示例#1
0
/* Subroutine */ int cggrqf_(integer *m, integer *p, integer *n, complex *a, 
	integer *lda, complex *taua, complex *b, integer *ldb, complex *taub, 
	complex *work, integer *lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;

    /* Local variables */
    integer nb, nb1, nb2, nb3, lopt;
    extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, 
	    integer *, complex *, complex *, integer *, integer *), cgerqf_(
	    integer *, integer *, complex *, integer *, complex *, complex *, 
	    integer *, integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int cunmrq_(char *, char *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    complex *, integer *, integer *);
    integer lwkopt;
    logical lquery;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CGGRQF computes a generalized RQ factorization of an M-by-N matrix A */
/*  and a P-by-N matrix B: */

/*              A = R*Q,        B = Z*T*Q, */

/*  where Q is an N-by-N unitary matrix, Z is a P-by-P unitary */
/*  matrix, and R and T assume one of the forms: */

/*  if M <= N,  R = ( 0  R12 ) M,   or if M > N,  R = ( R11 ) M-N, */
/*                   N-M  M                           ( R21 ) N */
/*                                                       N */

/*  where R12 or R21 is upper triangular, and */

/*  if P >= N,  T = ( T11 ) N  ,   or if P < N,  T = ( T11  T12 ) P, */
/*                  (  0  ) P-N                         P   N-P */
/*                     N */

/*  where T11 is upper triangular. */

/*  In particular, if B is square and nonsingular, the GRQ factorization */
/*  of A and B implicitly gives the RQ factorization of A*inv(B): */

/*               A*inv(B) = (R*inv(T))*Z' */

/*  where inv(B) denotes the inverse of the matrix B, and Z' denotes the */
/*  conjugate transpose of the matrix Z. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  P       (input) INTEGER */
/*          The number of rows of the matrix B.  P >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrices A and B. N >= 0. */

/*  A       (input/output) COMPLEX array, dimension (LDA,N) */
/*          On entry, the M-by-N matrix A. */
/*          On exit, if M <= N, the upper triangle of the subarray */
/*          A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R; */
/*          if M > N, the elements on and above the (M-N)-th subdiagonal */
/*          contain the M-by-N upper trapezoidal matrix R; the remaining */
/*          elements, with the array TAUA, represent the unitary */
/*          matrix Q as a product of elementary reflectors (see Further */
/*          Details). */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. LDA >= max(1,M). */

/*  TAUA    (output) COMPLEX array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors which */
/*          represent the unitary matrix Q (see Further Details). */

/*  B       (input/output) COMPLEX array, dimension (LDB,N) */
/*          On entry, the P-by-N matrix B. */
/*          On exit, the elements on and above the diagonal of the array */
/*          contain the min(P,N)-by-N upper trapezoidal matrix T (T is */
/*          upper triangular if P >= N); the elements below the diagonal, */
/*          with the array TAUB, represent the unitary matrix Z as a */
/*          product of elementary reflectors (see Further Details). */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B. LDB >= max(1,P). */

/*  TAUB    (output) COMPLEX array, dimension (min(P,N)) */
/*          The scalar factors of the elementary reflectors which */
/*          represent the unitary matrix Z (see Further Details). */

/*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. LWORK >= max(1,N,M,P). */
/*          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), */
/*          where NB1 is the optimal blocksize for the RQ factorization */
/*          of an M-by-N matrix, NB2 is the optimal blocksize for the */
/*          QR factorization of a P-by-N matrix, and NB3 is the optimal */
/*          blocksize for a call of CUNMRQ. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO=-i, the i-th argument had an illegal value. */

/*  Further Details */
/*  =============== */

/*  The matrix Q is represented as a product of elementary reflectors */

/*     Q = H(1) H(2) . . . H(k), where k = min(m,n). */

/*  Each H(i) has the form */

/*     H(i) = I - taua * v * v' */

/*  where taua is a complex scalar, and v is a complex vector with */
/*  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in */
/*  A(m-k+i,1:n-k+i-1), and taua in TAUA(i). */
/*  To form Q explicitly, use LAPACK subroutine CUNGRQ. */
/*  To use Q to update another matrix, use LAPACK subroutine CUNMRQ. */

