFF);
            }
            else {
                bmac_addr_decode_dest_mac(pDes[txPtr]);
            }
            bmac_tx_pkt((char*)tx_buf,pLen[txPtr]);
            for(i=0; i<pLen[txPtr]; i++) {
                putchar(tx_buf[i]);
            }
            putchar(pDes[txPtr]);
            pQue--;
            txPtr++;
            nrk_led_clr(GREEN_LED);
        }
        nrk_wait_until_next_period ();
    }
}
示例#8
0
文件: main.cpp 项目: ESE519/EVM-2013
void tx_task ()
{
    int r;
    int i=0,j=0;
    uint8_t val;
    nrk_sig_t tx_done_signal;
    while (!bmac_started ())
        nrk_wait_until_next_period ();

    tx_done_signal = bmac_get_tx_done_signal ();
    nrk_signal_register (tx_done_signal);
    for(i=1;i<=MAX_MOLES;i++)
    {
        tx_buf[SOURCE_ADDRESS_LOCATION + TX_LOCATION(i)] = MY_ID;
    }
    printf("Transmit Task\r\n");
    while(1){


        for(i=1;i<=MAX_MOLES;i++)
        {

            if(i==MY_ID)
            {
                continue;
            }
            //Check the state of the state machine
            switch(sendNextPacket[i])
            {
            //Start the transmission
            case START:
                tx_buf[SEQUENCE_NUM_LOCATION+TX_LOCATION(i)] = ++sequenceNumber;

                lastSentSequenceNo[i]= sequenceNumber;
                //Create a new packet
                r=createNextTaskPacket(&tx_buf[TX_LOCATION(i)],&data[DATA_LOCATION(i)],packetSize[i],i);
                //Decide the packet length
                transmittedPacketLength[i] = r+HEADER_SIZE;
                
								for(j=0;j<transmittedPacketLength[i];j++)
								printf("%d \t",tx_buf[TX_LOCATION(i)+j]);
								
								if(r == 100)
                {
                    sendNextPacket[i] = WAIT_ACK;
                }
                else
                {
                    sendNextPacket[i] = LAST_PACKET_ACK;
                }
                val=bmac_tx_pkt(&tx_buf[TX_LOCATION(i)], transmittedPacketLength[i]);
                break;

            case IN_PROGRESS:
                tx_buf[SEQUENCE_NUM_LOCATION+TX_LOCATION(i)] = ++sequenceNumber;
                lastSentSequenceNo[i]= sequenceNumber;
                //Create a new packet
                r=createNextTaskPacket(&tx_buf[TX_LOCATION(i)],&data[DATA_LOCATION(i)],packetSize[i],i);
                //Decide the packet length
                transmittedPacketLength[i] = r+HEADER_SIZE;

                if(r == 100)
                {
                    sendNextPacket[i] = WAIT_ACK;
                }
                else
                {
                    printf("last packet\n");
                    sendNextPacket[i] = LAST_PACKET_ACK;
                }
                val=bmac_tx_pkt(&tx_buf[TX_LOCATION(i)], transmittedPacketLength[i]);
                break;
            case WAIT_ACK:
            case END:
            default:
                break;



            }
        }

        nrk_wait_until_next_period();
    }

}
示例#9
0
文件: main.c 项目: adamselevan/dicio
void tx_task ()
{
  uint8_t j, i, val, len, byte_cnt, got_start;
  int8_t v;
  nrk_sig_t tx_done_signal;
  nrk_sig_mask_t ret;
  nrk_time_t r_period;
  nrk_sig_t uart_rx_signal;
  nrk_sig_mask_t sm;



   // Get the signal for UART RX  
  uart_rx_signal=nrk_uart_rx_signal_get();
  // Register your task to wakeup on RX Data 
  if(uart_rx_signal==NRK_ERROR) nrk_kprintf( PSTR("Get Signal ERROR!\r\n") );
  nrk_signal_register(uart_rx_signal);

  printf ("tx_task PID=%d\r\n", nrk_get_pid ());

  // Wait until the tx_task starts up bmac
  // This should be called by all tasks using bmac that
  // do not call bmac_init()...
  while (!bmac_started ())
    nrk_wait_until_next_period ();

  nrk_led_set(RED_LED);
  // Sample of using Reservations on TX packets
  // This example allows 2 packets to be sent every 5 seconds
  // r_period.secs=5;
  // r_period.nano_secs=0;
  // v=bmac_tx_reserve_set( &r_period, 2 );
  // if(v==NRK_ERROR) nrk_kprintf( PSTR("Error setting b-mac tx reservation (is NRK_MAX_RESERVES defined?)\r\n" ));


  // Get and register the tx_done_signal if you want to
  // do non-blocking transmits
  tx_done_signal = bmac_get_tx_done_signal ();
  nrk_signal_register (tx_done_signal);
  bmac_set_cca_active(0);
  ctr_cnt[0]=0; ctr_cnt[1]=0; ctr_cnt[2]=0; ctr_cnt[3]=0;
  while (1) {
    // Wait for UART signal
        got_start=0; 
        byte_cnt=0;
	do {
        sm=nrk_event_wait(SIG(uart_rx_signal));
        while(nrk_uart_data_ready(NRK_DEFAULT_UART)!=0)
                {
                // Read Character
                val=getchar();
		tx_buf[byte_cnt]=val;
		if(got_start && val==0xff ) 
		{
			nrk_led_toggle(ORANGE_LED);
			printf( "0xff byte: %d\n", byte_cnt );
			byte_cnt=0;
			got_start=0;
			val=1;  // Something other than 0xff so that the
				// got_start isn't set
		}
                if(val==0xff) 
			{
				nrk_led_toggle(GREEN_LED);
				got_start=1;
			}
		if(got_start) byte_cnt++;
		if(byte_cnt>3) break;
                }
         } while(byte_cnt<4);

   
    // Build a TX packet
    nrk_led_set (BLUE_LED);

    // Auto ACK is an energy efficient link layer ACK on packets
    // If Auto ACK is enabled, then bmac_tx_pkt() will return failure
    // if no ACK was received. In a broadcast domain, the ACK's will
    // typically collide.  To avoid this, one can use address decoding. 
    // The functions are as follows:
    // bmac_auto_ack_enable();
    // bmac_auto_ack_disable();

    // Address decoding is a way of preventing the radio from receiving
    // packets that are not address to a particular node.  This will 
    // supress ACK packets from nodes that should not automatically ACK.
    // The functions are as follows:
    // bmac_addr_decode_set_my_mac(uint16_t MAC_ADDR); 
    // bmac_addr_decode_dest_mac(uint16_t DST_ADDR);  // 0xFFFF is broadcast
    // bmac_addr_decode_enable();
    // bmac_addr_decode_disable();

     ctr_cnt[0]++; 
     if(ctr_cnt[0]==255) ctr_cnt[1]++; 
     if(ctr_cnt[1]==255) ctr_cnt[2]++; 
     if(ctr_cnt[2]==255) ctr_cnt[3]++; 
     // You need to increase the ctr on each packet to make the 
     // stream cipher not repeat.
     bmac_encryption_set_ctr_counter(&ctr_cnt,4);

    // For blocking transmits, use the following function call.
    // For this there is no need to register  
/*	nrk_kprintf( PSTR("Sending: ") );	
	for(i=0; i<byte_cnt; i++ )
	   printf( "%d ",tx_buf[i] );
	nrk_kprintf( PSTR("\r\n") );	
  */  
     val=bmac_tx_pkt(tx_buf, byte_cnt);


    // This function shows how to transmit packets in a
    // non-blocking manner  
    // val = bmac_tx_pkt_nonblocking(tx_buf, strlen (tx_buf));
    // nrk_kprintf (PSTR ("Tx packet enqueued\r\n"));
    // This functions waits on the tx_done_signal
    // ret = nrk_event_wait (SIG(tx_done_signal));

    // Just check to be sure signal is okay
    // if(ret & SIG(tx_done_signal) == 0 ) 
    // nrk_kprintf (PSTR ("TX done signal error\r\n"));
   
