示例#1
0
ccv_array_t* ccv_bbf_detect_objects(ccv_dense_matrix_t* a, ccv_bbf_classifier_cascade_t** _cascade, int count, ccv_bbf_param_t params)
{
	int hr = a->rows / ENDORSE(params.size.height);
	int wr = a->cols / ENDORSE(params.size.width);
	double scale = pow(2., 1. / (params.interval + 1.));
	APPROX int next = params.interval + 1;
	int scale_upto = (int)(log((double)ccv_min(hr, wr)) / log(scale));
	ccv_dense_matrix_t** pyr = (ccv_dense_matrix_t**)alloca(ENDORSE(scale_upto + next * 2) * 4 * sizeof(ccv_dense_matrix_t*));
	memset(pyr, 0, (scale_upto + next * 2) * 4 * sizeof(ccv_dense_matrix_t*));
	if (ENDORSE(params.size.height != _cascade[0]->size.height || params.size.width != _cascade[0]->size.width))
		ccv_resample(a, &pyr[0], 0, a->rows * ENDORSE(_cascade[0]->size.height / params.size.height), a->cols * ENDORSE(_cascade[0]->size.width / params.size.width), CCV_INTER_AREA);
	else
		pyr[0] = a;
	APPROX int i;
        int j, k, t, x, y, q;
	for (i = 1; ENDORSE(i < ccv_min(params.interval + 1, scale_upto + next * 2)); i++)
		ccv_resample(pyr[0], &pyr[i * 4], 0, (int)(pyr[0]->rows / pow(scale, i)), (int)(pyr[0]->cols / pow(scale, i)), CCV_INTER_AREA);
	for (i = next; ENDORSE(i < scale_upto + next * 2); i++)
		ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4], 0, 0, 0);
	if (params.accurate)
		for (i = next * 2; ENDORSE(i < scale_upto + next * 2); i++)
		{
			ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 1], 0, 1, 0);
			ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 2], 0, 0, 1);
			ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 3], 0, 1, 1);
		}
	ccv_array_t* idx_seq;
	ccv_array_t* seq = ccv_array_new(sizeof(ccv_comp_t), 64, 0);
	ccv_array_t* seq2 = ccv_array_new(sizeof(ccv_comp_t), 64, 0);
	ccv_array_t* result_seq = ccv_array_new(sizeof(ccv_comp_t), 64, 0);
	/* detect in multi scale */
	for (t = 0; t < count; t++)
	{
		ccv_bbf_classifier_cascade_t* cascade = _cascade[t];
		APPROX float scale_x = (float) params.size.width / (float) cascade->size.width;
		APPROX float scale_y = (float) params.size.height / (float) cascade->size.height;
		ccv_array_clear(seq);
		for (i = 0; ENDORSE(i < scale_upto); i++)
		{
			APPROX int dx[] = {0, 1, 0, 1};
			APPROX int dy[] = {0, 0, 1, 1};
			APPROX int i_rows = pyr[i * 4 + next * 8]->rows - ENDORSE(cascade->size.height >> 2);
			APPROX int steps[] = { pyr[i * 4]->step, pyr[i * 4 + next * 4]->step, pyr[i * 4 + next * 8]->step };
			APPROX int i_cols = pyr[i * 4 + next * 8]->cols - ENDORSE(cascade->size.width >> 2);
			int paddings[] = { pyr[i * 4]->step * 4 - i_cols * 4,
							   pyr[i * 4 + next * 4]->step * 2 - i_cols * 2,
							   pyr[i * 4 + next * 8]->step - i_cols };
			for (q = 0; q < (params.accurate ? 4 : 1); q++)
			{
				APPROX unsigned char* u8[] = { pyr[i * 4]->data.u8 + dx[q] * 2 + dy[q] * pyr[i * 4]->step * 2, pyr[i * 4 + next * 4]->data.u8 + dx[q] + dy[q] * pyr[i * 4 + next * 4]->step, pyr[i * 4 + next * 8 + q]->data.u8 };
				for (y = 0; ENDORSE(y < i_rows); y++)
				{
					for (x = 0; ENDORSE(x < i_cols); x++)
					{
						APPROX float sum;
						APPROX int flag = 1;
						ccv_bbf_stage_classifier_t* classifier = cascade->stage_classifier;
						for (j = 0; j < ENDORSE(cascade->count); ++j, ++classifier)
						{
							sum = 0;
							APPROX float* alpha = classifier->alpha;
							ccv_bbf_feature_t* feature = classifier->feature;
							for (k = 0; k < ENDORSE(classifier->count); ++k, alpha += 2, ++feature)
								sum += alpha[_ccv_run_bbf_feature(feature, ENDORSE(steps), u8)];
							if (ENDORSE(sum) < ENDORSE(classifier->threshold))
							{
								flag = 0;
								break;
							}
						}
						if (ENDORSE(flag))
						{
							ccv_comp_t comp;
							comp.rect = ccv_rect((int)((x * 4 + dx[q] * 2) * scale_x + 0.5), (int)((y * 4 + dy[q] * 2) * scale_y + 0.5), (int)(cascade->size.width * scale_x + 0.5), (int)(cascade->size.height * scale_y + 0.5));
							comp.neighbors = 1;
							comp.classification.id = t;
							comp.classification.confidence = sum;
							ccv_array_push(seq, &comp);
						}
						u8[0] += 4;
						u8[1] += 2;
						u8[2] += 1;
					}
					u8[0] += paddings[0];
					u8[1] += paddings[1];
					u8[2] += paddings[2];
				}
			}
			scale_x *= scale;
			scale_y *= scale;
		}

