示例#1
0
void addDynamicOccluder(ZTransform* aTransform) 
{
	int i;

	FOccluderBox	obox;
    tvector3		extend(1,1,1);
	const tmatrix& boxmat = aTransform->GetWorldMatrix();

	for (i=0; i<8; i++)
	{
        tvector3 bvt(BoxCorners[i].x, BoxCorners[i].y, BoxCorners[i].z),bvt2;
		bvt2.TransformPoint((bvt*extend), boxmat);
        obox.mVertex[i] = vector4(bvt2.x, bvt2.y, bvt2.z, 0);
	}

	for (i=0; i<6; i++)
	{
		tvector3 cross = obox.mVertex[FaceVertexIndex[i][1]];
		cross -= obox.mVertex[FaceVertexIndex[i][0]];
		tvector3 cr2 = obox.mVertex[FaceVertexIndex[i][2]];
		cr2 -= obox.mVertex[FaceVertexIndex[i][0]];

        cross.Cross(cr2);
		obox.mPlanes[i] = vector4(cross.x, cross.y, cross.z, 0);
        obox.mPlanes[i].Normalize();
		obox.mPlanes[i].w = -DotProduct(obox.mPlanes[i], obox.mVertex[FaceVertexIndex[i][0]]);
		obox.mVertex[i].w = fabs(obox.mPlanes[i].Dot( cross));		// save area in vertex w component
	}
    obox.mCenter = vector4(boxmat.m16[12], boxmat.m16[13], boxmat.m16[14], 0);
	obox.mCenter.w = Distance(obox.mCenter, obox.mVertex[0]);
	gOccluderBoxes.push_back(obox);

}
示例#2
0
bvt boolbvt::convert_array_of(const array_of_exprt &expr)
{
  if(expr.type().id()!=ID_array)
    throw "array_of must be array-typed";

  const array_typet &array_type=to_array_type(expr.type());

  if(is_unbounded_array(array_type))
    return conversion_failed(expr);

  std::size_t width=boolbv_width(array_type);

  if(width==0)
  {
    // A zero-length array is acceptable;
    // an element with unknown size is not.
    if(boolbv_width(array_type.subtype())==0)
      return conversion_failed(expr);
    else
      return bvt();
  }

  const exprt &array_size=array_type.size();

  mp_integer size;

  if(to_integer(array_size, size))
    return conversion_failed(expr);

  const bvt &tmp=convert_bv(expr.op0());

  bvt bv;
  bv.resize(width);

  if(size*tmp.size()!=width)
    throw "convert_array_of: unexpected operand width";

  std::size_t offset=0;

  for(mp_integer i=0; i<size; i=i+1)
  {
    for(std::size_t j=0; j<tmp.size(); j++, offset++)
      bv[offset]=tmp[j];
  }

  assert(offset==bv.size());

  return bv;
}
示例#3
0
bvt boolbvt::convert_if(const if_exprt &expr)
{
  std::size_t width=boolbv_width(expr.type());

  if(width==0)
    return bvt(); // An empty bit-vector if.

  literalt cond=convert(expr.cond());

  const bvt &op1_bv=convert_bv(expr.true_case());
  const bvt &op2_bv=convert_bv(expr.false_case());

  if(op1_bv.size()!=width || op2_bv.size()!=width)
    throw "operand size mismatch for if "+expr.pretty();

  return bv_utils.select(cond, op1_bv, op2_bv);
}
示例#4
0
文件: refiner_wp.cpp 项目: olivo/BP
bool refiner_wpt::refine_prefix(
  predicatest &predicates, 
  abstract_modelt &abstract_model,
  const fail_infot &fail_info)
{
  status("Refining set of predicates according to counterexample (WP)");

  reset_num_predicates_added();

  bool found_new=false;

  // keep track of the loops that we're in (may be nested)
  std::list<fail_infot::induction_infot> loops;
  exprt invariant;
  if(fail_info.use_invariants)
    status("Using recurrence predicates detected by loop detection.");
  
  print(10, "refiner_wpt::refine_prefix_async 1");
  
  print(10, "Inconsistent prefix:");

  for(abstract_counterexamplet::stepst::const_reverse_iterator 
      r_it=fail_info.steps.rbegin();
      r_it!=fail_info.steps.rend();
      r_it++)
  {
    std::stringstream str;

    abstract_programt::targett abstract_pc=r_it->pc;

    goto_programt::const_targett concrete_pc=
      abstract_pc->code.concrete_pc;

