int main(int argc, char** argv) { #ifdef HAVE_AVCODEC #ifdef HAVE_AVFORMAT #ifdef HAVE_SWSCALE assert(argc == 6); ccv_rect_t box = ccv_rect(atoi(argv[2]), atoi(argv[3]), atoi(argv[4]), atoi(argv[5])); box.width = box.width - box.x + 1; box.height = box.height - box.y + 1; printf("%d,%d,%d,%d,%f\n", box.x, box.y, box.width + box.x - 1, box.height + box.y - 1, 1.0f); // init av-related structs AVFormatContext* ic = 0; int video_stream = -1; AVStream* video_st = 0; AVFrame* picture = 0; AVFrame rgb_picture; memset(&rgb_picture, 0, sizeof(AVPicture)); AVPacket packet; memset(&packet, 0, sizeof(AVPacket)); av_init_packet(&packet); av_register_all(); avformat_network_init(); // load video and codec avformat_open_input(&ic, argv[1], 0, 0); avformat_find_stream_info(ic, 0); int i; for (i = 0; i < ic->nb_streams; i++) { AVCodecContext* enc = ic->streams[i]->codec; enc->thread_count = 2; if (AVMEDIA_TYPE_VIDEO == enc->codec_type && video_stream < 0) { AVCodec* codec = avcodec_find_decoder(enc->codec_id); if (!codec || avcodec_open2(enc, codec, 0) < 0) continue; video_stream = i; video_st = ic->streams[i]; picture = avcodec_alloc_frame(); rgb_picture.data[0] = (uint8_t*)ccmalloc(avpicture_get_size(PIX_FMT_RGB24, enc->width, enc->height)); avpicture_fill((AVPicture*)&rgb_picture, rgb_picture.data[0], PIX_FMT_RGB24, enc->width, enc->height); break; } } int got_picture = 0; while (!got_picture) { int result = av_read_frame(ic, &packet); if (result == AVERROR(EAGAIN)) continue; avcodec_decode_video2(video_st->codec, picture, &got_picture, &packet); } ccv_enable_default_cache(); struct SwsContext* picture_ctx = sws_getCachedContext(0, video_st->codec->width, video_st->codec->height, video_st->codec->pix_fmt, video_st->codec->width, video_st->codec->height, PIX_FMT_RGB24, SWS_BICUBIC, 0, 0, 0); sws_scale(picture_ctx, (const uint8_t* const*)picture->data, picture->linesize, 0, video_st->codec->height, rgb_picture.data, rgb_picture.linesize); ccv_dense_matrix_t* x = 0; ccv_read(rgb_picture.data[0], &x, CCV_IO_RGB_RAW | CCV_IO_GRAY, video_st->codec->height, video_st->codec->width, rgb_picture.linesize[0]); ccv_tld_t* tld = ccv_tld_new(x, box, ccv_tld_default_params); ccv_dense_matrix_t* y = 0; for (;;) { got_picture = 0; int result = av_read_frame(ic, &packet); if (result == AVERROR(EAGAIN)) continue; avcodec_decode_video2(video_st->codec, picture, &got_picture, &packet); if (!got_picture) break; sws_scale(picture_ctx, (const uint8_t* const*)picture->data, picture->linesize, 0, video_st->codec->height, rgb_picture.data, rgb_picture.linesize); ccv_read(rgb_picture.data[0], &y, CCV_IO_RGB_RAW | CCV_IO_GRAY, video_st->codec->height, video_st->codec->width, rgb_picture.linesize[0]); ccv_tld_info_t info; ccv_comp_t newbox = ccv_tld_track_object(tld, x, y, &info); printf("%04d: performed learn: %d, performed track: %d, successfully track: %d; %d passed fern detector, %d passed nnc detector, %d merged, %d confident matches, %d close matches\n", tld->count, info.perform_learn, info.perform_track, info.track_success, info.ferns_detects, info.nnc_detects, info.clustered_detects, info.confident_matches, info.close_matches); ccv_dense_matrix_t* image = 0; ccv_read(rgb_picture.data[0], &image, CCV_IO_RGB_RAW | CCV_IO_RGB_COLOR, video_st->codec->height, video_st->codec->width, rgb_picture.linesize[0]); // draw