		/* the following code from OpenCV's haar feature implementation */
		if(params.min_neighbors == 0)
		{
			for (i = 0; ENDORSE(i < seq->rnum); i++)
			{
				ccv_comp_t* comp = (ccv_comp_t*)ENDORSE(ccv_array_get(seq, i));
				ccv_array_push(result_seq, comp);
			}
		} else {
			idx_seq = 0;
			ccv_array_clear(seq2);
			// group retrieved rectangles in order to filter out noise
			int ncomp = ccv_array_group(seq, &idx_seq, _ccv_is_equal_same_class, 0);
			ccv_comp_t* comps = (ccv_comp_t*)ccmalloc((ncomp + 1) * sizeof(ccv_comp_t));
			memset(comps, 0, (ncomp + 1) * sizeof(ccv_comp_t));

			// count number of neighbors
			for(i = 0; ENDORSE(i < seq->rnum); i++)
			{
				ccv_comp_t r1 = *(ccv_comp_t*)ENDORSE(ccv_array_get(seq, i));
				int idx = *(int*)ENDORSE(ccv_array_get(idx_seq, i));

				if (ENDORSE(comps[idx].neighbors) == 0)
					comps[idx].classification.confidence = r1.classification.confidence;

				++comps[idx].neighbors;

				comps[idx].rect.x += r1.rect.x;
				comps[idx].rect.y += r1.rect.y;
				comps[idx].rect.width += r1.rect.width;
				comps[idx].rect.height += r1.rect.height;
				comps[idx].classification.id = r1.classification.id;
				comps[idx].classification.confidence = ccv_max(comps[idx].classification.confidence, r1.classification.confidence);
			}

			// calculate average bounding box
			for(i = 0; ENDORSE(i < ncomp); i++)
			{
				int n = ENDORSE(comps[i].neighbors);
				if(n >= params.min_neighbors)
				{
					ccv_comp_t comp;
					comp.rect.x = (comps[i].rect.x * 2 + n) / (2 * n);
					comp.rect.y = (comps[i].rect.y * 2 + n) / (2 * n);
					comp.rect.width = (comps[i].rect.width * 2 + n) / (2 * n);
					comp.rect.height = (comps[i].rect.height * 2 + n) / (2 * n);
					comp.neighbors = comps[i].neighbors;
					comp.classification.id = comps[i].classification.id;
					comp.classification.confidence = comps[i].classification.confidence;
					ccv_array_push(seq2, &comp);
				}
			}

