/* * Return buffer with the contents of block "offset" from the beginning of * directory "ip". If "res" is non-zero, fill it in with a pointer to the * remaining space in the directory. */ int cd9660_blkatoff(vnode_t vp, off_t offset, char **res, buf_t *bpp) { struct iso_node *ip; register struct iso_mnt *imp; buf_t bp; daddr_t lbn; int bsize, error; ip = VTOI(vp); imp = ip->i_mnt; lbn = lblkno(imp, offset); bsize = blksize(imp, ip, lbn); if ((bsize != imp->im_sector_size) && (offset & (imp->im_sector_size - 1)) == 0) { bsize = imp->im_sector_size; } if ( (error = (int)buf_bread(vp, (daddr64_t)((unsigned)lbn), bsize, NOCRED, &bp)) ) { buf_brelse(bp); *bpp = NULL; return (error); } if (res) *res = (char *)0 + buf_dataptr(bp) + blkoff(imp, offset); *bpp = bp; return (0); }
static int ReadMultipleNodes( BTScanState *theScanStatePtr ) { int myErr = E_NONE; BTreeControlBlockPtr myBTreeCBPtr; daddr64_t myPhyBlockNum; u_int32_t myBufferSize; struct vnode * myDevPtr; unsigned int myBlockRun; u_int32_t myBlocksInBufferCount; // release old buffer if we have one if ( theScanStatePtr->bufferPtr != NULL ) { buf_markinvalid(theScanStatePtr->bufferPtr); buf_brelse( theScanStatePtr->bufferPtr ); theScanStatePtr->bufferPtr = NULL; theScanStatePtr->currentNodePtr = NULL; } myBTreeCBPtr = theScanStatePtr->btcb; // map logical block in catalog btree file to physical block on volume myErr = hfs_bmap(myBTreeCBPtr->fileRefNum, theScanStatePtr->nodeNum, &myDevPtr, &myPhyBlockNum, &myBlockRun); if ( myErr != E_NONE ) { goto ExitThisRoutine; } // bmap block run gives us the remaining number of valid blocks (number of blocks // minus the first). so if there are 10 valid blocks our run number will be 9. // blocks, in our case is the same as nodes (both are 4K) myBlocksInBufferCount = (theScanStatePtr->bufferSize / myBTreeCBPtr->nodeSize ); myBufferSize = theScanStatePtr->bufferSize; if ( (myBlockRun + 1) < myBlocksInBufferCount ) { myBufferSize = (myBlockRun + 1) * myBTreeCBPtr->nodeSize; } // now read blocks from the device myErr = (int)buf_bread(myDevPtr, myPhyBlockNum, myBufferSize, NOCRED, &theScanStatePtr->bufferPtr ); if ( myErr != E_NONE ) { goto ExitThisRoutine; } theScanStatePtr->nodesLeftInBuffer = buf_count(theScanStatePtr->bufferPtr) / theScanStatePtr->btcb->nodeSize; theScanStatePtr->currentNodePtr = (BTNodeDescriptor *) buf_dataptr(theScanStatePtr->bufferPtr); ExitThisRoutine: return myErr; } /* ReadMultipleNodes */
/* * Vnode op for read */ int spec_read(struct vnop_read_args *ap) { struct vnode *vp = ap->a_vp; struct uio *uio = ap->a_uio; struct buf *bp; daddr64_t bn, nextbn; long bsize, bscale; int devBlockSize=0; int n, on; int error = 0; dev_t dev; #if DIAGNOSTIC if (uio->uio_rw != UIO_READ) panic("spec_read mode"); if (UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) panic("spec_read proc"); #endif if (uio_resid(uio) == 0) return (0); switch (vp->v_type) { case VCHR: error = (*cdevsw[major(vp->v_rdev)].d_read) (vp->v_rdev, uio, ap->a_ioflag); return (error); case VBLK: if (uio->uio_offset < 0) return (EINVAL); dev = vp->v_rdev; devBlockSize = vp->v_specsize; if (devBlockSize > PAGE_SIZE) return (EINVAL); bscale = PAGE_SIZE / devBlockSize; bsize = bscale * devBlockSize; do { on = uio->uio_offset % bsize; bn = (daddr64_t)((uio->uio_offset / devBlockSize) &~ (bscale - 1)); if (vp->v_speclastr + bscale == bn) { nextbn = bn + bscale; error = buf_breadn(vp, bn, (int)bsize, &nextbn, (int *)&bsize, 1, NOCRED, &bp); } else error = buf_bread(vp, bn, (int)bsize, NOCRED, &bp); vnode_lock(vp); vp->v_speclastr = bn; vnode_unlock(vp); n = bsize - buf_resid(bp); if ((on > n) || error) { if (!error) error = EINVAL; buf_brelse(bp); return (error); } n = min((unsigned)(n - on), uio_resid(uio)); error = uiomove((char *)0 + buf_dataptr(bp) + on, n, uio); if (n + on == bsize) buf_markaged(bp); buf_brelse(bp); } while (error == 0 && uio_resid(uio) > 0 && n != 0); return (error); default: panic("spec_read type"); } /* NOTREACHED */ return (0); }