    // If you want to see your remaining reservation
    // printf( "reserve=%d ",bmac_tx_reserve_get() );
    
    // Task gets control again after TX complete
    nrk_led_clr (BLUE_LED);
  }

}
示例#10
0
文件: main.c 项目: ESE519/ISA100.11a
void gateway_task ()
{
  uint8_t i, len;
  int8_t rssi, val;
  uint8_t *local_rx_tx_buf;
  uint16_t batt;
  nrk_time_t check_period, wait_time;
  uint16_t buf;
  int8_t fd;

  uint8_t j, cnt, level;
  nrk_sig_t tx_done_signal;
  nrk_sig_mask_t ret;
  nrk_time_t next_transmit_time;
  nrk_time_t current_time;
  nrk_time_t prev_time;
  char tmp[4];

  printf ("gateway_task PID=%d\r\n", nrk_get_pid ());

  next_transmit_time.secs 	= 0;
  next_transmit_time.nano_secs 	= 0;

  // init bmac on channel 25 
  bmac_init (26);

  // By default the RX check rate is 100ms
  // below shows how to change that
  check_period.secs=0;
  check_period.nano_secs=100*NANOS_PER_MS;
  val=bmac_set_rx_check_rate(check_period);

  // The default Clear Channel Assement RSSI threshold is -32
  // Setting this value higher means that you will only trigger
  // receive with a very strong signal.  Setting this lower means
  // bmac will try to receive fainter packets.  If the value is set
  // too high or too low performance will suffer greatly.
  // bmac_set_cca_thresh(-36); 
  
  if(val==NRK_ERROR) nrk_kprintf( PSTR("ERROR setting bmac rate\r\n" ));

  // This sets the next RX buffer.
  // This can be called at anytime before releaseing the packet
  // if you wish to do a zero-copy buffer switch
  bmac_rx_pkt_set_buffer (rx_buf, RF_MAX_PAYLOAD_SIZE);
  
  // Get and register the tx_done_signal if you want to
  // do non-blocking transmits
  tx_done_signal = bmac_get_tx_done_signal ();
  nrk_signal_register (tx_done_signal);

  nrk_time_set(0, 0);
  cnt = 0;
  // Initially clear all the data buffers
  for(i=0; i<(MAX_NODES);i++)
  {
	for(j=0; j<(WORDS_PER_NODE); j++)
	{
		data_pkt.node_specific_data[i][j] = 0;		
	}
  }
  while (1) 
  {

  	nrk_time_get(&current_time);

	// If it is time to flood the network, send the control packets
	if(current_time.secs%FLOOD_RATE == 0 && prev_time.secs != current_time.secs || cnt == 0)
   	{
			
		prev_time = current_time;

		cnt ++;
	  	SET_PACKET_COUNT(pkt_buf.pkt_type_cnt, cnt);
#if MODE==DATA_MODE
		SET_PACKET_TYPE(pkt_buf.pkt_type_cnt, PKT_TYPE_CONTROL); 
#else
		SET_PACKET_TYPE(pkt_buf.pkt_type_cnt, PKT_TYPE_DIAG_CONTROL);
#endif
		pkt_buf.hop_number 		= 0;
	  	pkt_buf.time_to_flood		= TIME_TO_FLOOD_IN_SECS;
  		pkt_buf.bmac_check_rate 	= BMAC_CHECK_RATE_IN_MS;
	  	pkt_buf.maximum_depth 		= MAXIMUM_DEPTH;
  		pkt_buf.delay_at_each_level	= DELAY_AT_EACH_LEVEL_IN_SECS;
	  	pkt_buf.next_control_time	= NEXT_CONTROL_TIME;
  		pkt_buf.data_push_rate		= 0;	
	  	for(i=0; i<(MAX_NODES);i++)
  		{
			for(j=0; j<(WORDS_PER_NODE); j++)
			{
#if MODE==DATA_MODE
				pkt_buf.node_specific_data[i][j] = SENSOR;
#else
				pkt_buf.node_specific_data[i][j] = 0;
#endif
			}
	  	}	
	
  		memcpy(tx_buf, &pkt_buf, sizeof(pkt_buf));

		// Non-blocking send
	  	nrk_led_set (BLUE_LED);
  		val = bmac_tx_pkt_nonblocking (tx_buf, sizeof(struct message_packet));
	  	nrk_kprintf (PSTR ("Tx packet enqueued\r\n"));
  		ret = nrk_event_wait (SIG(tx_done_signal));
	  	if(ret & SIG(tx_done_signal) == 0 ) 
    			nrk_kprintf (PSTR ("TX done signal error\r\n"));
	  	nrk_led_clr (BLUE_LED);
	  }
  
	  // If a new packet has been received, then update the information
	  if(bmac_rx_pkt_ready())
	  {	
    		// Wait until an RX packet is received
		nrk_led_set (ORANGE_LED);
    	
		 // Get the RX packet 
		local_rx_tx_buf = bmac_rx_pkt_get (&len, &rssi);
    
    		for (i = 0; i < len; i++)
	      	printf ("%d", rx_buf[i]);
   		printf ("\r\n");

	    	memcpy(&pkt_buf, rx_buf, sizeof(pkt_buf));
	
    		nrk_led_clr (ORANGE_LED);
   
		// Release the RX buffer so future packets can arrive 
    		bmac_rx_pkt_release ();

		// If the received packet is a data packet then update the information, gateway just ignores the control packets
		if(GET_PACKET_TYPE(pkt_buf.pkt_type_cnt) == PKT_TYPE_DIAG_DATA || GET_PACKET_TYPE(pkt_buf.pkt_type_cnt) == PKT_TYPE_DATA)
		{
 
  	
			printf("Type 	= %d\n\r", GET_PACKET_TYPE(pkt_buf.pkt_type_cnt));
			printf("Count 	= %d\n\r", GET_PACKET_COUNT(pkt_buf.pkt_type_cnt));
			printf("Hop #	= %d\n\r", pkt_buf.hop_number);
			printf("TTF	= %d\n\r", pkt_buf.time_to_flood);
		  	printf("BCR	= %d\n\r", pkt_buf.bmac_check_rate);
		  	printf("Nmax 	= %d\n\r", pkt_buf.maximum_depth);
		  	printf("Dlev	= %d\n\r", pkt_buf.delay_at_each_level);
		  	printf("Nxt	= %d\n\r", pkt_buf.next_control_time);
		  	printf("Prate	= %d\n\r", pkt_buf.data_push_rate);		
  	
			for(i=0; i<(MAX_NODES);i++)
		  	{
				for(j=0; j<(WORDS_PER_NODE); j++)
				{
					if(pkt_buf.node_specific_data[i][j] != 0)
					data_pkt.node_specific_data[i][j] = pkt_buf.node_specific_data[i][j];		
				}
			}
			for(i=0; i<(MAX_NODES);i++)
		  	{
				printf("Value @ Node %d is %d  (cnt is %d)", i, ((int16_t)data_pkt.node_specific_data[i][1]<<4), (data_pkt.node_specific_data[i][0]&0x3F));
				printf("\n\r");
		  	}	
		}
	  }
   }	
}
示例#11
0
文件: main.c 项目: stevenc49/dotcsc
void tx_task ()
{
  uint8_t j, i,  error,unique;
  uint8_t samples;
  int8_t len;
  int8_t rssi, val;
  uint8_t *local_rx_buf;

  nrk_sig_t tx_done_signal;
  nrk_sig_t rx_signal;
  nrk_sig_mask_t ret;
  nrk_time_t check_period;
  nrk_time_t timeout, start, current;
  nrk_sig_mask_t my_sigs;

  printf ("tx_task PID=%d\r\n", nrk_get_pid ());