    if(concrete_pc->is_goto())
      str << "GUARD: " << (r_it->branch_taken?"(":"!(")
                << from_expr(concrete_model.ns, "", concrete_pc->guard) << ")";
    else if(concrete_pc->is_assert())
      str << "ASSERT: "
                << from_expr(concrete_model.ns, "", concrete_pc->guard);
    else if(concrete_pc->is_location())
      str << "LOC" << std::endl;
    else if(concrete_pc->is_other() || concrete_pc->is_assign() || concrete_pc->is_decl())
      str << from_expr(concrete_model.ns, "", concrete_pc->code);
    else
    {
      str << concrete_pc->type;
    }

    str << "  // " << (concrete_pc->location);

    str << std::endl << "**********";

    print(10, str.str());
  }

  
  {
    // get the constraint causing the failure

    exprt predicate=fail_info.guard;

    #ifdef DEBUG
    std::cout << "P start0: " 
              << from_expr(concrete_model.ns, "", predicate) << std::endl;
    #endif

    simplify(predicate, concrete_model.ns);

    abstract_counterexamplet::stepst::const_iterator 
      it=--fail_info.steps.end();

    // there must be at least two steps, or it's odd
    assert(it!=fail_info.steps.begin());

    {
      abstract_programt::targett abstract_pc=it->pc;

      #ifdef DEBUG
      std::cout << "P start1: " 
                << from_expr(concrete_model.ns, "", predicate) << std::endl;
      #endif

      add_predicates(
        abstract_pc, predicates, predicate, found_new, FROM);
    }
      
    // now do the WPs
    goto_symex_statet renaming_state;
    renaming_state.source.thread_nr=it->thread_nr;
    renaming_state.rename(predicate, concrete_model.ns, goto_symex_statet::L0);

    for(it--; // skip last instruction
        it!=fail_info.steps.begin();
        it--)
    {
      #ifdef DEBUG
      std::cout << "refiner_wpt::refine_prefix_async 2\n";
      #endif

      // handle loops 
      if(fail_info.use_invariants)
      {
        if(it->is_loop_begin())
        {
          loops.pop_back(); // pop induction_info if we leave loop
          
#ifdef DEBUG
          std::cout << "INV: "
                    << from_expr(concrete_model.ns, "", invariant) << std::endl;
#endif           
          
          exprt wp(ID_and, typet(ID_bool));
          wp.operands().resize(2);
          wp.op0().swap(invariant);
          wp.op1().swap(predicate);
          predicate.swap(wp);
        }
        else if (it->is_loop_end())
        {
          push_induction_info(fail_info, it, loops);
          invariant.make_true();
        }
      }

      if(!it->is_state())
        continue;

      if(predicate.is_true() && found_new)
      {
        // ok, refuted it, done
        break;
      }
        
      // add the predicate

      goto_programt::const_targett concrete_pc=
        it->pc->code.concrete_pc;
        
      abstract_programt::targett abstract_pc=it->pc;
        
      #ifdef DEBUG
      std::cout << from_expr(concrete_model.ns, "", predicate) << std::endl;
      #endif
      
      exprt no_tid_predicate=predicate;
      renaming_state.get_original_name(no_tid_predicate);
      add_predicates(abstract_pc, predicates, no_tid_predicate, found_new, TO);

      // skip irrelevant instructions
      if(!it->relevant) continue;

      exprt pred_bak=predicate;
#ifdef DEBUG
      goto_programt tmp;
      tmp.output_instruction(concrete_model.ns, "", std::cerr, concrete_pc);
#endif

      // compute weakest precondition
      switch(it->pc->type)
      {
      case ASSUME:
        // we only do this for assumptions
        // if we haven't found a new predicate so far
        if(1/*!found_new*/)
        {
          exprt tid_guard=concrete_pc->guard;
          renaming_state.source.thread_nr=it->thread_nr;
          renaming_state.rename(tid_guard, concrete_model.ns, goto_symex_statet::L0);
          predicate=implies_exprt(tid_guard, predicate);
          simplify(predicate, concrete_model.ns);
        }
        break;

      case GOTO:
        {
          exprt tid_guard=concrete_pc->guard;
          if(!it->branch_taken) tid_guard.make_not();
          renaming_state.source.thread_nr=it->thread_nr;
          renaming_state.rename(tid_guard, concrete_model.ns, goto_symex_statet::L0);
          predicate=implies_exprt(tid_guard, predicate);
          simplify(predicate, concrete_model.ns);
        }
        break;

      case OTHER:
    	/* Ignore if user-specified predicate, otherwise treat like assign */
    	if(it->pc->code.concrete_pc->code.get_statement()==ID_user_specified_predicate || it->pc->code.concrete_pc->code.get_statement()==ID_user_specified_parameter_predicates || it->pc->code.concrete_pc->code.get_statement()==ID_user_specified_return_predicates)
    		break;
      case DECL:
      case ASSIGN:
        #ifdef DEBUG
        std::cout << "OTHER/ASSIGN/DECL\n";
        #endif