/* * Vnode op for write */ int spec_write(struct vnop_write_args *ap) { struct vnode *vp = ap->a_vp; struct uio *uio = ap->a_uio; struct buf *bp; daddr64_t bn; int bsize, blkmask, bscale; int io_sync; int devBlockSize=0; int n, on; int error = 0; dev_t dev; #if DIAGNOSTIC if (uio->uio_rw != UIO_WRITE) panic("spec_write mode"); if (UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) panic("spec_write proc"); #endif switch (vp->v_type) { case VCHR: error = (*cdevsw[major(vp->v_rdev)].d_write) (vp->v_rdev, uio, ap->a_ioflag); return (error); case VBLK: if (uio_resid(uio) == 0) return (0); if (uio->uio_offset < 0) return (EINVAL); io_sync = (ap->a_ioflag & IO_SYNC); dev = (vp->v_rdev); devBlockSize = vp->v_specsize; if (devBlockSize > PAGE_SIZE) return(EINVAL); bscale = PAGE_SIZE / devBlockSize; blkmask = bscale - 1; bsize = bscale * devBlockSize; do { bn = (daddr64_t)((uio->uio_offset / devBlockSize) &~ blkmask); on = uio->uio_offset % bsize; n = min((unsigned)(bsize - on), uio_resid(uio)); /* * Use buf_getblk() as an optimization IFF: * * 1) We are reading exactly a block on a block * aligned boundary * 2) We know the size of the device from spec_open * 3) The read doesn't span the end of the device * * Otherwise, we fall back on buf_bread(). */ if (n == bsize && vp->v_specdevsize != (u_int64_t)0 && (uio->uio_offset + (u_int64_t)n) > vp->v_specdevsize) { /* reduce the size of the read to what is there */ n = (uio->uio_offset + (u_int64_t)n) - vp->v_specdevsize; } if (n == bsize) bp = buf_getblk(vp, bn, bsize, 0, 0, BLK_WRITE); else error = (int)buf_bread(vp, bn, bsize, NOCRED, &bp); /* Translate downstream error for upstream, if needed */ if (!error) error = (int)buf_error(bp); if (error) { buf_brelse(bp); return (error); } n = min(n, bsize - buf_resid(bp)); error = uiomove((char *)0 + buf_dataptr(bp) + on, n, uio); if (error) { buf_brelse(bp); return (error); } buf_markaged(bp); if (io_sync) error = buf_bwrite(bp); else { if ((n + on) == bsize) error = buf_bawrite(bp); else error = buf_bdwrite(bp); } } while (error == 0 && uio_resid(uio) > 0 && n != 0); return (error); default: panic("spec_write type"); } /* NOTREACHED */ return (0); }
/* * Balloc defines the structure of file system storage * by allocating the physical blocks on a device given * the inode and the logical block number in a file. */ ffs_balloc( register struct inode *ip, register ufs_daddr_t lbn, int size, kauth_cred_t cred, struct buf **bpp, int flags, int * blk_alloc) { register struct fs *fs; register ufs_daddr_t nb; struct buf *bp, *nbp; struct vnode *vp = ITOV(ip); struct indir indirs[NIADDR + 2]; ufs_daddr_t newb, *bap, pref; int deallocated, osize, nsize, num, i, error; ufs_daddr_t *allocib, *blkp, *allocblk, allociblk[NIADDR + 1]; int devBlockSize=0; int alloc_buffer = 1; struct mount *mp=vp->v_mount; #if REV_ENDIAN_FS int rev_endian=(mp->mnt_flag & MNT_REVEND); #endif /* REV_ENDIAN_FS */ *bpp = NULL; if (lbn < 0) return (EFBIG); fs = ip->i_fs; if (flags & B_NOBUFF) alloc_buffer = 0; if (blk_alloc) *blk_alloc = 0; /* * If the next write will extend the file into a new block, * and the file is currently composed of a fragment * this fragment has to be extended to be a full block. */ nb = lblkno(fs, ip->i_size); if (nb < NDADDR && nb < lbn) { /* the filesize prior to this write can fit in direct * blocks (ie. fragmentaion is possibly done) * we are now extending the file write beyond * the block which has end of file prior to this write */ osize = blksize(fs, ip, nb); /* osize gives disk allocated size in the last block. It is * either in fragments or a file system block size */ if (osize < fs->fs_bsize && osize > 0) { /* few fragments are already allocated,since the * current extends beyond this block * allocate the complete block as fragments are only * in last block */ error = ffs_realloccg(ip, nb, ffs_blkpref(ip, nb, (int)nb, &ip->i_db[0]), osize, (int)fs->fs_bsize, cred, &bp); if (error) return (error); /* adjust the inode size we just grew */ /* it is in nb+1 as nb starts from 0 */ ip->i_size = (nb + 1) * fs->fs_bsize; ubc_setsize(vp, (off_t)ip->i_size); ip->i_db[nb] = dbtofsb(fs, (ufs_daddr_t)buf_blkno(bp)); ip->i_flag |= IN_CHANGE | IN_UPDATE; if ((flags & B_SYNC) || (!alloc_buffer)) { if (!alloc_buffer) buf_setflags(bp, B_NOCACHE); buf_bwrite(bp); } else buf_bdwrite(bp); /* note that bp is already released here */ } } /* * The first NDADDR blocks are direct blocks */ if (lbn < NDADDR) { nb = ip->i_db[lbn]; if (nb != 0 && ip->i_size >= (lbn + 1) * fs->fs_bsize) { if (alloc_buffer) { error = (int)buf_bread(vp, (daddr64_t)((unsigned)lbn), fs->fs_bsize, NOCRED, &bp); if (error) { buf_brelse(bp); return (error); } *bpp = bp; } return (0); } if (nb != 0) { /* * Consider need to reallocate a fragment. */ osize = fragroundup(fs, blkoff(fs, ip->i_size)); nsize = fragroundup(fs, size); if (nsize <= osize) { if (alloc_buffer) { error = (int)buf_bread(vp, (daddr64_t)((unsigned)lbn), osize, NOCRED, &bp); if (error) { buf_brelse(bp); return (error); } ip->i_flag |= IN_CHANGE | IN_UPDATE; *bpp = bp; return (0); } else { ip->i_flag |= IN_CHANGE | IN_UPDATE; return (0); } } else { error = ffs_realloccg(ip, lbn, ffs_blkpref(ip, lbn, (int)lbn, &ip->i_db[0]), osize, nsize, cred, &bp); if (error) return (error); ip->i_db[lbn] = dbtofsb(fs, (ufs_daddr_t)buf_blkno(bp)); ip->i_flag |= IN_CHANGE | IN_UPDATE; /* adjust the inode size we just grew */ ip->i_size = (lbn * fs->fs_bsize) + size; ubc_setsize(vp, (off_t)ip->i_size); if (!alloc_buffer) { buf_setflags(bp, B_NOCACHE); if (flags & B_SYNC) buf_bwrite(bp); else buf_bdwrite(bp); } else *bpp = bp; return (0); } } else { if (ip->i_size < (lbn + 1) * fs->fs_bsize) nsize = fragroundup(fs, size); else nsize = fs->fs_bsize; error = ffs_alloc(ip, lbn, ffs_blkpref(ip, lbn, (int)lbn, &ip->i_db[0]), nsize, cred, &newb); if (error) return (error); if (alloc_buffer) { bp = buf_getblk(vp, (daddr64_t)((unsigned)lbn), nsize, 0, 0, BLK_WRITE); buf_setblkno(bp, (daddr64_t)((unsigned)fsbtodb(fs, newb))); if (flags & B_CLRBUF) buf_clear(bp); } ip->i_db[lbn] = newb; ip->i_flag |= IN_CHANGE | IN_UPDATE; if (blk_alloc) { *blk_alloc = nsize; } if (alloc_buffer) *bpp = bp; return (0); } } /* * Determine the number of levels of indirection. */ pref = 0; if (error = ufs_getlbns(vp, lbn, indirs, &num)) return(error); #if DIAGNOSTIC if (num < 1) panic ("ffs_balloc: ufs_bmaparray returned indirect block"); #endif /* * Fetch the first indirect block allocating if necessary. */ --num; nb = ip->i_ib[indirs[0].in_off]; allocib = NULL; allocblk = allociblk; if (nb == 0) { pref = ffs_blkpref(ip, lbn, 0, (ufs_daddr_t *)0); if (error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, cred, &newb)) return (error); nb = newb; *allocblk++ = nb; bp = buf_getblk(vp, (daddr64_t)((unsigned)(indirs[1].in_lbn)), fs->fs_bsize, 0, 