  // Wait until the tx_task starts up bmac
  // This should be called by all tasks using bmac that
  // do not call bmac_init()...
  bmac_init (26);

  bmac_rx_pkt_set_buffer (rx_buf, RF_MAX_PAYLOAD_SIZE);

  val=bmac_addr_decode_set_my_mac(((uint16_t)MY_SUBNET_MAC_0<<8)|MY_MAC);
  val=bmac_addr_decode_dest_mac(0xffff);  // broadcast by default
  bmac_addr_decode_enable();

  nrk_kprintf (PSTR ("bmac_started()\r\n"));
  bmac_set_cca_thresh (-45);


  check_period.secs = 0;
  check_period.nano_secs = 100 * NANOS_PER_MS;
  val = bmac_set_rx_check_rate (check_period);

  // Get and register the tx_done_signal if you want to
  // do non-blocking transmits
  tx_done_signal = bmac_get_tx_done_signal ();
  nrk_signal_register (tx_done_signal);

  rx_signal = bmac_get_rx_pkt_signal ();
  nrk_signal_register (rx_signal);

  cnt = 0;

    check_period.secs = 0;
    check_period.nano_secs = DEFAULT_CHECK_RATE * NANOS_PER_MS;
    val = bmac_set_rx_check_rate (check_period);

  while (1) {



    my_nlist_elements=0;

for(samples=0; samples<10; samples++ )
{
    nrk_led_set (GREEN_LED);
    check_period.secs = 0;
    check_period.nano_secs = DEFAULT_CHECK_RATE * NANOS_PER_MS;
    val = bmac_set_rx_check_rate (check_period);
    build_ping_pkt( &p2p_pkt );
    // Pack data structure values in buffer before transmit
    pack_peer_2_peer_packet(&p2p_pkt);
    // For blocking transmits, use the following function call.
    val = bmac_tx_pkt (p2p_pkt.buf, p2p_pkt.buf_len);

    check_period.secs = 0;
    check_period.nano_secs = p2p_pkt.check_rate * NANOS_PER_MS;
    val = bmac_set_rx_check_rate (check_period);
#ifdef TXT_DEBUG
    nrk_kprintf (PSTR ("\r\nSent Request:\r\n"));
#endif
    nrk_led_clr (GREEN_LED);



    // Wait for packets or timeout
    nrk_time_get (&start);
    while (1) {

      timeout.secs = REPLY_WAIT_SECS;
      timeout.nano_secs = 0;

      // Wait until an RX packet is received
      //val = bmac_wait_until_rx_pkt ();
      nrk_set_next_wakeup (timeout);
      my_sigs = nrk_event_wait (SIG (rx_signal) | SIG (nrk_wakeup_signal));


      if (my_sigs == 0)
        nrk_kprintf (PSTR ("Error calling nrk_event_wait()\r\n"));
      if (my_sigs & SIG (rx_signal)) {
	
        // Get the RX packet 
        local_rx_buf = bmac_rx_pkt_get (&len, &rssi);
	// Check the packet type from raw buffer before unpacking
        if ((local_rx_buf[CTRL_FLAGS] & (DS_MASK | US_MASK)) == 0) {

	// Set the buffer
	p2p_pkt.buf=local_rx_buf;
	p2p_pkt.buf_len=len;
	p2p_pkt.rssi=rssi;
	unpack_peer_2_peer_packet(&p2p_pkt);
#ifdef TXT_DEBUG
	  // Check if newly received packet is for this node
          if (((p2p_pkt.dst_subnet_mac[2] == MY_SUBNET_MAC_2 &&
		p2p_pkt.dst_subnet_mac[1] == MY_SUBNET_MAC_1 &&
		p2p_pkt.dst_subnet_mac[0] == MY_SUBNET_MAC_0 &&
		p2p_pkt.dst_mac == MY_MAC ) 
		|| p2p_pkt.dst_mac == BROADCAST) 
		    && p2p_pkt.pkt_type==PING_PKT) {
		// Packet arrived and is good to go
              	printf( "src: %d ",p2p_pkt.src_mac);  
              	printf( "rssi: %d ",p2p_pkt.rssi);      
              	printf( "subnet: %d %d %d ",p2p_pkt.src_subnet_mac[0], p2p_pkt.src_subnet_mac[1], p2p_pkt.src_subnet_mac[2]);  
              	printf( "type: %d ",p2p_pkt.pkt_type);      
              	nrk_kprintf (PSTR ("payload: ["));
              	for (i = 0; i < p2p_pkt.payload_len; i++)
                	printf ("%d ", p2p_pkt.payload[i]); 
              	nrk_kprintf (PSTR ("]\r\n"));
	
		unique=1;	
		// Check if the MAC is unique
		for(i=0; i<my_nlist_elements; i++ )
		{

		if(my_nlist[i*NLIST_SIZE]==p2p_pkt.src_subnet_mac[2] &&
			my_nlist[i*NLIST_SIZE+1]==p2p_pkt.src_subnet_mac[1] &&
			my_nlist[i*NLIST_SIZE+2]==p2p_pkt.src_subnet_mac[0] &&
			my_nlist[i*NLIST_SIZE+3]==p2p_pkt.src_mac)
			{
				unique=0;
				break;
			}
		}

		// If MAC is unique, add it
		if(unique)
		{
			my_nlist[my_nlist_elements*NLIST_SIZE]=p2p_pkt.src_subnet_mac[2];
			my_nlist[my_nlist_elements*NLIST_SIZE+1]=p2p_pkt.src_subnet_mac[1];
			my_nlist[my_nlist_elements*NLIST_SIZE+2]=p2p_pkt.src_subnet_mac[0];
			my_nlist[my_nlist_elements*NLIST_SIZE+3]=p2p_pkt.src_mac;
			my_nlist[my_nlist_elements*NLIST_SIZE+4]=p2p_pkt.rssi;
			my_nlist_elements++;
		}
            }
#endif

        }
        // Release the RX buffer so future packets can arrive 
        bmac_rx_pkt_release ();
      }

      nrk_time_get (&current);
      if (start.secs + REPLY_WAIT_SECS < current.secs)
        break;
    }
    cnt++; 
}
    check_period.secs = 0;
    check_period.nano_secs = DEFAULT_CHECK_RATE * NANOS_PER_MS;
    val = bmac_set_rx_check_rate (check_period);
    
    nrk_kprintf (PSTR ("Done Waiting for response...\r\n"));
    nrk_kprintf (PSTR ("\r\n\r\nSurvey Says:\r\n"));
   
    nrk_kprintf( PSTR("LOC_DESC: \"location name\"\r\n" )); 
    for(i=0; i<my_nlist_elements; i++ )
    {
	nrk_kprintf( PSTR( "MAC: " ));
	if(my_nlist[i*NLIST_SIZE]<0x10) printf( "0%x", my_nlist[i*NLIST_SIZE] );
	else printf( "%x", my_nlist[i*NLIST_SIZE] );
	if(my_nlist[i*NLIST_SIZE]<0x10) printf( "0%x", my_nlist[i*NLIST_SIZE+1] );
	else printf( "%x", my_nlist[i*NLIST_SIZE+1] );
	if(my_nlist[i*NLIST_SIZE]<0x10) printf( "0%x", my_nlist[i*NLIST_SIZE+2] );
	else printf( "%x", my_nlist[i*NLIST_SIZE+2] );
	if(my_nlist[i*NLIST_SIZE]<0x10) printf( "0%x", my_nlist[i*NLIST_SIZE+3] );
	else printf( "%x", my_nlist[i*NLIST_SIZE+3] );
	printf( " RSSI: %d\r\n", (int8_t)my_nlist[i*NLIST_SIZE+4] );

    }

 
    nrk_wait_until_next_period ();
    
  }

}
示例#12
0
文件: main.c 项目: adamselevan/dicio
void tx_task ()
{
  // Get the signal for UART RX
  //uart_rx_signal=nrk_uart_rx_signal_get();
  // Register your task to wakeup on RX Data 
  //if(uart_rx_signal==NRK_ERROR) nrk_kprintf( PSTR("Get Signal ERROR!\r\n") );
  //nrk_signal_register(uart_rx_signal);

  //printf ("tx_task PID=%d\r\n", nrk_get_pid ());