/*  The matrix Z is represented as a product of elementary reflectors */

/*     Z = H(1) H(2) . . . H(k), where k = min(p,n). */

/*  Each H(i) has the form */

/*     H(i) = I - taub * v * v' */

/*  where taub is a complex scalar, and v is a complex vector with */
/*  v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i), */
/*  and taub in TAUB(i). */
/*  To form Z explicitly, use LAPACK subroutine CUNGQR. */
/*  To use Z to update another matrix, use LAPACK subroutine CUNMQR. */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --taua;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --taub;
    --work;

    /* Function Body */
    *info = 0;
    nb1 = ilaenv_(&c__1, "CGERQF", " ", m, n, &c_n1, &c_n1);
    nb2 = ilaenv_(&c__1, "CGEQRF", " ", p, n, &c_n1, &c_n1);
    nb3 = ilaenv_(&c__1, "CUNMRQ", " ", m, n, p, &c_n1);
/* Computing MAX */
    i__1 = max(nb1,nb2);
    nb = max(i__1,nb3);
/* Computing MAX */
    i__1 = max(*n,*m);
    lwkopt = max(i__1,*p) * nb;
    work[1].r = (real) lwkopt, work[1].i = 0.f;
    lquery = *lwork == -1;
    if (*m < 0) {
	*info = -1;
    } else if (*p < 0) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else if (*ldb < max(1,*p)) {
	*info = -8;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = max(1,*m), i__1 = max(i__1,*p);
	if (*lwork < max(i__1,*n) && ! lquery) {
	    *info = -11;
	}
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CGGRQF", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     RQ factorization of M-by-N matrix A: A = R*Q */

    cgerqf_(m, n, &a[a_offset], lda, &taua[1], &work[1], lwork, info);
    lopt = work[1].r;

/*     Update B := B*Q' */

    i__1 = min(*m,*n);
/* Computing MAX */
    i__2 = 1, i__3 = *m - *n + 1;
    cunmrq_("Right", "Conjugate Transpose", p, n, &i__1, &a[max(i__2, i__3)+ 
	    a_dim1], lda, &taua[1], &b[b_offset], ldb, &work[1], lwork, info);
/* Computing MAX */
    i__1 = lopt, i__2 = (integer) work[1].r;
    lopt = max(i__1,i__2);

/*     QR factorization of P-by-N matrix B: B = Z*T */

    cgeqrf_(p, n, &b[b_offset], ldb, &taub[1], &work[1], lwork, info);
/* Computing MAX */
    i__2 = lopt, i__3 = (integer) work[1].r;
    i__1 = max(i__2,i__3);
    work[1].r = (real) i__1, work[1].i = 0.f;

    return 0;

/*     End of CGGRQF */

} /* cggrqf_ */
示例#2
0
/* Subroutine */ int cggqrf_(integer *n, integer *m, integer *p, complex *a, 
	integer *lda, complex *taua, complex *b, integer *ldb, complex *taub, 
	complex *work, integer *lwork, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    CGGQRF computes a generalized QR factorization of an N-by-M matrix A   
    and an N-by-P matrix B:   

                A = Q*R,        B = Q*T*Z,   

    where Q is an N-by-N unitary matrix, Z is a P-by-P unitary matrix,   
    and R and T assume one of the forms:   

    if N >= M,  R = ( R11 ) M  ,   or if N < M,  R = ( R11  R12 ) N,   
                    (  0  ) N-M                         N   M-N   
                       M   

    where R11 is upper triangular, and   

    if N <= P,  T = ( 0  T12 ) N,   or if N > P,  T = ( T11 ) N-P,   
                     P-N  N                           ( T21 ) P   
                                                         P   

    where T12 or T21 is upper triangular.   