0, BLK_META); buf_setblkno(bp, (daddr64_t)((unsigned)fsbtodb(fs, nb))); buf_clear(bp); /* * Write synchronously conditional on mount flags. */ if ((vp)->v_mount->mnt_flag & MNT_ASYNC) { error = 0; buf_bdwrite(bp); } else if ((error = buf_bwrite(bp)) != 0) { goto fail; } allocib = &ip->i_ib[indirs[0].in_off]; *allocib = nb; ip->i_flag |= IN_CHANGE | IN_UPDATE; } /* * Fetch through the indirect blocks, allocating as necessary. */ for (i = 1;;) { error = (int)buf_meta_bread(vp, (daddr64_t)((unsigned)(indirs[i].in_lbn)), (int)fs->fs_bsize, NOCRED, &bp); if (error) { buf_brelse(bp); goto fail; } bap = (ufs_daddr_t *)buf_dataptr(bp); #if REV_ENDIAN_FS if (rev_endian) nb = OSSwapInt32(bap[indirs[i].in_off]); else { #endif /* REV_ENDIAN_FS */ nb = bap[indirs[i].in_off]; #if REV_ENDIAN_FS } #endif /* REV_ENDIAN_FS */ if (i == num) break; i += 1; if (nb != 0) { buf_brelse(bp); continue; } if (pref == 0) pref = ffs_blkpref(ip, lbn, 0, (ufs_daddr_t *)0); if (error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, cred, &newb)) { buf_brelse(bp); goto fail; } nb = newb; *allocblk++ = nb; nbp = buf_getblk(vp, (daddr64_t)((unsigned)(indirs[i].in_lbn)), fs->fs_bsize, 0, 0, BLK_META); buf_setblkno(nbp, (daddr64_t)((unsigned)fsbtodb(fs, nb))); buf_clear(nbp); /* * Write synchronously conditional on mount flags. */ if ((vp)->v_mount->mnt_flag & MNT_ASYNC) { error = 0; buf_bdwrite(nbp); } else if (error = buf_bwrite(nbp)) { buf_brelse(bp); goto fail; } #if REV_ENDIAN_FS if (rev_endian) bap[indirs[i - 1].in_off] = OSSwapInt32(nb); else { #endif /* REV_ENDIAN_FS */ bap[indirs[i - 1].in_off] = nb; #if REV_ENDIAN_FS } #endif /* REV_ENDIAN_FS */ /* * If required, write synchronously, otherwise use * delayed write. */ if (flags & B_SYNC) { buf_bwrite(bp); } else { buf_bdwrite(bp); } } /* * Get the data block, allocating if necessary. */ if (nb == 0) { pref = ffs_blkpref(ip, lbn, indirs[i].in_off, &bap[0]); if (error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize, cred, &newb)) { buf_brelse(bp); goto fail; } nb = newb; *allocblk++ = nb; #if REV_ENDIAN_FS if (rev_endian) bap[indirs[i].in_off] = OSSwapInt32(nb); else { #endif /* REV_ENDIAN_FS */ bap[indirs[i].in_off] = nb; #if REV_ENDIAN_FS } #endif /* REV_ENDIAN_FS */ /* * If required, write synchronously, otherwise use * delayed write. */ if ((flags & B_SYNC)) { buf_bwrite(bp); } else { buf_bdwrite(bp); } if(alloc_buffer ) { nbp = buf_getblk(vp, (daddr64_t)((unsigned)lbn), fs->fs_bsize, 0, 0, BLK_WRITE); buf_setblkno(nbp, (daddr64_t)((unsigned)fsbtodb(fs, nb))); if (flags & B_CLRBUF) buf_clear(nbp); } if (blk_alloc) { *blk_alloc = fs->fs_bsize; } if(alloc_buffer) *bpp = nbp; return (0); } buf_brelse(bp); if (alloc_buffer) { if (flags & B_CLRBUF) { error = (int)buf_bread(vp, (daddr64_t)((unsigned)lbn), (int)fs->fs_bsize, NOCRED, &nbp); if (error) { buf_brelse(nbp); goto fail; } } else { nbp = buf_getblk(vp, (daddr64_t)((unsigned)lbn), fs->fs_bsize, 0, 0, BLK_WRITE); buf_setblkno(nbp, (daddr64_t)((unsigned)fsbtodb(fs, nb))); } *bpp = nbp; } return (0); fail: /* * If we have failed part way through block allocation, we * have to deallocate any indirect blocks that we have allocated. */ for (deallocated = 0, blkp = allociblk; blkp < allocblk; blkp++) { ffs_blkfree(ip, *blkp, fs->fs_bsize); deallocated += fs->fs_bsize; } if (allocib != NULL) *allocib = 0; if (deallocated) { devBlockSize = vfs_devblocksize(mp); #if QUOTA /* * Restore user's disk quota because allocation failed. */ (void) chkdq(ip, (int64_t)-deallocated, cred, FORCE); #endif /* QUOTA */ ip->i_blocks -= btodb(deallocated, devBlockSize); ip->i_flag |= IN_CHANGE | IN_UPDATE; } return (error); }