out // for (i = 0; i < tld->top->rnum; i++) if (tld->found) { ccv_comp_t* comp = &newbox; // (ccv_comp_t*)ccv_array_get(tld->top, i); if (comp->rect.x >= 0 && comp->rect.x + comp->rect.width < image->cols && comp->rect.y >= 0 && comp->rect.y + comp->rect.height < image->rows) { int x, y; for (x = comp->rect.x; x < comp->rect.x + comp->rect.width; x++) { image->data.u8[image->step * comp->rect.y + x * 3] = image->data.u8[image->step * (comp->rect.y + comp->rect.height - 1) + x * 3] = 255; image->data.u8[image->step * comp->rect.y + x * 3 + 1] = image->data.u8[image->step * (comp->rect.y + comp->rect.height - 1) + x * 3 + 1] = image->data.u8[image->step * comp->rect.y + x * 3 + 2] = image->data.u8[image->step * (comp->rect.y + comp->rect.height - 1) + x * 3 + 2] = 0; } for (y = comp->rect.y; y < comp->rect.y + comp->rect.height; y++) { image->data.u8[image->step * y + comp->rect.x * 3] = image->data.u8[image->step * y + (comp->rect.x + comp->rect.width - 1) * 3] = 255; image->data.u8[image->step * y + comp->rect.x * 3 + 1] = image->data.u8[image->step * y + (comp->rect.x + comp->rect.width - 1) * 3 + 1] = image->data.u8[image->step * y + comp->rect.x * 3 + 2] = image->data.u8[image->step * y + (comp->rect.x + comp->rect.width - 1) * 3 + 2] = 0; } } } char filename[1024]; sprintf(filename, "tld-out/output-%04d.png", tld->count); ccv_write(image, filename, 0, CCV_IO_PNG_FILE, 0); ccv_matrix_free(image); if (tld->found) printf("%d,%d,%d,%d,%f\n", newbox.rect.x, newbox.rect.y, newbox.rect.width + newbox.rect.x - 1, newbox.rect.height + newbox.rect.y - 1, newbox.confidence); else printf("NaN,NaN,NaN,NaN,NaN\n"); x = y; y = 0; } ccv_matrix_free(x); ccv_tld_free(tld); ccfree(rgb_picture.data[0]); ccv_disable_cache(); #endif #endif #endif return 0; }
ccv_array_t* ccv_bbf_detect_objects(ccv_dense_matrix_t* a, ccv_bbf_classifier_cascade_t** _cascade, int count, ccv_bbf_param_t params) { int hr = a->rows / ENDORSE(params.size.height); int wr = a->cols / ENDORSE(params.size.width); double scale = pow(2., 1. / (params.interval + 1.)); APPROX int next = params.interval + 1; int scale_upto = (int)(log((double)ccv_min(hr, wr)) / log(scale)); ccv_dense_matrix_t** pyr = (ccv_dense_matrix_t**)alloca(ENDORSE(scale_upto + next * 2) * 4 * sizeof(ccv_dense_matrix_t*)); memset(pyr, 0, (scale_upto + next * 2) * 4 * sizeof(ccv_dense_matrix_t*)); if (ENDORSE(params.size.height != _cascade[0]->size.height || params.size.width != _cascade[0]->size.width)) ccv_resample(a, &pyr[0], 0, a->rows * ENDORSE(_cascade[0]->size.height / params.size.height), a->cols * ENDORSE(_cascade[0]->size.width / params.size.width), CCV_INTER_AREA); else pyr[0] = a; APPROX int i; int j, k, t, x, y, q; for (i = 1; ENDORSE(i < ccv_min(params.interval + 1, scale_upto + next * 2)); i++) ccv_resample(pyr[0], &pyr[i * 4], 0, (int)(pyr[0]->rows / pow(scale, i)), (int)(pyr[0]->cols / pow(scale, i)), CCV_INTER_AREA); for (i = next; ENDORSE(i < scale_upto + next * 2); i++) ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4], 0, 0, 0); if (params.accurate) for (i = next * 2; ENDORSE(i < scale_upto + next * 2); i++) { ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 1], 0, 1, 0); ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 2], 0, 0, 1); ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 3], 0, 1, 1); } ccv_array_t* idx_seq; ccv_array_t* seq = ccv_array_new(sizeof(ccv_comp_t), 64, 0); ccv_array_t* seq2 = ccv_array_new(sizeof(ccv_comp_t), 64, 0); ccv_array_t* result_seq = ccv_array_new(sizeof(ccv_comp_t), 64, 0); /* detect in multi scale */ for (t = 0; t < count; t++) { ccv_bbf_classifier_cascade_t* cascade = _cascade[t]; APPROX float scale_x = (float) params.size.width / (float) cascade->size.width; APPROX float scale_y = (float) params.size.height / (float) cascade->size.height; ccv_array_clear(seq); for (i = 0; ENDORSE(i < scale_upto); i++) { APPROX int dx[] = {0, 1, 0, 1}; APPROX int dy[] = {0, 0, 1, 1}; APPROX int i_rows = pyr[i * 4 + next * 8]->rows - ENDORSE(cascade->size.height >> 2); APPROX int steps[] = { pyr[i * 4]->step, pyr[i * 4 + next * 4]->step, pyr[i * 4 + next * 8]->step }; APPROX int i_cols = pyr[i * 4 + next * 8]->cols - ENDORSE(cascade->size.width >> 2); int paddings[] = { pyr[i * 4]->step * 4 - i_cols * 4, pyr[i * 4 + next * 4]->step * 2 - i_cols * 2, pyr[i * 4 + next * 8]->step - i_cols }; for (q = 0; q < (params.accurate ? 4 : 1); q++) { APPROX unsigned char* u8[] = { pyr[i * 4]->data.u8 + dx[q] * 2 + dy[q] * pyr[i * 4]->step * 2, pyr[i * 4 + next * 4]->data.u8 + dx[q] + dy[q] * pyr[i * 4 + next * 4]->step, pyr[i * 4 + next * 8 + q]->data.u8 }; for (y = 0; ENDORSE(y < i_rows); y++) { for (x = 0; ENDORSE(x < i_cols); x++) { APPROX float sum; APPROX int flag = 1; ccv_bbf_stage_classifier_t* classifier = cascade->stage_classifier; for (j = 0; j < ENDORSE(cascade->count); ++j, ++classifier) { sum = 0; APPROX float* alpha = classifier->alpha; ccv_bbf_feature_t* feature = classifier->feature; for (k = 0; k < ENDORSE(classifier->count); ++k, alpha += 2, ++feature) sum += alpha[_ccv_run_bbf_feature(feature, ENDORSE(steps), u8)]; if (ENDORSE(sum) < ENDORSE(classifier->threshold)) { flag = 0; break; } } if (ENDORSE(flag)) { ccv_comp_t comp; comp.rect = ccv_rect((int)((x * 4 + dx[q] * 2) * scale_x + 0.5), (int)((y * 4 + dy[q] * 2) * scale_y + 0.5), (int)(cascade->size.width * scale_x + 0.5), (int)(cascade->size.height * scale_y + 0.5)); comp.neighbors = 1; comp.classification.id = t; comp.classification.confidence = sum; ccv_array_push(seq, &comp); } u8[0] += 4; u8[1] += 2; u8[2] += 1; } u8[0] += paddings[0]; u8[1] += paddings[1]; u8[2] += paddings[2]; } } scale_x *= scale; scale_y *= scale; } /* the following code from OpenCV's haar feature implementation */ if(params.min_neighbors == 0) { for (i = 0; ENDORSE(i < seq->rnum); i++) { ccv_comp_t* comp = (ccv_comp_t*)ENDORSE(ccv_array_get(seq, i)); ccv_array_push(result_seq, comp); } } else { idx_seq = 0; ccv_array_clear(seq2); // group retrieved rectangles in order to filter out noise int ncomp = ccv_array_group(seq, &idx_seq, _ccv_is_equal_same_class, 0); ccv_comp_t* comps = (ccv_comp_t*)ccmalloc((ncomp + 1) * sizeof(ccv_comp_t)); memset(comps, 0, (ncomp + 1) * sizeof(ccv_comp_t)); // count number of neighbors for(i = 0; ENDORSE(i < seq->rnum); i++) { ccv_comp_t r1 = *(ccv_comp_t*)ENDORSE(ccv_array_get(seq, i)); int idx = *(int*)ENDORSE(ccv_array_get(idx_seq, i)); if (ENDORSE(comps[idx].neighbors) == 0) comps[idx].classification.confidence = r1.classification.confidence; ++comps[idx].neighbors; comps[idx].rect.x += r1.rect.x; comps[idx].rect.y += r1.rect.y; comps[idx].rect.width += r1.rect.width; comps[idx].rect.height += r1.rect.height; comps[idx].classification.id = r1.classification.id; comps[idx].classification.confidence = ccv_max(comps[idx].classification.confidence, r1.classification.confidence); } // calculate average bounding box for(i = 0; ENDORSE(i < ncomp); i++) { int n = ENDORSE(comps[i].neighbors); if(n >= params.min_neighbors) { ccv_comp_t comp; comp.rect.x = (comps[i].rect.x * 2 + n) / (2 * n); comp.rect.y = (comps[i].rect.y * 2 + n) / (2 * n); comp.rect.width = (comps[i].rect.width * 2 + n) / (2 * n); comp.rect.height = (comps[i].rect.height * 2 + n) / (2 * n); comp.neighbors = comps[i].neighbors; comp.classification.id = comps[i].classification.id; comp.classification.confidence = comps[i].classification.confidence; ccv_array_push(seq2, &comp); } } // filter out small face rectangles inside large face rectangles for(i = 0; ENDORSE(i < seq2->rnum); i++) { ccv_comp_t r1 = *(ccv_comp_t*)ENDORSE(ccv_array_get(seq2, i)); APPROX int flag = 1; for(j = 0; ENDORSE(j < seq2->rnum); j++) { ccv_comp_t r2 = *(ccv_comp_t*)ENDORSE(ccv_array_get(seq2, j)); APPROX int distance = (int)(r2.rect.width * 0.25 + 0.5); if(ENDORSE(i != j && r1.classification.id == r2.classification.id && r1.rect.x >= r2.rect.x - distance && r1.rect.y >= r2.rect.y - distance && r1.rect.x + r1.rect.width <= r2.rect.x + r2.rect.width + distance && r1.rect.y + r1.rect.height <= r2.rect.y + r2.rect.height + distance && (r2.neighbors > ccv_max(3, r1.neighbors) || r1.neighbors < 3))) { flag = 0; break; } } if(ENDORSE(flag)) ccv_array_push(result_seq, &r1); } ccv_array_free(idx_seq); ccfree(comps); } } ccv_array_free(seq); ccv_array_free(seq2); ccv_array_t* result_seq2; /* the following code from OpenCV's haar feature implementation */ if (params.flags & CCV_BBF_NO_NESTED) { result_seq2 = ccv_array_new(sizeof(ccv_comp_t), 64, 0); idx_seq = 0; // group retrieved rectangles in order to filter out noise int ncomp = ccv_array_group(result_seq, &idx_seq, _ccv_is_equal, 0); ccv_comp_t* comps = (ccv_comp_t*)ccmalloc((ncomp + 1) * sizeof(ccv_comp_t)); memset(comps, 0, (ncomp + 1) * sizeof(ccv_comp_t)); // count number of neighbors for(i = 0; ENDORSE(i < result_seq->rnum); i++) { ccv_comp_t r1 = *(ccv_comp_t*)ENDORSE(ccv_array_get(result_seq, i)); int idx = *(int*)ENDORSE(ccv_array_get(idx_seq, i)); if (ENDORSE(comps[idx].neighbors == 0 || comps[idx].classification.confidence < r1.classification.confidence)) { comps[idx].classification.confidence = r1.classification.confidence; comps[idx].neighbors = 1; comps[idx].rect = r1.rect; comps[idx].classification.id = r1.classification.id; } } // calculate average bounding box for(i = 0; ENDORSE(i < ncomp); i++) if(ENDORSE(comps[i].neighbors)) ccv_array_push(result_seq2, &comps[i]); ccv_array_free(result_seq); ccfree(comps); } else { result_seq2 = result_seq; } for (i = 1; ENDORSE(i < scale_upto + next * 2); i++) ccv_matrix_free(pyr[i * 4]); if (params.accurate) for (i = next * 2; ENDORSE(i < scale_upto + next * 2); i++) { ccv_matrix_free(pyr[i * 4 + 1]); ccv_matrix_free(pyr[i * 4 + 2]); ccv_matrix_free(pyr[i * 4 + 3]); } if (ENDORSE(params.size.height != _cascade[0]->size.height || params.size.width != _cascade[0]->size.width)) ccv_matrix_free(pyr[0]); return result_seq2; }