    In particular, if B is square and nonsingular, the GQR factorization   
    of A and B implicitly gives the QR factorization of inv(B)*A:   

                 inv(B)*A = Z'*(inv(T)*R)   

    where inv(B) denotes the inverse of the matrix B, and Z' denotes the   
    conjugate transpose of matrix Z.   

    Arguments   
    =========   

    N       (input) INTEGER   
            The number of rows of the matrices A and B. N >= 0.   

    M       (input) INTEGER   
            The number of columns of the matrix A.  M >= 0.   

    P       (input) INTEGER   
            The number of columns of the matrix B.  P >= 0.   

    A       (input/output) COMPLEX array, dimension (LDA,M)   
            On entry, the N-by-M matrix A.   
            On exit, the elements on and above the diagonal of the array   
            contain the min(N,M)-by-M upper trapezoidal matrix R (R is   
            upper triangular if N >= M); the elements below the diagonal,   
            with the array TAUA, represent the unitary matrix Q as a   
            product of min(N,M) elementary reflectors (see Further   
            Details).   

    LDA     (input) INTEGER   
            The leading dimension of the array A. LDA >= max(1,N).   

    TAUA    (output) COMPLEX array, dimension (min(N,M))   
            The scalar factors of the elementary reflectors which   
            represent the unitary matrix Q (see Further Details).   

    B       (input/output) COMPLEX array, dimension (LDB,P)   
            On entry, the N-by-P matrix B.   
            On exit, if N <= P, the upper triangle of the subarray   
            B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;   
            if N > P, the elements on and above the (N-P)-th subdiagonal   
            contain the N-by-P upper trapezoidal matrix T; the remaining   
            elements, with the array TAUB, represent the unitary   
            matrix Z as a product of elementary reflectors (see Further   
            Details).   

    LDB     (input) INTEGER   
            The leading dimension of the array B. LDB >= max(1,N).   

    TAUB    (output) COMPLEX array, dimension (min(N,P))   
            The scalar factors of the elementary reflectors which   
            represent the unitary matrix Z (see Further Details).   

    WORK    (workspace/output) COMPLEX array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK. LWORK >= max(1,N,M,P).   
            For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),   
            where NB1 is the optimal blocksize for the QR factorization   
            of an N-by-M matrix, NB2 is the optimal blocksize for the   
            RQ factorization of an N-by-P matrix, and NB3 is the optimal   
            blocksize for a call of CUNMQR.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
             = 0:  successful exit   
             < 0:  if INFO = -i, the i-th argument had an illegal value.   

    Further Details   
    ===============   

    The matrix Q is represented as a product of elementary reflectors   

       Q = H(1) H(2) . . . H(k), where k = min(n,m).   

    Each H(i) has the form   

       H(i) = I - taua * v * v'   

    where taua is a complex scalar, and v is a complex vector with   
    v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),   
    and taua in TAUA(i).   
    To form Q explicitly, use LAPACK subroutine CUNGQR.   
    To use Q to update another matrix, use LAPACK subroutine CUNMQR.   

    The matrix Z is represented as a product of elementary reflectors   

       Z = H(1) H(2) . . . H(k), where k = min(n,p).   

    Each H(i) has the form   

       H(i) = I - taub * v * v'   

    where taub is a complex scalar, and v is a complex vector with   
    v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in   
    B(n-k+i,1:p-k+i-1), and taub in TAUB(i).   
    To form Z explicitly, use LAPACK subroutine CUNGRQ.   
    To use Z to update another matrix, use LAPACK subroutine CUNMRQ.   

    =====================================================================   


       Test the input parameters   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c_n1 = -1;
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
    /* Local variables */
    static integer lopt, nb;
    extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, 
	    integer *, complex *, complex *, integer *, integer *), cgerqf_(
	    integer *, integer *, complex *, integer *, complex *, complex *, 
	    integer *, integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static integer nb1, nb2, nb3;
    extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    complex *, integer *, integer *);
    static integer lwkopt;
    static logical lquery;


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --taua;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --taub;
    --work;