  // Wait until the tx_task starts up bmac
  // This should be called by all tasks using bmac that
  // do not call bmac_init()...
  bmac_init (26);

  bmac_encryption_set_key(aes_key,16);
  bmac_encryption_enable();

  bmac_rx_pkt_set_buffer (rx_buf, RF_MAX_PAYLOAD_SIZE);

  //nrk_kprintf (PSTR ("bmac_started()\r\n"));
  bmac_set_cca_thresh (-45);

  check_period.secs = 0;
  check_period.nano_secs = 100 * NANOS_PER_MS;
  val = bmac_set_rx_check_rate (check_period);

  // Get and register the tx_done_signal if you want to
  // do non-blocking transmits
  tx_done_signal = bmac_get_tx_done_signal ();
  nrk_signal_register (tx_done_signal);

  rx_signal = bmac_get_rx_pkt_signal ();
  nrk_signal_register (rx_signal);

  cnt = 0;

  while (1)
  {
      nrk_kprintf(PSTR("\r\n*************************************************************\r\n"));
      nrk_kprintf(PSTR("               PHOENIX WIRELESS UPDATE SYSTEM                \r\n"));
      nrk_kprintf(PSTR("*************************************************************\r\n"));
      nrk_kprintf(PSTR("Press 'p' : To PING Nodes in Vicinity                        \r\n"));
      nrk_kprintf(PSTR("Press 'u' : To Begin Node Update                             \r\n"));
      nrk_kprintf(PSTR("                                                             \r\n"));
      nrk_kprintf(PSTR("*************************************************************\r\n"));

      printf("Enter Choice: ");
      
      //sm=nrk_event_wait(SIG(uart_rx_signal));
    
      //if(sm != SIG(uart_rx_signal))
      //{
      //  nrk_kprintf( PSTR("UART signal error\r\n") );
      //  while(1);
      //}
      // Wait for UART signal
      while(1)
      {
        if(nrk_uart_data_ready(NRK_DEFAULT_UART)!=0)
        {
          // Read Character
          c=getchar();
          printf( "%c\r\n",c);
          break;
        }
        timeout.secs = 0;
        timeout.nano_secs = 20 * NANOS_PER_MS;
        nrk_wait(timeout);
      }
      // Choose mode
      switch(c){
        case 'p':
          programState = PING;
          break;
        case 'u':
          getDestMac();
          phoenix_init();
          programState = UPDATE;
          break;
        default:
          programState = NONE;
          nrk_kprintf(PSTR("Invalid Command! Please Try Again\r\n"));
      }

      // Reset c
      c = 0;

      nrk_wait_until_next_period();

      // Execute protocol
      switch(programState)
      {
        case PING:
          pingMode();
          break;
        case UPDATE:
          updateMode();
          break;
        case NONE:;// Do nothing
          break;
        default:
          nrk_kprintf(PSTR("Invalid Program State\r\n"));
          break;
      }
      nrk_wait_until_next_period ();
  }
}
示例#13
0
文件: main.c 项目: adamselevan/dicio
void tx_task ()
{
  uint8_t j, i, cnt, error;
  int8_t len;
  int8_t rssi, val;
  uint8_t *local_rx_buf;

  nrk_sig_t tx_done_signal;
  nrk_sig_t rx_signal;
  nrk_sig_mask_t ret;
  nrk_time_t check_period;
  nrk_time_t timeout, start, current;
  nrk_sig_mask_t my_sigs;

  printf ("tx_task PID=%d\r\n", nrk_get_pid ());

  // Wait until the tx_task starts up bmac
  // This should be called by all tasks using bmac that
  // do not call bmac_init()...
  bmac_init (26);


  // Configure address for other packet handlers (my not be needed)
  my_mac= MY_MAC;
  my_subnet_mac[0]= MY_SUBNET_MAC_0;
  my_subnet_mac[1]= MY_SUBNET_MAC_1;
  my_subnet_mac[2]= MY_SUBNET_MAC_2;
  mac_address= (uint8_t)MY_SUBNET_MAC_2 << 24 | (uint8_t)MY_SUBNET_MAC_1 <<16 | (uint8_t)MY_SUBNET_MAC_0 << 8 | (uint8_t)MY_MAC; 

  while (!bmac_started ())
    nrk_wait_until_next_period ();
  bmac_rx_pkt_set_buffer (rx_buf, RF_MAX_PAYLOAD_SIZE);

  val =
    bmac_addr_decode_set_my_mac (((uint16_t) MY_SUBNET_MAC_0 << 8) | MY_MAC);
  val = bmac_addr_decode_dest_mac (0xffff);     // broadcast by default
  bmac_addr_decode_enable ();

  nrk_kprintf (PSTR ("bmac_started()\r\n"));
  bmac_set_cca_thresh (-45);


  check_period.secs = 0;
  check_period.nano_secs = 100 * NANOS_PER_MS;
  val = bmac_set_rx_check_rate (check_period);

  // Get and register the tx_done_signal if you want to
  // do non-blocking transmits
  tx_done_signal = bmac_get_tx_done_signal ();
  nrk_signal_register (tx_done_signal);

  rx_signal = bmac_get_rx_pkt_signal ();
  nrk_signal_register (rx_signal);

  cnt = 0;

  while (1) {


    // Build a TX packet by hand...
    p2p_pkt.pkt_type = DATA_STORAGE_PKT;
    p2p_pkt.ctrl_flags = LINK_ACK | MOBILE_MASK;   // | DEBUG_FLAG ;  
    p2p_pkt.ack_retry = 0x0f;
    p2p_pkt.ttl = 1;
    p2p_pkt.src_subnet_mac[0] = MY_SUBNET_MAC_0;
    p2p_pkt.src_subnet_mac[1] = MY_SUBNET_MAC_1;
    p2p_pkt.src_subnet_mac[2] = MY_SUBNET_MAC_2;
    p2p_pkt.src_mac = MY_MAC;
    p2p_pkt.last_hop_mac = MY_MAC;
//    p2p_pkt.dst_subnet_mac[0] = BROADCAST;
//    p2p_pkt.dst_subnet_mac[1] = BROADCAST;
//    p2p_pkt.dst_subnet_mac[2] = BROADCAST;
//    p2p_pkt.dst_mac = BROADCAST;
    p2p_pkt.dst_subnet_mac[0] = BROADCAST;
    p2p_pkt.dst_subnet_mac[1] = BROADCAST;
    p2p_pkt.dst_subnet_mac[2] = BROADCAST;
    p2p_pkt.dst_mac = 0x1;
    p2p_pkt.buf = tx_buf;
    p2p_pkt.buf_len = P2P_PAYLOAD_START;
    p2p_pkt.seq_num = cnt;
    p2p_pkt.priority = 0;
    p2p_pkt.check_rate = 100;
    p2p_pkt.payload = &(tx_buf[P2P_PAYLOAD_START]);

    cnt++;

#ifdef TEST_WRITE
   data_pkt.mode=EE_WRITE;
   data_pkt.addr=0x110;  // Must be greater than 0x100
   data_pkt.data_len=0x10;
   // point the eeprom data structure to our local data buffer
   data_pkt.eeprom_payload=eeprom_data;
   // copy over some data
   for(i=0; i<data_pkt.data_len; i++ )
	data_pkt.eeprom_payload[i]=i;
#endif

#ifdef TEST_READ
   data_pkt.mode=EE_READ;
   data_pkt.addr=0x200;  // Must be greater than 0x100
   data_pkt.data_len=0x3d;
#endif

   // add the eeprom pkt to the p2p pkt
   p2p_pkt.payload_len= eeprom_storage_pkt_pack(&data_pkt, p2p_pkt.payload);