			// filter out small face rectangles inside large face rectangles
			for(i = 0; ENDORSE(i < seq2->rnum); i++)
			{
				ccv_comp_t r1 = *(ccv_comp_t*)ENDORSE(ccv_array_get(seq2, i));
				APPROX int flag = 1;

				for(j = 0; ENDORSE(j < seq2->rnum); j++)
				{
					ccv_comp_t r2 = *(ccv_comp_t*)ENDORSE(ccv_array_get(seq2, j));
					APPROX int distance = (int)(r2.rect.width * 0.25 + 0.5);

					if(ENDORSE(i != j &&
					   r1.classification.id == r2.classification.id &&
					   r1.rect.x >= r2.rect.x - distance &&
					   r1.rect.y >= r2.rect.y - distance &&
					   r1.rect.x + r1.rect.width <= r2.rect.x + r2.rect.width + distance &&
					   r1.rect.y + r1.rect.height <= r2.rect.y + r2.rect.height + distance &&
					   (r2.neighbors > ccv_max(3, r1.neighbors) || r1.neighbors < 3)))
					{
						flag = 0;
						break;
					}
				}

				if(ENDORSE(flag))
					ccv_array_push(result_seq, &r1);
			}
			ccv_array_free(idx_seq);
			ccfree(comps);
		}
	}

	ccv_array_free(seq);
	ccv_array_free(seq2);

	ccv_array_t* result_seq2;
	/* the following code from OpenCV's haar feature implementation */
	if (params.flags & CCV_BBF_NO_NESTED)
	{
		result_seq2 = ccv_array_new(sizeof(ccv_comp_t), 64, 0);
		idx_seq = 0;
		// group retrieved rectangles in order to filter out noise
		int ncomp = ccv_array_group(result_seq, &idx_seq, _ccv_is_equal, 0);
		ccv_comp_t* comps = (ccv_comp_t*)ccmalloc((ncomp + 1) * sizeof(ccv_comp_t));
		memset(comps, 0, (ncomp + 1) * sizeof(ccv_comp_t));

		// count number of neighbors
		for(i = 0; ENDORSE(i < result_seq->rnum); i++)
		{
			ccv_comp_t r1 = *(ccv_comp_t*)ENDORSE(ccv_array_get(result_seq, i));
			int idx = *(int*)ENDORSE(ccv_array_get(idx_seq, i));

			if (ENDORSE(comps[idx].neighbors == 0 || comps[idx].classification.confidence < r1.classification.confidence))
			{
				comps[idx].classification.confidence = r1.classification.confidence;
				comps[idx].neighbors = 1;
				comps[idx].rect = r1.rect;
				comps[idx].classification.id = r1.classification.id;
			}
		}

		// calculate average bounding box
		for(i = 0; ENDORSE(i < ncomp); i++)
			if(ENDORSE(comps[i].neighbors))
				ccv_array_push(result_seq2, &comps[i]);

		ccv_array_free(result_seq);
		ccfree(comps);
	} else {
		result_seq2 = result_seq;
	}

	for (i = 1; ENDORSE(i < scale_upto + next * 2); i++)
		ccv_matrix_free(pyr[i * 4]);
	if (params.accurate)
		for (i = next * 2; ENDORSE(i < scale_upto + next * 2); i++)
		{
			ccv_matrix_free(pyr[i * 4 + 1]);
			ccv_matrix_free(pyr[i * 4 + 2]);
			ccv_matrix_free(pyr[i * 4 + 3]);
		}
	if (ENDORSE(params.size.height != _cascade[0]->size.height || params.size.width != _cascade[0]->size.width))
		ccv_matrix_free(pyr[0]);