    /* Function Body */
    *info = 0;
    nb1 = ilaenv_(&c__1, "CGEQRF", " ", n, m, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    nb2 = ilaenv_(&c__1, "CGERQF", " ", n, p, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    nb3 = ilaenv_(&c__1, "CUNMQR", " ", n, m, p, &c_n1, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
    i__1 = max(nb1,nb2);
    nb = max(i__1,nb3);
/* Computing MAX */
    i__1 = max(*n,*m);
    lwkopt = max(i__1,*p) * nb;
    work[1].r = (real) lwkopt, work[1].i = 0.f;
    lquery = *lwork == -1;
    if (*n < 0) {
	*info = -1;
    } else if (*m < 0) {
	*info = -2;
    } else if (*p < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    } else if (*ldb < max(1,*n)) {
	*info = -8;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = max(1,*n), i__1 = max(i__1,*m);
	if (*lwork < max(i__1,*p) && ! lquery) {
	    *info = -11;
	}
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CGGQRF", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     QR factorization of N-by-M matrix A: A = Q*R */

    cgeqrf_(n, m, &a[a_offset], lda, &taua[1], &work[1], lwork, info);
    lopt = work[1].r;

/*     Update B := Q'*B. */

    i__1 = min(*n,*m);
    cunmqr_("Left", "Conjugate Transpose", n, p, &i__1, &a[a_offset], lda, &
	    taua[1], &b[b_offset], ldb, &work[1], lwork, info);
/* Computing MAX */
    i__1 = lopt, i__2 = (integer) work[1].r;
    lopt = max(i__1,i__2);

/*     RQ factorization of N-by-P matrix B: B = T*Z. */

    cgerqf_(n, p, &b[b_offset], ldb, &taub[1], &work[1], lwork, info);
/* Computing MAX */
    i__2 = lopt, i__3 = (integer) work[1].r;
    i__1 = max(i__2,i__3);
    work[1].r = (real) i__1, work[1].i = 0.f;

    return 0;

/*     End of CGGQRF */

} /* cggqrf_ */
示例#3
0
文件: ctimrq.c 项目: zangel/uquad
/* Subroutine */ int ctimrq_(char *line, integer *nm, integer *mval, integer *
	nval, integer *nk, integer *kval, integer *nnb, integer *nbval, 
	integer *nxval, integer *nlda, integer *ldaval, real *timmin, complex 
	*a, complex *tau, complex *b, complex *work, real *rwork, real *
	reslts, integer *ldr1, integer *ldr2, integer *ldr3, integer *nout, 
	ftnlen line_len)
{
    /* Initialized data */

    static char subnam[6*3] = "CGERQF" "CUNGRQ" "CUNMRQ";
    static char sides[1*2] = "L" "R";
    static char transs[1*2] = "N" "C";
    static integer iseed[4] = { 0,0,0,1 };

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)";
    static char fmt_9998[] = "(/\002 *** Speed of \002,a6,\002 in megaflops "
	    "***\002)";
    static char fmt_9997[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)";
    static char fmt_9996[] = "(5x,\002K = min(M,N)\002,/)";
    static char fmt_9995[] = "(/5x,a6,\002 with SIDE = '\002,a1,\002', TRANS"
	    " = '\002,a1,\002', \002,a1,\002 =\002,i6,/)";
    static char fmt_9994[] = "(\002 *** No pairs (M,N) found with M <= N: "
	    " \002,a6,\002 not timed\002)";

    /* System generated locals */
    integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2, 
	    i__3, i__4, i__5, i__6;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void),
	     s_wsle(cilist *), e_wsle(void);