   // Pack data structure values in buffer before transmit
   pack_peer_2_peer_packet (&p2p_pkt);
   

    nrk_led_set (BLUE_LED);

    check_period.secs = 0;
    check_period.nano_secs = 100 * NANOS_PER_MS;
    val = bmac_set_rx_check_rate (check_period);

    nrk_kprintf( PSTR("sending: " ));
    for(i=0; i<p2p_pkt.buf_len; i++ )
	printf( "%u ",p2p_pkt.buf[i] );
    printf( "\r\n" );
    // For blocking transmits, use the following function call.
    val = bmac_tx_pkt (p2p_pkt.buf, p2p_pkt.buf_len);

    check_period.secs = 0;
    check_period.nano_secs = FAST_CHECK_RATE * NANOS_PER_MS;
    val = bmac_set_rx_check_rate (check_period);
#ifdef TXT_DEBUG
    nrk_kprintf (PSTR ("\r\nSent Request:\r\n"));
#endif
    nrk_led_clr (BLUE_LED);
    nrk_led_clr (GREEN_LED);

    // Wait for packets or timeout
    nrk_time_get (&start);
    while (1) {

      timeout.secs = REPLY_WAIT_SECS;
      timeout.nano_secs = 0;

      // Wait until an RX packet is received
      //val = bmac_wait_until_rx_pkt ();
      if(bmac_rx_pkt_ready()==0)
      {
        nrk_set_next_wakeup (timeout);
        my_sigs = nrk_event_wait (SIG (rx_signal) | SIG (nrk_wakeup_signal));
      }


      if (my_sigs == 0)
        nrk_kprintf (PSTR ("Error calling nrk_event_wait()\r\n"));
      if (my_sigs & SIG (rx_signal)) {

        // Get the RX packet 
        local_rx_buf = bmac_rx_pkt_get (&len, &rssi);
        // Check the packet type from raw buffer before unpacking
        if ((local_rx_buf[CTRL_FLAGS] & (DS_MASK | US_MASK)) == 0) {

          // Set the buffer
          p2p_pkt.buf = local_rx_buf;
          p2p_pkt.buf_len = len;
          p2p_pkt.rssi = rssi;
          unpack_peer_2_peer_packet (&p2p_pkt);
#ifdef TXT_DEBUG
            if ((p2p_pkt.dst_subnet_mac[2] == MY_SUBNET_MAC_2 &&
		p2p_pkt.dst_subnet_mac[1] == MY_SUBNET_MAC_1 &&
		p2p_pkt.dst_subnet_mac[0] == MY_SUBNET_MAC_0 &&
		p2p_pkt.dst_mac == MY_MAC ) 
		|| p2p_pkt.dst_mac == BROADCAST) 
	    {
	    nrk_led_set (GREEN_LED);
            // Packet arrived and is good to go
            printf ("full mac: %d %d %d %d ", p2p_pkt.src_subnet_mac[0],
                    p2p_pkt.src_subnet_mac[1], p2p_pkt.src_subnet_mac[2],
		    p2p_pkt.src_mac);
            printf ("rssi: %d ", p2p_pkt.rssi);
            printf ("type: %d ", p2p_pkt.pkt_type);
            nrk_kprintf (PSTR ("payload: ["));
            for (i = 0; i < p2p_pkt.payload_len; i++)
              printf ("%d ", p2p_pkt.payload[i]);
            nrk_kprintf (PSTR ("]\r\n"));
        
	if(p2p_pkt.pkt_type== DATA_STORAGE_PKT )
		{
		eeprom_storage_pkt_unpack(&data_pkt, p2p_pkt.payload );
		nrk_kprintf( PSTR("\r\n   Storage Packet " ));
		nrk_kprintf( PSTR("\r\n   Mode: " ));
		switch(data_pkt.mode)
		{
		case EE_REPLY: nrk_kprintf( PSTR( "Reply")); break;
		case EE_ERROR: nrk_kprintf( PSTR( "Error" )); break;
		case EE_READ: nrk_kprintf( PSTR( "Read" )); break;
		case EE_WRITE: nrk_kprintf( PSTR( "Write" )); break;
		default: nrk_kprintf( PSTR( "unknown" )); 

		}
		nrk_kprintf( PSTR("\r\n   From: " ));
		printf( "%u",data_pkt.mac );
		nrk_kprintf( PSTR("\r\n   Addr: " ));
		printf( "%u",data_pkt.addr);
		nrk_kprintf( PSTR("\r\n   Len: " ));
		printf( "%u",data_pkt.data_len);
		nrk_kprintf( PSTR("\r\n   Data: " ));
		for(i=0; i<data_pkt.data_len; i++ ) printf( "%u ",data_pkt.eeprom_payload[i]);
		nrk_kprintf( PSTR("\r\n" ));
		} 
	
	}
#endif

        }
      }

      nrk_time_get (&current);
      if (start.secs + REPLY_WAIT_SECS < current.secs)
        break;
        // Release the RX buffer so future packets can arrive 
        bmac_rx_pkt_release ();
    }
    nrk_kprintf (PSTR ("Done Waiting for response...\r\n"));
    nrk_wait_until_next_period ();
  }

}
示例#14
0
文件: main.cpp 项目: ESE519/EVM-2013
void tx_task ()
{
  uint8_t j, i, val, len, cnt;
  int8_t v;
  nrk_sig_t tx_done_signal;
  nrk_sig_mask_t ret;
  nrk_time_t r_period;
	
	// printf("tx_task PID=%d\r\n", nrk_get_pid ());

  // Wait until the tx_task starts up bmac
  // This should be called by all tasks using bmac that
  // do not call bmac_init()...
  while (!bmac_started ())
    nrk_wait_until_next_period ();


  // Sample of using Reservations on TX packets
  // This example allows 2 packets to be sent every 5 seconds
  // r_period.secs=5;
  // r_period.nano_secs=0;
  // v=bmac_tx_reserve_set( &r_period, 2 );
  // if(v==NRK_ERROR) nrk_kprintf( PSTR("Error setting b-mac tx reservation (is NRK_MAX_RESERVES defined?)\r\n" ));


  // Get and register the tx_done_signal if you want to
  // do non-blocking transmits
  tx_done_signal = bmac_get_tx_done_signal ();
  nrk_signal_register (tx_done_signal);

  ctr_cnt[0]=0; ctr_cnt[1]=0; ctr_cnt[2]=0; ctr_cnt[3]=0;
  cnt = 0;
	
  while (1) {
    // Build a TX packet
    sprintf (tx_buf, "This is a test %d", cnt);
    nrk_led_set (BLUE_LED);
		
    // Auto ACK is an energy efficient link layer ACK on packets
    // If Auto ACK is enabled, then bmac_tx_pkt() will return failure
    // if no ACK was received. In a broadcast domain, the ACK's will
    // typically collide.  To avoid this, one can use address decoding. 
    // The functions are as follows:
    // bmac_auto_ack_enable();
			 bmac_auto_ack_disable();

    // Address decoding is a way of preventing the radio from receiving
    // packets that are not address to a particular node.  This will 
    // supress ACK packets from nodes that should not automatically ACK.
    // The functions are as follows:
    // bmac_addr_decode_set_my_mac(uint16_t MAC_ADDR); 
    // bmac_addr_decode_dest_mac(uint16_t DST_ADDR);  // 0xFFFF is broadcast
    // bmac_addr_decode_enable();
    // bmac_addr_decode_disable();
/*
     ctr_cnt[0]=cnt; 
     if(ctr_cnt[0]==255) ctr_cnt[1]++; 
     if(ctr_cnt[1]==255) ctr_cnt[2]++; 
     if(ctr_cnt[2]==255) ctr_cnt[3]++; 
     // You need to increase the ctr on each packet to make the 
     // stream cipher not repeat.
     bmac_encryption_set_ctr_counter(&ctr_cnt,4);

*/  // For blocking transmits, use the following function call.
    // For this there is no need to register  
     val=bmac_tx_pkt(tx_buf, strlen(tx_buf));
		 if(val==NRK_OK) cnt++;
 		 else printf("NO ack or Reserve Violated! \r\n");

    // This function shows how to transmit packets in a
    // non-blocking manner  
    // val = bmac_tx_pkt_nonblocking(tx_buf, strlen (tx_buf));
    // printf ("Tx packet enqueued\r\n");
    // This functions waits on the tx_done_signal
    //ret = nrk_event_wait (SIG(tx_done_signal));