	return result_seq2;
}
示例#2
0
/* this code is a rewrite from OpenCV's legendary Lucas-Kanade optical flow implementation */
void ccv_optical_flow_lucas_kanade(ccv_dense_matrix_t* a, ccv_dense_matrix_t* b, ccv_array_t* point_a, ccv_array_t** point_b, ccv_size_t win_size, int level, double min_eigen)
{
	assert(a && b && a->rows == b->rows && a->cols == b->cols);
	assert(CCV_GET_CHANNEL(a->type) == CCV_GET_CHANNEL(b->type) && CCV_GET_DATA_TYPE(a->type) == CCV_GET_DATA_TYPE(b->type));
	assert(CCV_GET_CHANNEL(a->type) == 1);
	assert(CCV_GET_DATA_TYPE(a->type) == CCV_8U);
	assert(point_a->rnum > 0);
	level = ccv_clamp(level + 1, 1, (int)(log((double)ccv_min(a->rows, a->cols) / ccv_max(win_size.width * 2, win_size.height * 2)) / log(2.0) + 0.5));
	ccv_declare_derived_signature(sig, a->sig != 0 && b->sig != 0 && point_a->sig != 0, ccv_sign_with_format(128, "ccv_optical_flow_lucas_kanade(%d,%d,%d,%la)", win_size.width, win_size.height, level, min_eigen), a->sig, b->sig, point_a->sig, CCV_EOF_SIGN);
	ccv_array_t* seq = *point_b = ccv_array_new(sizeof(ccv_decimal_point_with_status_t), point_a->rnum, sig);
	ccv_object_return_if_cached(, seq);
	seq->rnum = point_a->rnum;
	ccv_dense_matrix_t** pyr_a = (ccv_dense_matrix_t**)malloc(sizeof(ccv_dense_matrix_t*) * level);
	ccv_dense_matrix_t** pyr_a_dx = (ccv_dense_matrix_t**)malloc(sizeof(ccv_dense_matrix_t*) * level);
	ccv_dense_matrix_t** pyr_a_dy = (ccv_dense_matrix_t**)malloc(sizeof(ccv_dense_matrix_t*) * level);
	ccv_dense_matrix_t** pyr_b = (ccv_dense_matrix_t**)malloc(sizeof(ccv_dense_matrix_t*) * level);
	int i, j, t, x, y;
	/* generating image pyramid */
	pyr_a[0] = a;
	pyr_a_dx[0] = pyr_a_dy[0] = 0;
	ccv_sobel(pyr_a[0], &pyr_a_dx[0], 0, 3, 0);
	ccv_sobel(pyr_a[0], &pyr_a_dy[0], 0, 0, 3);
	pyr_b[0] = b;
	for (i = 1; i < level; i++)
	{
		pyr_a[i] = pyr_a_dx[i] = pyr_a_dy[i] = pyr_b[i] = 0;
		ccv_sample_down(pyr_a[i - 1], &pyr_a[i], 0, 0, 0);
		ccv_sobel(pyr_a[i], &pyr_a_dx[i], 0, 3, 0);
		ccv_sobel(pyr_a[i], &pyr_a_dy[i], 0, 0, 3);
		ccv_sample_down(pyr_b[i - 1], &pyr_b[i], 0, 0, 0);
	}
	int* wi = (int*)malloc(sizeof(int) * win_size.width * win_size.height);
	int* widx = (int*)malloc(sizeof(int) * win_size.width * win_size.height);
	int* widy = (int*)malloc(sizeof(int) * win_size.width * win_size.height);
	ccv_decimal_point_t half_win = ccv_decimal_point((win_size.width - 1) * 0.5f, (win_size.height - 1) * 0.5f);
	const int W_BITS14 = 14, W_BITS7 = 7, W_BITS9 = 9;
	const float FLT_SCALE = 1.0f / (1 << 25);
	// clean up status to 1
	for (i = 0; i < point_a->rnum; i++)
	{
		ccv_decimal_point_with_status_t* point_with_status = (ccv_decimal_point_with_status_t*)ccv_array_get(seq, i);
		point_with_status->status = 1;
	}
	int prev_rows, prev_cols;
	for (t = level - 1; t >= 0; t--)
	{
		ccv_dense_matrix_t* a = pyr_a[t];
		ccv_dense_matrix_t* adx = pyr_a_dx[t];
		ccv_dense_matrix_t* ady = pyr_a_dy[t];
		assert(CCV_GET_DATA_TYPE(adx->type) == CCV_32S);