    /* Local variables */
    static integer ilda;
    static char labm[1], side[1];
    static integer info;
    static char path[3];
    static real time;
    static integer isub, muse[12], nuse[12], i__, k, m, n;
    static char cname[6];
    static integer iside, itoff, itran, minmn;
    extern doublereal sopla_(char *, integer *, integer *, integer *, integer 
	    *, integer *);
    extern /* Subroutine */ int icopy_(integer *, integer *, integer *, 
	    integer *, integer *);
    static char trans[1];
    static integer k1, i4, m1, n1;
    static real s1, s2;
    static integer ic;
    extern /* Subroutine */ int sprtb4_(char *, char *, char *, integer *, 
	    integer *, integer *, integer *, integer *, integer *, integer *, 
	    real *, integer *, integer *, integer *, ftnlen, ftnlen, ftnlen), 
	    sprtb5_(char *, char *, char *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, real *, integer *, integer *, 
	    integer *, ftnlen, ftnlen, ftnlen);
    static integer nb, ik, im, lw, nx, reseed[4];
    extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer 
	    *, integer *, integer *, integer *, integer *, ftnlen), cgerqf_(
	    integer *, integer *, complex *, integer *, complex *, complex *, 
	    integer *, integer *);
    extern doublereal second_(void);
    extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
	    *, integer *, complex *, integer *), ctimmg_(integer *, 
	    integer *, integer *, complex *, integer *, integer *, integer *),
	     atimin_(char *, char *, integer *, char *, logical *, integer *, 
	    integer *, ftnlen, ftnlen, ftnlen), clatms_(integer *, integer *, 
	    char *, integer *, char *, real *, integer *, real *, real *, 
	    integer *, integer *, char *, complex *, integer *, complex *, 
	    integer *), xlaenv_(integer *, integer *);
    extern doublereal smflop_(real *, real *, integer *);
    static real untime;
    extern /* Subroutine */ int cungrq_(integer *, integer *, integer *, 
	    complex *, integer *, complex *, complex *, integer *, integer *);
    static logical timsub[3];
    extern /* Subroutine */ int cunmrq_(char *, char *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    complex *, integer *, integer *);
    static integer lda, icl, inb, imx;
    static real ops;

    /* Fortran I/O blocks */
    static cilist io___9 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___29 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___31 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___32 = { 0, 0, 0, 0, 0 };
    static cilist io___33 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___34 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___49 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___50 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___54 = { 0, 0, 0, fmt_9994, 0 };



#define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6]
#define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\
reslts_dim2 + (a_2))*reslts_dim1 + a_1]


/*  -- LAPACK timing routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    CTIMRQ times the LAPACK routines to perform the RQ factorization of   
    a COMPLEX general matrix.   

    Arguments   
    =========   

    LINE    (input) CHARACTER*80   
            The input line that requested this routine.  The first six   
            characters contain either the name of a subroutine or a   
            generic path name.  The remaining characters may be used to   
            specify the individual routines to be timed.  See ATIMIN for   
            a full description of the format of the input line.   

    NM      (input) INTEGER   
            The number of values of M and N contained in the vectors   
            MVAL and NVAL.  The matrix sizes are used in pairs (M,N).   

    MVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix row dimension M.   

    NVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix column dimension N.   

    NK      (input) INTEGER   
            The number of values of K in the vector KVAL.   

    KVAL    (input) INTEGER array, dimension (NK)   
            The values of the matrix dimension K, used in CUNMRQ.   

    NNB     (input) INTEGER   
            The number of values of NB and NX contained in the   
            vectors NBVAL and NXVAL.  The blocking parameters are used   
            in pairs (NB,NX).   

    NBVAL   (input) INTEGER array, dimension (NNB)   
            The values of the blocksize NB.   

    NXVAL   (input) INTEGER array, dimension (NNB)   
            The values of the crossover point NX.   

    NLDA    (input) INTEGER   
            The number of values of LDA contained in the vector LDAVAL.   

    LDAVAL  (input) INTEGER array, dimension (NLDA)   
            The values of the leading dimension of the array A.   

    TIMMIN  (input) REAL   
            The minimum time a subroutine will be timed.   

    A       (workspace) COMPLEX array, dimension (LDAMAX*NMAX)   
            where LDAMAX and NMAX are the maximum values of LDA and N.   

    TAU     (workspace) COMPLEX array, dimension (min(M,N))   

    B       (workspace) COMPLEX array, dimension (LDAMAX*NMAX)   

    WORK    (workspace) COMPLEX array, dimension (LDAMAX*NBMAX)   
            where NBMAX is the maximum value of NB.   

