示例#1
0
/*
 * Calculate the determinant of the matrix
 *
 */
double calcDet(double a[][N], int n)
{
	double ans = 0;
	double temp[N][N]={{0.0}};
	double t;
	int i,j,k;

	if (n == 1) {
		return a[0][0];
	}

	for (i = 0; i < n; i++) {
		for(j = 0; j < n-1; j++) {
			for(k = 0; k < n-1; k++) {                             
				temp[j][k] = a[j+1][(k>=i)?k+1:k];    
			}
		}
		t = calcDet(temp, n-1); 
		if (i%2 == 0) {     // + - + - ...                   
			ans += a[0][i]*t;
		} else {
			ans -= a[0][i]*t;
		}
	}      
	return ans;    
}
示例#2
0
void calcB(Eigen::MatrixXd &points, int n, int k)
{
	Eigen::VectorXd B(n);
	double sum;
	
	//calc first k entries
	for (int i = 0; i < k; i++)
	{
		sum = 0;
		for (int j = 0; j < n; j++)
		{
			sum += points(j, i + 1)*points(j, i + 1) - points(j, i)*points(j, i);
		}
		B(i) = sum;
	}

	//calc last n-k entries
	for (int i = k; i < n; i++)
	{
		sum = 0;
		for (int j = 0; j < n; j++)
		{
			if (j < n - k)
				sum += calcDet(points, k, j, i - k) * (points(j, 1) + points(j, 2));
			else if (j == i)
				sum += -calcDet0(points, k) * (points(j, 1) + points(j, 2));
		}
		B(i) = sum;
	}

	B = 0.5 * B;
}
示例#3
0
// n entspricht der dimension der punkte, k = anzahl der punkte - 1
void calcA(Eigen::MatrixXd &points, int n, int k)
{
	Eigen::MatrixXd A(n, n);

	//calc first k rows
	for (int i = 0; i < k; i++)
	{
		for (int j = 0; j < n; j++)
		{
			A(i, j) = points(j, i + 1) - points(j, i);
		}
	}
	//calc last n-k rows
	for (int i = k; i < n; i++)
	{
		for (int j = 0; j < n; j++)
		{
			if (j < n-k)
				A(i, j) = calcDet(points, k, j, i - k);
			else if (j == i)
				A(i, j) = -calcDet0(points, k);
			else
				A(i, j) = 0;
		}
	}
}
示例#4
0
void MainWindow::onLoad()
{
    ui->detEdit->clear();
    ui->detEdit->clear();
    ui->LLEdit->clear();
    ui->normaEdit->clear();
    ui->inputEdit->clear();
    ui->solEdit->clear();

    if(A != 0) {
        for(int i = 0; i < n; i++) {
            free(A[i]);
        }
        free(A);
        A = 0;
    }
    if(d != 0) {
        free(d);
        d = 0;
    }
    if(b != 0) {
        free(b);
        b = 0;
    }

    QFile file(ui->fileNameEdit->text());
    if(!file.open(QIODevice::ReadOnly | QIODevice::Text)) {
        return;
    }

    n = file.readLine().split('\n').at(0).toInt(0, 10);
    m = file.readLine().split('\n').at(0).toInt(0, 10);

    A = (double**) malloc (n * sizeof(double*));
    d = (double*)  malloc (n * (sizeof (double)));
    b = (double*)  malloc (n * (sizeof (double)));
    x = (double*) malloc (n * sizeof(double));


    for(int i = 0; i < n; i++) {
        A[i] = (double*)  malloc (n * (sizeof (double)));
        QList<QByteArray> numbers = file.readLine().split(' ');
        for(int j = 0; j < n; j++) {
            A[i][j] = numbers.at(j).split('\n').at(0).toDouble();
        }
        d[i] = A[i][i];
    }

    QList<QByteArray> numbers = file.readLine().split(' ');
    for(int j = 0; j < n; j++) {
        b[j] = numbers.at(j).split('\n').at(0).toDouble();
    }

    printInput();
    calcDesc();
    calcDet();
    calcSol();
    calcNorma();
}
示例#5
0
/*
 * Calculate the inverse of the matrix
 *
 */
bool calcInv(double src[][N], int n, double des[][N])
{
	double det = calcDet(src,n);
	double t[N][N]={{0.0}};
	int i, j;
	
	if(det == 0) {
		return false;		// The matrix is singular, haven't multiplicative inverse.
	} else {
		calcAdj(src,n,t);
		for(i = 0; i < n; i++) {
			for(j = 0; j < n; j++) {
				des[i][j]=t[i][j]/det;
			}
		}
	}
	return true;
}
示例#6
0
/*
 * Calculate the adjoint of the matrix
 *
 */
void  calcAdj(double ori[][N], int n, double ans[][N])
{
	int i,j,k,t;
	double temp[N][N]={{0.0}};
	
	if (n == 1) {
		ans[0][0] = 1;
		return;
	}
	for (i = 0; i < n; i++) {
		for (j = 0; j < n; j++) {
			for (k = 0; k < n-1; k++) {
				for (t = 0; t < n-1; t++) {
					temp[k][t] = ori[k>=i?k+1:k][t>=j?t+1:t];
				}
			}
			ans[j][i] = calcDet(temp,n-1);
			if ((i+j)%2 == 1) {
				ans[j][i] = - ans[j][i];
			}
		}
	}
}
示例#7
0
void calcBall(ball *ball, Eigen::MatrixXd &points, int n, int k)
{
	//calc A
	Eigen::MatrixXd A(n, n);

	//calc first k rows
	for (int i = 0; i < k; i++)
	{
		for (int j = 0; j < n; j++)
		{
			A(i, j) = points(j, i + 1) - points(j, i);
		}
	}
	//calc last n-k rows
	for (int i = k; i < n; i++)
	{
		for (int j = 0; j < n; j++)
		{
			if (j < n - k)
				A(i, j) = calcDet(points, k, j, i - k);
			else if (j == i)
				A(i, j) = -calcDet0(points, k);
			else
				A(i, j) = 0;
		}
	}

	//calc B
	Eigen::VectorXd B(n);
	double sum;

	//calc first k entries
	for (int i = 0; i < k; i++)
	{
		sum = 0;
		for (int j = 0; j < n; j++)
		{
			sum += points(j, i + 1)*points(j, i + 1) - points(j, i)*points(j, i);
		}
		B(i) = sum;
	}

	//calc last n-k entries
	for (int i = k; i < n; i++)
	{
		sum = 0;
		for (int j = 0; j < n; j++)
		{
			if (j < n - k)
				sum += calcDet(points, k, j, i - k) * (points(j, 1) + points(j, 2));
			else if (j == i)
				sum += -calcDet0(points, k) * (points(j, 1) + points(j, 2));
		}
		B(i) = sum;
	}

	B = 0.5 * B;

	//calculate center of sphere
	ball->c = A.inverse() * B;

	//calculate radius of sphere
	ball->r = (ball->c - points.col(0)).norm();

}