    // Just check to be sure signal is okay
    //if(ret & SIG(tx_done_signal) == 0 ) 
    //printf ("TX done signal error\r\n");
   
    // If you want to see your remaining reservation
    // printf( "reserve=%d ",bmac_tx_reserve_get() );
    
    // Task gets control again after TX complete
    printf("Tx task sent data!\r\n");
    nrk_led_clr (BLUE_LED);
		printf("tx_task PID=%d\r\n", nrk_get_pid ());
    nrk_wait_until_next_period ();
  }

}
示例#15
0
/*
void inter_tx_task ()
{
  
	uint8_t j, i, val, len, cnt;
  nrk_sig_t tx_done_signal;
  nrk_sig_mask_t ret;
  nrk_time_t r_period;
  	
	
  while (!bmac_started ())
    nrk_wait_until_next_period ();

  tx_done_signal = bmac_get_tx_done_signal ();
  nrk_signal_register (tx_done_signal);
  cnt = 0;
  
  while (1) {
    if(inter_flag==1){
		printf("Hi..\n");
	  bmac_addr_decode_disable();
    bmac_addr_decode_set_my_mac(MY_MAC_ADDR);
	  sprintf(&tx_buf[0],"%d",MY_MAC_ADDR);
	  for(i=0;i<strlen(inter_tx_buf);i++){
	  tx_buf[i+1]=inter_tx_buf[i];
	}
	  nrk_led_set (BLUE_LED);
    bmac_auto_ack_disable();
    bmac_addr_decode_dest_mac(dst_addr);  // 0xFFFF is broadcast
	  val=bmac_tx_pkt(tx_buf, strlen(tx_buf));
	  inter_flag=0;
    printf("Tx task sent data!\r\n");
    nrk_led_clr (BLUE_LED);
	  printf("tx_task PID=%d\r\n", nrk_get_pid ());
}  
  nrk_wait_until_next_period ();
  }

}
*/
void tx_task ()
{
  uint8_t j, i, val, len, cnt,turn=0;
  nrk_sig_t tx_done_signal;
  nrk_sig_mask_t ret;
  nrk_time_t r_period;
   while (!bmac_started ())
     nrk_wait_until_next_period ();
  tx_done_signal = bmac_get_tx_done_signal ();
  nrk_signal_register (tx_done_signal);
  cnt = 0;
  
  while (1) {
    if(inter_flag==0 ){
		printf("Hi..\n");
	  bmac_addr_decode_disable();
    bmac_addr_decode_set_my_mac(MY_MAC_ADDR);
	  sprintf(tx_buf,"node_id:%d count:%d",MY_MAC_ADDR,cnt);
    nrk_led_set (BLUE_LED);
		
   
    bmac_auto_ack_disable();
    bmac_addr_decode_dest_mac(dst_addr);  // 0xFFFF is broadcast
	  val=bmac_tx_pkt(tx_buf, strlen(tx_buf));
    printf("Tx task sent data!\r\n");
    nrk_led_clr (BLUE_LED);
		printf("tx_task PID=%d\r\n", nrk_get_pid ());
    }
	  
			if(inter_flag==1){
				if(turn==0){
					printf("Hi..\n");
	  bmac_addr_decode_disable();
    bmac_addr_decode_set_my_mac(MY_MAC_ADDR);
	  sprintf(tx_buf,"Path: %d-1 node_id:%d count:%d",MY_MAC_ADDR,MY_MAC_ADDR,cnt);
    nrk_led_set (BLUE_LED);
		bmac_auto_ack_disable();
    bmac_addr_decode_dest_mac(dst_addr);  // 0xFFFF is broadcast
	  val=bmac_tx_pkt(tx_buf, strlen(tx_buf));
    printf("Tx task sent data!\r\n");
    nrk_led_clr (BLUE_LED);
		printf("tx_task PID=%d\r\n", nrk_get_pid ());
					turn=1;
				}
				else{
	  bmac_addr_decode_disable();
    bmac_addr_decode_set_my_mac(MY_MAC_ADDR);
	  sprintf(&tx_buf[0],"%d",MY_MAC_ADDR);
	  for(i=0;i<strlen(inter_tx_buf);i++){
	  tx_buf[i+1]=inter_tx_buf[i];
	}
	  nrk_led_set (BLUE_LED);
    bmac_auto_ack_disable();
    bmac_addr_decode_dest_mac(dst_addr);  // 0xFFFF is broadcast
	  val=bmac_tx_pkt(tx_buf, strlen(tx_buf));
	  printf("Tx task sent data!\r\n");
    nrk_led_clr (BLUE_LED);
	  printf("tx_task PID=%d\r\n", nrk_get_pid ());
	  turn=0;
}
}

  cnt++;
nrk_wait_until_next_period ();
   }

}
示例#16
0
void nl_tx_task()
{
	TransmitBuffer *ptr = NULL; 				// pointer to the buffer to be transmitted 
	nrk_sig_t tx_done_signal;					// to hold the tx_done signal from the link layer 
	int8_t ret;										// to hold the return value of various functions 
	int8_t port_index;							// to store the index of the corresponding port element 
	int8_t sent;									// to count the number of times the HELLO msg was sent 
	int8_t isApplication;						// flag to indicate whether the packet in the transmit 
														// buffer is an APPLICATION / NW_CONTROL packet
	 
	nrk_time_t timeout;
	nrk_time_t start;								// used for sending network control messages 
	nrk_time_t end;	
	nrk_time_t elapsed;			
	
	// wait for the nl_rx_task to start bmac 	
	while(!bmac_started()) nrk_wait_until_next_period();
	
	// retrieve and register for the 'transmit done' signal from bmac 	
	tx_done_signal = bmac_get_tx_done_signal();
  	
  	if( nrk_signal_register(tx_done_signal) == NRK_ERROR )
  	{
  		nrk_int_disable();
  		nrk_led_set(RED_LED);
  		while(1)
  			nrk_kprintf(PSTR("NL: Error while registering for the bmax_tx_done_signal\r\n"));
  	}
	
	// initialise the timer
	nrk_time_get(&start);
	end.secs = start.secs;
	end.nano_secs = start.nano_secs;
	sent = 0;
	
	// set the radio power
	if( bmac_set_rf_power(10) == NRK_ERROR)
  	{
  		nrk_led_set(RED_LED);
  		nrk_int_disable();
  		while(1)
  			nrk_kprintf(PSTR("Error setting the transmit power\r\n"));
  	}
	while(1)
	{
		isApplication = FALSE;	// assume at the beginning that a nw_ctrl pkt will be transmitted 
				
		ret = nrk_time_sub(&elapsed, end, start);
		if(ret == 0)
		{
			nrk_int_disable();
			nrk_led_set(RED_LED);
			while(1)
				nrk_kprintf(PSTR("NL: Error returned by nrk_time_sub\r\n"));
		}
		
		nrk_time_compact_nanos(&elapsed);
		
		if(elapsed.secs >= HELLO_PERIOD)
		{	
			sent++;
			build_Msg_Hello(&mhe);				// build the 'HELLO' message
			if(DEBUG_NL == 2)
			{
				nrk_kprintf(PSTR("After building Msg_Hello, packet = "));
				print_pkt(&pkt_tx);
			}
				
			enter_cr(bm_sem, 34);
			ret = insert_tx_aq(&pkt_tx);  			// insert it into the transmit queue
			leave_cr(bm_sem, 34);
			
			if(DEBUG_NL == 2)
			{
				nrk_kprintf(PSTR("build_Msg_Hello() inserted packet."));
				print_tx_buffer();
				//print_pkt_header(&pkt_tx);
			}
			
			if(ret == NRK_ERROR && DEBUG_NL == 2)
			{
				nrk_kprintf(PSTR("HELLO msg was not inserted into the transmit queue\r\n"));
			}
			
			start.secs = end.secs;	
			start.nano_secs = end.nano_secs; // reinitialise the timer 		
		}