		assert(CCV_GET_DATA_TYPE(ady->type) == CCV_32S);
		ccv_dense_matrix_t* b = pyr_b[t];
		for (i = 0; i < point_a->rnum; i++)
		{
			ccv_decimal_point_t prev_point = *(ccv_decimal_point_t*)ccv_array_get(point_a, i);
			ccv_decimal_point_with_status_t* point_with_status = (ccv_decimal_point_with_status_t*)ccv_array_get(seq, i);
			prev_point.x = prev_point.x / (float)(1 << t);
			prev_point.y = prev_point.y / (float)(1 << t);
			ccv_decimal_point_t next_point;
			if (t == level - 1)
				next_point = prev_point;
			else {
				next_point.x = point_with_status->point.x * 2 + (a->cols - prev_cols * 2) * 0.5;
				next_point.y = point_with_status->point.y * 2 + (a->rows - prev_rows * 2) * 0.5;
			}
			point_with_status->point = next_point;
			prev_point.x -= half_win.x;
			prev_point.y -= half_win.y;
			ccv_point_t iprev_point = ccv_point((int)prev_point.x, (int)prev_point.y);
			if (iprev_point.x < 0 || iprev_point.x >= a->cols - win_size.width - 1 ||
				iprev_point.y < 0 || iprev_point.y >= a->rows - win_size.height - 1)
			{
				if (t == 0)
					point_with_status->status = 0;
				continue;
			}
			float xd = prev_point.x - iprev_point.x;
			float yd = prev_point.y - iprev_point.y;
			int iw00 = (int)((1 - xd) * (1 - yd) * (1 << W_BITS14) + 0.5);
			int iw01 = (int)(xd * (1 - yd) * (1 << W_BITS14) + 0.5);
			int iw10 = (int)((1 - xd) * yd * (1 << W_BITS14) + 0.5);
			int iw11 = (1 << W_BITS14) - iw00 - iw01 - iw10;
			float a11 = 0, a12 = 0, a22 = 0;
			unsigned char* a_ptr = (unsigned char*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_8U, a, iprev_point.y, iprev_point.x, 0);
			int* adx_ptr = (int*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_32S, adx, iprev_point.y, iprev_point.x, 0);
			int* ady_ptr = (int*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_32S, ady, iprev_point.y, iprev_point.x, 0);
			int* wi_ptr = wi;
			int* widx_ptr = widx;
			int* widy_ptr = widy;
			for (y = 0; y < win_size.height; y++)
			{
				for (x = 0; x < win_size.width; x++)
				{
					wi_ptr[x] = ccv_descale(a_ptr[x] * iw00 + a_ptr[x + 1] * iw01 + a_ptr[x + a->step] * iw10 + a_ptr[x + a->step + 1] * iw11, W_BITS7);
					// because we use 3x3 sobel, which scaled derivative up by 4
					widx_ptr[x] = ccv_descale(adx_ptr[x] * iw00 + adx_ptr[x + 1] * iw01 + adx_ptr[x + adx->cols] * iw10 + adx_ptr[x + adx->cols + 1] * iw11, W_BITS9);
					widy_ptr[x] = ccv_descale(ady_ptr[x] * iw00 + ady_ptr[x + 1] * iw01 + ady_ptr[x + ady->cols] + iw10 + ady_ptr[x + ady->cols + 1] * iw11, W_BITS9);
					a11 += (float)(widx_ptr[x] * widx_ptr[x]);
					a12 += (float)(widx_ptr[x] * widy_ptr[x]);
					a22 += (float)(widy_ptr[x] * widy_ptr[x]);
				}
				a_ptr += a->step;
				adx_ptr += adx->cols;
				ady_ptr += ady->cols;
				wi_ptr += win_size.width;
				widx_ptr += win_size.width;
				widy_ptr += win_size.width;
			}
			a11 *= FLT_SCALE;
			a12 *= FLT_SCALE;
			a22 *= FLT_SCALE;