    RWORK   (workspace) REAL array, dimension   
                        (min(MMAX,NMAX))   

    RESLTS  (workspace) REAL array, dimension   
                        (LDR1,LDR2,LDR3,2*NK)   
            The timing results for each subroutine over the relevant   
            values of (M,N), (NB,NX), and LDA.   

    LDR1    (input) INTEGER   
            The first dimension of RESLTS.  LDR1 >= max(1,NNB).   

    LDR2    (input) INTEGER   
            The second dimension of RESLTS.  LDR2 >= max(1,NM).   

    LDR3    (input) INTEGER   
            The third dimension of RESLTS.  LDR3 >= max(1,NLDA).   

    NOUT    (input) INTEGER   
            The unit number for output.   

    Internal Parameters   
    ===================   

    MODE    INTEGER   
            The matrix type.  MODE = 3 is a geometric distribution of   
            eigenvalues.  See CLATMS for further details.   

    COND    REAL   
            The condition number of the matrix.  The singular values are   
            set to values from DMAX to DMAX/COND.   

    DMAX    REAL   
            The magnitude of the largest singular value.   

    =====================================================================   

       Parameter adjustments */
    --mval;
    --nval;
    --kval;
    --nbval;
    --nxval;
    --ldaval;
    --a;
    --tau;
    --b;
    --work;
    --rwork;
    reslts_dim1 = *ldr1;
    reslts_dim2 = *ldr2;
    reslts_dim3 = *ldr3;
    reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1)
	    );
    reslts -= reslts_offset;

    /* Function Body   

       Extract the timing request from the input line. */

    s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "RQ", (ftnlen)2, (ftnlen)2);
    atimin_(path, line, &c__3, subnam, timsub, nout, &info, (ftnlen)3, (
	    ftnlen)80, (ftnlen)6);
    if (info != 0) {
	goto L230;
    }

/*     Check that M <= LDA for the input values. */

    s_copy(cname, line, (ftnlen)6, (ftnlen)6);
    atimck_(&c__1, cname, nm, &mval[1], nlda, &ldaval[1], nout, &info, (
	    ftnlen)6);
    if (info > 0) {
	io___9.ciunit = *nout;
	s_wsfe(&io___9);
	do_fio(&c__1, cname, (ftnlen)6);
	e_wsfe();
	goto L230;
    }

/*     Do for each pair of values (M,N): */

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {
	m = mval[im];
	n = nval[im];
	minmn = min(m,n);
	icopy_(&c__4, iseed, &c__1, reseed, &c__1);

/*        Do for each value of LDA: */

	i__2 = *nlda;
	for (ilda = 1; ilda <= i__2; ++ilda) {
	    lda = ldaval[ilda];

/*           Do for each pair of values (NB, NX) in NBVAL and NXVAL. */

	    i__3 = *nnb;
	    for (inb = 1; inb <= i__3; ++inb) {
		nb = nbval[inb];
		xlaenv_(&c__1, &nb);
		nx = nxval[inb];
		xlaenv_(&c__3, &nx);
/* Computing MAX */
		i__4 = 1, i__5 = m * max(1,nb);
		lw = max(i__4,i__5);

/*              Generate a test matrix of size M by N. */

		icopy_(&c__4, reseed, &c__1, iseed, &c__1);
		clatms_(&m, &n, "Uniform", iseed, "Nonsymm", &rwork[1], &c__3,
			 &c_b24, &c_b25, &m, &n, "No packing", &b[1], &lda, &
			work[1], &info);

		if (timsub[0]) {

/*                 CGERQF:  RQ factorization */

		    clacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda);
		    ic = 0;
		    s1 = second_();
L10:
		    cgerqf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, &
			    info);
		    s2 = second_();
		    time = s2 - s1;
		    ++ic;
		    if (time < *timmin) {
			clacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda);
			goto L10;
		    }