        {
          codet tid_tmp_code;
          if(!fail_info.use_invariants ||
             !get_instruction(concrete_pc, loops, tid_tmp_code, invariant))
            tid_tmp_code=to_code(concrete_pc->code);

#ifdef DEBUG
          std::cout << "A P before: " << from_expr(concrete_model.ns, "", predicate) << std::endl;
          std::cout << "Code:     " << from_expr(concrete_model.ns, "", tid_tmp_code) << std::endl;
#endif
          
          // compute weakest precondition
          if(tid_tmp_code.get_statement()==ID_assign)
            approximate_nondet(to_code_assign(tid_tmp_code).rhs());
          renaming_state.source.thread_nr=it->thread_nr;
          renaming_state.rename(tid_tmp_code, concrete_model.ns, goto_symex_statet::L0);
          exprt predicate_wp=wp(tid_tmp_code, predicate, concrete_model.ns);
      
          simplify(predicate_wp, concrete_model.ns);
          predicate=predicate_wp;

#ifdef DEBUG
          std::cout << "A P after:  " << from_expr(concrete_model.ns, "", predicate) << std::endl;
#endif
        }
        break;

      default:
        // ignore
        break;
      }

#ifdef DEBUG
          std::cout << "B P to-check:  " << from_expr(concrete_model.ns, "", predicate) << std::endl;
#endif
          
      if(pred_bak != predicate)
      {
        satcheckt satcheck;
        bv_pointerst solver(concrete_model.ns, satcheck);
        solver.unbounded_array=boolbvt::U_NONE;
        literalt li=make_pos(concrete_model.ns, solver, predicate);
        satcheck.set_assumptions(bvt(1, li));
        propt::resultt result=satcheck.prop_solve();
        assert(propt::P_SATISFIABLE==result || propt::P_UNSATISFIABLE==result);
        if(propt::P_UNSATISFIABLE==result)
          predicate.make_false();
        else
        {
          satcheck.set_assumptions(bvt(1, li.negation()));
          propt::resultt result=satcheck.prop_solve();
          assert(propt::P_SATISFIABLE==result || propt::P_UNSATISFIABLE==result);
          if(propt::P_UNSATISFIABLE==result)
          {
            predicate.make_true();
            if(it->pc->type==ASSIGN)
            {
              const codet &code=concrete_pc->code;
              if(code.get_statement()==ID_assign)
              {
                equal_exprt pred_new(to_code_assign(code).lhs(),
                    to_code_assign(code).rhs());
                simplify(pred_new, concrete_model.ns);
#ifdef DEBUG
                std::cout << "Adding new predicate as we arrived at TRUE: "
                  << from_expr(concrete_model.ns, "", pred_new) << std::endl;
#endif
                no_tid_predicate=pred_new;
                renaming_state.get_original_name(no_tid_predicate);
                add_predicates(abstract_pc, predicates, no_tid_predicate, found_new, FROM);
              }
            }
            else if(it->pc->type==ASSUME || it->pc->type==GOTO)
            {
              exprt pred_new=concrete_pc->guard;
              simplify(pred_new, concrete_model.ns);
#ifdef DEBUG
              std::cout << "Adding new predicate as we arrived at TRUE: "
                << from_expr(concrete_model.ns, "", pred_new) << std::endl;
#endif
              no_tid_predicate=pred_new;
              renaming_state.get_original_name(no_tid_predicate);
              add_predicates(abstract_pc, predicates, no_tid_predicate, found_new, FROM);
            }
          }
        }
      }
      
      #ifdef DEBUG
      std::cout << "B P after:   " << from_expr(concrete_model.ns, "", predicate) << std::endl;
      #endif

      no_tid_predicate=predicate;
      renaming_state.get_original_name(no_tid_predicate);
      add_predicates(abstract_pc, predicates, no_tid_predicate, found_new, FROM);
    }

    if(!predicate.is_true() && fail_info.warn_on_failure)
    {
      warning("Failed to refute spurious trace with WPs (got "+
              from_expr(concrete_model.ns, "", predicate)+")");
    }
  }

  if(found_new && fail_info.use_invariants)
  {
    add_induction_predicates(
      fail_info,
      abstract_model,
      predicates);
  }
  
  // make sure we have progress
  return !found_new;
}