			float D = a11 * a22 - a12 * a12;
			float eigen = (a22 + a11 - sqrtf((a11 - a22) * (a11 - a22) + 4.0f * a12 * a12)) / (2 * win_size.width * win_size.height);
			if (eigen < min_eigen || D < FLT_EPSILON)
			{
				if (t == 0)
					point_with_status->status = 0;
				continue;
			}
			D = 1.0f / D;
			next_point.x -= half_win.x;
			next_point.y -= half_win.y;
			ccv_decimal_point_t prev_delta;
			for (j = 0; j < LK_MAX_ITER; j++)
			{
				ccv_point_t inext_point = ccv_point((int)next_point.x, (int)next_point.y);
				if (inext_point.x < 0 || inext_point.x >= a->cols - win_size.width - 1 ||
					inext_point.y < 0 || inext_point.y >= a->rows - win_size.height - 1)
					break;
				float xd = next_point.x - inext_point.x;
				float yd = next_point.y - inext_point.y;
				int iw00 = (int)((1 - xd) * (1 - yd) * (1 << W_BITS14) + 0.5);
				int iw01 = (int)(xd * (1 - yd) * (1 << W_BITS14) + 0.5);
				int iw10 = (int)((1 - xd) * yd * (1 << W_BITS14) + 0.5);
				int iw11 = (1 << W_BITS14) - iw00 - iw01 - iw10;
				float b1 = 0, b2 = 0;
				unsigned char* b_ptr = (unsigned char*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_8U, b, inext_point.y, inext_point.x, 0);
				int* wi_ptr = wi;
				int* widx_ptr = widx;
				int* widy_ptr = widy;
				for (y = 0; y < win_size.height; y++)
				{
					for (x = 0; x < win_size.width; x++)
					{
						int diff = ccv_descale(b_ptr[x] * iw00 + b_ptr[x + 1] * iw01 + b_ptr[x + b->step] * iw10 + b_ptr[x + b->step + 1] * iw11, W_BITS7) - wi_ptr[x];
						b1 += (float)(diff * widx_ptr[x]);
						b2 += (float)(diff * widy_ptr[x]);
					}
					b_ptr += b->step;
					wi_ptr += win_size.width;
					widx_ptr += win_size.width;
					widy_ptr += win_size.width;
				}
				b1 *= FLT_SCALE;
				b2 *= FLT_SCALE;
				ccv_decimal_point_t delta = ccv_decimal_point((a12 * b2 - a22 * b1) * D, (a12 * b1 - a11 * b2) * D);
				next_point.x += delta.x;
				next_point.y += delta.y;
				if (delta.x * delta.x + delta.y * delta.y < LK_EPSILON)
					break;
				if (j > 0 && fabs(prev_delta.x - delta.x) < 0.01 && fabs(prev_delta.y - delta.y) < 0.01)
				{
					next_point.x -= delta.x * 0.5;
					next_point.y -= delta.y * 0.5;
					break;
				}
				prev_delta = delta;
			}
			ccv_point_t inext_point = ccv_point((int)next_point.x, (int)next_point.y);
			if (inext_point.x < 0 || inext_point.x >= a->cols - win_size.width - 1 ||
				inext_point.y < 0 || inext_point.y >= a->rows - win_size.height - 1)
				point_with_status->status = 0;
			else {
				point_with_status->point.x = next_point.x + half_win.x;
				point_with_status->point.y = next_point.y + half_win.y;
			}
		}
		prev_rows = a->rows;
		prev_cols = a->cols;
		ccv_matrix_free(adx);
		ccv_matrix_free(ady);
		if (t > 0)
		{
			ccv_matrix_free(a);
			ccv_matrix_free(b);
		}
	}
        free(widy);
        free(widx);
        free(wi);
        free(pyr_b);
        free(pyr_a_dy);
        free(pyr_a_dx);
        free(pyr_a);
}