		if(sent >= 3) //NGB_LIST_PERIOD / HELLO_PERIOD)	// NGB_LIST period is always a multiple of HELLO_PERIOD		
		{
			build_Msg_NgbList(&mn);				// build the 'NGB_LIST' message 
									
			enter_cr(bm_sem, 34);
			ret = insert_tx_aq(&pkt_tx);  			// insert it into the transmit queue
			leave_cr(bm_sem, 34);
			
			if(DEBUG_NL == 2)
			{
				nrk_kprintf(PSTR("build_Msg_NgbList() inserted packet."));
				print_tx_buffer();
				//print_pkt_header(&pkt_tx);
			}
			
			if(ret == NRK_ERROR && DEBUG_NL == 2)
			{
				nrk_kprintf(PSTR("NGB_LIST msg was not inserted into the transmit queue\r\n"));
			}
			
			sent = 0;								// reset the value of 'sent'
		}					
		 
	
		if(rand() % 2 == 0)						// random number generator
			collect_queue_statistics();
		
		enter_cr(bm_sem, 34);		
		ptr = remove_tx_aq();
		leave_cr(bm_sem, 34);
		
		if(ptr == NULL)							// transmit queue is empty 
		{
			if(DEBUG_NL == 2)
				nrk_kprintf(PSTR("NL:Transmit queue is empty\r\n"));
			
			// update the end time 
			nrk_time_get(&end);		
				
			nrk_wait_until_next_period();	// FIX ME 
			continue;
		} 

		if(DEBUG_NL ==  2)
		{
			nrk_kprintf(PSTR("NL: nl_tx_task(): Packet removed. Packet = "));
			//print_pkt_header( &(ptr -> pkt) );
			print_pkt( &(ptr -> pkt) );
			//print_tx_buffer();
		}		
		
		// check to see the type of packet. It should be of type APPLICATION and be sent by this 
		// node  		
		if( (pkt_type(&(ptr -> pkt)) == APPLICATION) && ((ptr -> pkt).src == NODE_ADDR) )		 
		{ 		
			// remove the encapsulated TL segment from the packet 
			unpack_TL_UDP_header(&seg, (ptr -> pkt).data);
			memcpy(seg.data, (ptr -> pkt).data + SIZE_TRANSPORT_UDP_HEADER, MAX_APP_PAYLOAD);
			
			if(DEBUG_NL == 2)
			{
				nrk_kprintf(PSTR("NL: nl_tx_task(): Segment Removed = "));
				print_seg(&seg);
			}
			isApplication = TRUE;
		}	
			
		// pack the network packet header into the transmit buffer 
		pack_NW_Packet_header(tx_buf, &(ptr -> pkt));
		// append the network payload into the transmit buffer
		memcpy(tx_buf + SIZE_NW_PACKET_HEADER, (ptr -> pkt).data, MAX_NETWORK_PAYLOAD);
		
		enter_cr(bm_sem, 34);		
		insert_tx_fq(ptr);	// release the transmit buffer into the free queue 
		leave_cr(bm_sem, 34);
		if(DEBUG_NL == 2)
		{
			nrk_kprintf(PSTR("NL: nl_tx_task(): Released transmit buffer back into queue\n"));
			print_tx_buffer();
		}
		
		do
		{
			ret =  bmac_tx_pkt_nonblocking(tx_buf, SIZE_NW_PACKET);	// try to queue the buffer in link layer
			if(ret == NRK_ERROR)
				if(nrk_event_wait(SIG(tx_done_signal)) == 0)
				{
					nrk_int_disable();
					nrk_led_set(RED_LED);
					while(1)
						nrk_kprintf(PSTR("NL: Error returned by nrk_event_wait(tx_done_signal)\r\n"));
				}
		}while(ret == NRK_ERROR);
		
		// packet is queued at link layer
		timeout.secs = 10;				// set a wait period of maximum 10 seconds
		timeout.nano_secs = 0;
		if( nrk_signal_register(nrk_wakeup_signal) == NRK_ERROR )
		{
			nrk_int_disable();
			nrk_led_set(RED_LED);
			while(1)
				nrk_kprintf(PSTR("NL:nl_tx(): Error registering for nrk_wakeup_signal\r\n"));
		}
		if( nrk_set_next_wakeup(timeout) == NRK_ERROR)
		{
			nrk_int_disable();
			nrk_led_set(RED_LED);
			while(1)
				nrk_kprintf(PSTR("NL: nl_tx(): Error returned by nrk_set_next_wakeup()\r\n"));
		}		 
		nrk_led_set(BLUE_LED);
  		ret = nrk_event_wait (SIG(tx_done_signal) | SIG(nrk_wakeup_signal));	// wait for its transmission
  		if(ret == 0)
  		{
  			nrk_int_disable();
  			nrk_led_set(RED_LED);
  			while(1)
  				nrk_kprintf(PSTR("NL: Error returned by nrk_event_wait(tx_done_signal)\r\n"));
  		}
	   if(ret & SIG(tx_done_signal)) 	// bmac has successfully sent the packet over the radio 
		{
			if(isApplication == TRUE)		// it was an application layer packet 
			{
				enter_cr(tl_sem, 34);				
				port_index = port_to_port_index(seg.srcPort);
						
				if(port_index == NRK_ERROR)	// sanity check
				{
					nrk_int_disable();
					nrk_led_set(RED_LED);
					while(1)
						nrk_kprintf(PSTR("NL: nl_tx_task: Bug detected in implementation of port element array\r\n"));
				}
				// signal 'send done' signal 			
				if(nrk_event_signal(ports[port_index].send_done_signal) == NRK_ERROR)
				{
					if(nrk_errno_get() == 1)	// sanity check. This means signal was not created 
					{
						nrk_int_disable();
						nrk_led_set(RED_LED);
						while(1)
							nrk_kprintf(PSTR("NL: nl_tx_task: Bug detected in creating signals in port element array\r\n"));
					}
			   }					
				leave_cr(tl_sem, 34);	
				
			}// end if(isApplication == TRUE)
			
			else	// a network control message was transmitted. Nothing to signal
				;	// do nothing 
		
		} // end if(signal received = tx_done_signal)
		else if(ret & SIG(nrk_wakeup_signal))	
			 {
			 	//nrk_led_set(RED_LED);
			 	//nrk_int_disable();
			 	//while(1)			
			 	//{
			 		nrk_kprintf(PSTR("BMAC did not transmit the packet within specified time\r\n"));
			 	//}
			 }			
			else // unknown signal caught 
			{
				nrk_int_disable();
				nrk_led_set(RED_LED);
				while(1)
					nrk_kprintf(PSTR("NL: nl_tx_task(): Unknown signal caught\r\n"));
			}
		
		nrk_led_clr(BLUE_LED);		
		// update the end time 
		nrk_time_get(&end);
	
   } // end while(1) 
   
	return;
}
示例#17
0
文件: main.c 项目: adamselevan/dicio
void tx_task ()
{
  uint8_t i, unique;
  uint8_t samples ;
  uint8_t len;
  int8_t rssi, val;
  uint8_t *local_rx_buf;

  nrk_sig_t tx_done_signal;
  nrk_sig_t rx_signal;
  nrk_time_t check_period;
  nrk_time_t timeout, start, current;
  nrk_sig_mask_t my_sigs;

  printf ("tx_task PID=%d\r\n", nrk_get_pid ());


  // Wait until the tx_task starts up bmac
  // This should be called by all tasks using bmac that
  // do not call bmac_init()...
  bmac_init (26);

  bmac_rx_pkt_set_buffer (rx_buf, RF_MAX_PAYLOAD_SIZE);

  val =
    bmac_addr_decode_set_my_mac (((uint16_t) MY_SUBNET_MAC_0 << 8) | MY_MAC );
  val = bmac_addr_decode_dest_mac (0xffff);     // broadcast by default
  bmac_addr_decode_enable ();

  nrk_kprintf (PSTR ("bmac_started()\r\n"));
  bmac_set_cca_thresh (-45);


  check_period.secs = 0;
  check_period.nano_secs = 100 * NANOS_PER_MS;
  val = bmac_set_rx_check_rate (check_period);

