void rdc_flt_min(void *result, void *source, int count) { float *res=(float *)result; float *src=(float *)source; union { float f; int i; } tmp1, tmp2; register int i; if (sizeof(float)==4) { for (i=0; i<count; i++) { do { tmp1.f=res[i]; tmp2.f=src[i]; if (tmp2.f>=tmp1.f) break; } while (!cas32((int *)&(res[i]), tmp1.i, tmp2.i)); } } else { tmpi_error(DBG_INTERNAL, "Architecture assumption failed, float size not equal to 4!"); } }
/* * Allocate an unassigned memnode. */ int mem_node_alloc() { int mnode; mnodeset_t newmask, oldmask; /* * Find an unused memnode. Update it atomically to prevent * a first time memnode creation race. */ for (mnode = 0; mnode < max_mem_nodes; mnode++) if (cas32((uint32_t *)&mem_node_config[mnode].exists, 0, 1) == 0) break; if (mnode >= max_mem_nodes) panic("Out of free memnodes\n"); mem_node_config[mnode].physbase = (uint64_t)-1; mem_node_config[mnode].physmax = 0; atomic_add_16(&num_memnodes, 1); do { oldmask = memnodes_mask; newmask = memnodes_mask | (1ull << mnode); } while (cas64(&memnodes_mask, oldmask, newmask) != oldmask); return (mnode); }
/* * Increment a CPU's work count and return the old value */ static int xc_increment(struct machcpu *mcpu) { int old; do { old = mcpu->xc_work_cnt; } while (cas32((uint32_t *)&mcpu->xc_work_cnt, old, old + 1) != old); return (old); }
static uint32_t rge_atomic_shl32(uint32_t *sp, uint_t count) { uint32_t oldval; uint32_t newval; /* ATOMICALLY */ do { oldval = *sp; newval = oldval << count; } while (cas32(sp, oldval, newval) != oldval); return (oldval); }
void rdc_int_min(void *result, void *source, int count) { int *res=(int *)result; int *src=(int *)source; register int i, tmp1, tmp2; for (i=0; i<count; i++) { do { tmp1=res[i]; tmp2=src[i]; if (tmp2>=tmp1) break; } while (!cas32(&(res[i]), tmp1, tmp2)); } }
void mem_node_add_slice(pfn_t start, pfn_t end) { int mnode; mnodeset_t newmask, oldmask; /* * DR will pass us the first pfn that is allocatable. * We need to round down to get the real start of * the slice. */ if (mem_node_physalign) { start &= ~(btop(mem_node_physalign) - 1); end = roundup(end, btop(mem_node_physalign)) - 1; } mnode = PFN_2_MEM_NODE(start); ASSERT(mnode >= 0 && mnode < max_mem_nodes); if (cas32((uint32_t *)&mem_node_config[mnode].exists, 0, 1)) { /* * Add slice to existing node. */ if (start < mem_node_config[mnode].physbase) mem_node_config[mnode].physbase = start; if (end > mem_node_config[mnode].physmax) mem_node_config[mnode].physmax = end; } else { mem_node_config[mnode].physbase = start; mem_node_config[mnode].physmax = end; atomic_add_16(&num_memnodes, 1); do { oldmask = memnodes_mask; newmask = memnodes_mask | (1ull << mnode); } while (cas64(&memnodes_mask, oldmask, newmask) != oldmask); } /* * Inform the common lgrp framework about the new memory */ lgrp_config(LGRP_CONFIG_MEM_ADD, mnode, MEM_NODE_2_LGRPHAND(mnode)); }