  // Get and register the tx_done_signal if you want to
  // do non-blocking transmits
  tx_done_signal = bmac_get_tx_done_signal ();
  nrk_signal_register (tx_done_signal);

  rx_signal = bmac_get_rx_pkt_signal ();
  nrk_signal_register (rx_signal);

  cnt = 0;

  check_period.secs = 0;
  check_period.nano_secs = DEFAULT_CHECK_RATE * NANOS_PER_MS;
  val = bmac_set_rx_check_rate (check_period);


  // Main loop that does:
  //   1) Sends out ping message
  //   2) Collects replies, build neighbor list and then times out
  //   3) Repeat 1 and 2 for 3 times
  //   4) Build Extended Neighborlist packet
  //   5) Send Neighbor list packet
  //   6) Wait until next period and repeat 1-6
  while (1) {

    nrk_led_clr (ORANGE_LED);

    // Set our local neighbor list to be empty
    my_nlist_elements = 0;

    for (samples = 0; samples < 3; samples++) {
      nrk_led_set (GREEN_LED);
      check_period.secs = 0;
      check_period.nano_secs = DEFAULT_CHECK_RATE * NANOS_PER_MS;
      val = bmac_set_rx_check_rate (check_period);

      // Construct a ping packet to send (this is being built into tx_buf)
      build_ping_pkt (&p2p_pkt);

      // Pack data structure values in buffer before transmit
      pack_peer_2_peer_packet (&p2p_pkt);

      // Send the Ping packet 
      val = bmac_tx_pkt (p2p_pkt.buf, p2p_pkt.buf_len);

      // Set update rate based on p2p reply rate.
      // This is usually faster to limit congestion
      check_period.secs = 0;
      check_period.nano_secs = p2p_pkt.check_rate * NANOS_PER_MS;
      val = bmac_set_rx_check_rate (check_period);


#ifdef TXT_DEBUG
      nrk_kprintf (PSTR ("Pinging...\r\n"));
#endif
      nrk_led_clr (GREEN_LED);



      // Grab start time for timeout 
      nrk_time_get (&start);

      while (1) {

	// Set the amount of time to wait for timeout
        timeout.secs = REPLY_WAIT_SECS;
        timeout.nano_secs = 0;

	// Check if packet is already ready, or wait until one arrives
	// Also set timeout to break from function if no packets come
	my_sigs=0;
        if (bmac_rx_pkt_ready () == 0) {
          nrk_set_next_wakeup (timeout);
          my_sigs =
            nrk_event_wait (SIG (rx_signal) | SIG (nrk_wakeup_signal));
        }



        if (my_sigs == 0)
          nrk_kprintf (PSTR ("Error calling nrk_event_wait()\r\n"));
        if (my_sigs & SIG (rx_signal)) {

          // Get the RX packet 
          local_rx_buf = bmac_rx_pkt_get (&len, &rssi);
          // Check the packet type from raw buffer before unpacking
          if ((local_rx_buf[CTRL_FLAGS] & (DS_MASK | US_MASK)) == 0) {

            // Setup a p2p packet data structure with the newly received buffer 
            p2p_pkt.buf = local_rx_buf;
            p2p_pkt.buf_len = len;
            p2p_pkt.rssi = rssi;

            // Unpack the data from the array into the p2p_pkt data struct
            unpack_peer_2_peer_packet (&p2p_pkt);


	    // Check if newly received packet is for this node
          if (((p2p_pkt.dst_subnet_mac[2] == MY_SUBNET_MAC_2 &&
		p2p_pkt.dst_subnet_mac[1] == MY_SUBNET_MAC_1 &&
		p2p_pkt.dst_subnet_mac[0] == MY_SUBNET_MAC_0 &&
		p2p_pkt.dst_mac == MY_MAC ) 
		|| p2p_pkt.dst_mac == BROADCAST) 
                && (p2p_pkt.pkt_type == PING_PKT)) {
              // Packet arrived and is  ping pkt!
	      // Lets print some values out on the terminal
            printf ("full mac: %d %d %d %d ", p2p_pkt.src_subnet_mac[0],
                    p2p_pkt.src_subnet_mac[1], p2p_pkt.src_subnet_mac[2],
		    p2p_pkt.src_mac);
              printf ("rssi: %d ", p2p_pkt.rssi);
              printf ("type: %d ", p2p_pkt.pkt_type);
              nrk_kprintf (PSTR ("payload: ["));
              for (i = 0; i < p2p_pkt.payload_len; i++)
                printf ("%d ", p2p_pkt.payload[i]);
              nrk_kprintf (PSTR ("]\r\n"));

              unique = 1;
              // Check if the MAC of this ping is unique or if it already
              // exists in our neighbor list
              for (i = 0; i < my_nlist_elements; i++) {

                if (my_nlist[i * NLIST_SIZE] == p2p_pkt.src_subnet_mac[2] &&
                    my_nlist[i * NLIST_SIZE + 1] == p2p_pkt.src_subnet_mac[1] &&
                    my_nlist[i * NLIST_SIZE + 2] == p2p_pkt.src_subnet_mac[0] &&
                    my_nlist[i * NLIST_SIZE + 3] == p2p_pkt.src_mac) {
                  unique = 0;
                  break;
                }
              }

              // If MAC is unique, add it to our neighbor list
              if (unique) {
                my_nlist[my_nlist_elements * NLIST_SIZE] =
                  p2p_pkt.src_subnet_mac[2];
                my_nlist[my_nlist_elements * NLIST_SIZE + 1] =
                  p2p_pkt.src_subnet_mac[1];
                my_nlist[my_nlist_elements * NLIST_SIZE + 2] =
                  p2p_pkt.src_subnet_mac[0];
                my_nlist[my_nlist_elements * NLIST_SIZE + 3] =
                  p2p_pkt.src_mac;
                my_nlist[my_nlist_elements * NLIST_SIZE + 4] = p2p_pkt.rssi;
                my_nlist_elements++;
              }
            }

          }


        }

	// Check if we are done waiting for pings
        nrk_time_get (&current);
        if (start.secs + REPLY_WAIT_SECS < current.secs)
          break; // exit loops waiting for pings
	
          // Release the RX buffer so future packets can arrive 
          bmac_rx_pkt_release ();

      // Go back to top loop to wait for more pings
      }
      cnt++;
    // Repeat ping 3 times
    }

    // Now we are ready to build extended neighborlist packet and send it to gateway
    check_period.secs = 0;
    check_period.nano_secs = DEFAULT_CHECK_RATE * NANOS_PER_MS;
    val = bmac_set_rx_check_rate (check_period);

    nrk_kprintf (PSTR ("Done Waiting for response...\r\n"));

    // If we have any neighbors, build the list
    if (my_nlist_elements > 0) {
      // Look in this function for format of extended neighborlist packet
      // This function also configures the parameters and destination address
      // of the p2p packet.  The values are probably okay as defaults.
      build_extended_neighbor_list_pkt (&p2p_pkt, my_nlist,
                                        my_nlist_elements);
      // This function takes at p2p struct and packs it into an array for sending
      pack_peer_2_peer_packet (&p2p_pkt);

      nrk_led_set (BLUE_LED);
      // Send the list to the gateway.
      val = bmac_tx_pkt (p2p_pkt.buf, p2p_pkt.buf_len);
      printf ("size of pkt: %d\r\n", p2p_pkt.buf_len);
      nrk_kprintf (PSTR ("sent neighbor list packet\r\n"));
      nrk_led_clr (BLUE_LED);
    }
    else {
      nrk_led_set (RED_LED);
      nrk_spin_wait_us (1000);
      nrk_led_clr (RED_LED);
    }

    // Wait a long time until we send out the pings again
    // This is in a loop so that period can be small for 
    // other uses.
    for (i = 0; i < 10; i++)
      nrk_wait_until_next_period ();

    // Might as well release packets that arrived during long
    // break since they are not replies to your ping.
    bmac_rx_pkt_release ();

  }

}