/*                 Subtract the time used in CLACPY. */

		    icl = 1;
		    s1 = second_();
L20:
		    s2 = second_();
		    untime = s2 - s1;
		    ++icl;
		    if (icl <= ic) {
			clacpy_("Full", &m, &n, &a[1], &lda, &b[1], &lda);
			goto L20;
		    }

		    time = (time - untime) / (real) ic;
		    ops = sopla_("CGERQF", &m, &n, &c__0, &c__0, &nb);
		    reslts_ref(inb, im, ilda, 1) = smflop_(&ops, &time, &info)
			    ;
		} else {

/*                 If CGERQF was not timed, generate a matrix and factor   
                   it using CGERQF anyway so that the factored form of   
                   the matrix can be used in timing the other routines. */

		    clacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda);
		    cgerqf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, &
			    info);
		}

		if (timsub[1]) {

/*                 CUNGRQ:  Generate orthogonal matrix Q from the RQ   
                   factorization */

		    clacpy_("Full", &minmn, &n, &a[1], &lda, &b[1], &lda);
		    ic = 0;
		    s1 = second_();
L30:
		    cungrq_(&minmn, &n, &minmn, &b[1], &lda, &tau[1], &work[1]
			    , &lw, &info);
		    s2 = second_();
		    time = s2 - s1;
		    ++ic;
		    if (time < *timmin) {
			clacpy_("Full", &minmn, &n, &a[1], &lda, &b[1], &lda);
			goto L30;
		    }

/*                 Subtract the time used in CLACPY. */

		    icl = 1;
		    s1 = second_();
L40:
		    s2 = second_();
		    untime = s2 - s1;
		    ++icl;
		    if (icl <= ic) {
			clacpy_("Full", &minmn, &n, &a[1], &lda, &b[1], &lda);
			goto L40;
		    }

		    time = (time - untime) / (real) ic;
		    ops = sopla_("CUNGRQ", &minmn, &n, &minmn, &c__0, &nb);
		    reslts_ref(inb, im, ilda, 2) = smflop_(&ops, &time, &info)
			    ;
		}

/* L50: */
	    }
/* L60: */
	}
/* L70: */
    }

/*     Print tables of results */

    for (isub = 1; isub <= 2; ++isub) {
	if (! timsub[isub - 1]) {
	    goto L90;
	}
	io___29.ciunit = *nout;
	s_wsfe(&io___29);
	do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
	e_wsfe();
	if (*nlda > 1) {
	    i__1 = *nlda;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		io___31.ciunit = *nout;
		s_wsfe(&io___31);
		do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(integer));
		e_wsfe();
/* L80: */
	    }
	}
	io___32.ciunit = *nout;
	s_wsle(&io___32);
	e_wsle();
	if (isub == 2) {
	    io___33.ciunit = *nout;
	    s_wsfe(&io___33);
	    e_wsfe();
	}
	sprtb4_("(  NB,  NX)", "M", "N", nnb, &nbval[1], &nxval[1], nm, &mval[
		1], &nval[1], nlda, &reslts_ref(1, 1, 1, isub), ldr1, ldr2, 
		nout, (ftnlen)11, (ftnlen)1, (ftnlen)1);
L90:
	;
    }

/*     Time CUNMRQ separately.  Here the starting matrix is M by N, and   
       K is the free dimension of the matrix multiplied by Q. */

    if (timsub[2]) {

/*        Check that K <= LDA for the input values. */

	atimck_(&c__3, cname, nk, &kval[1], nlda, &ldaval[1], nout, &info, (
		ftnlen)6);
	if (info > 0) {
	    io___34.ciunit = *nout;
	    s_wsfe(&io___34);
	    do_fio(&c__1, subnam_ref(0, 3), (ftnlen)6);
	    e_wsfe();
	    goto L230;
	}

/*        Use only the pairs (M,N) where M <= N. */

	imx = 0;
	i__1 = *nm;
	for (im = 1; im <= i__1; ++im) {
	    if (mval[im] <= nval[im]) {
		++imx;
		muse[imx - 1] = mval[im];
		nuse[imx - 1] = nval[im];
	    }
/* L100: */
	}

/*        CUNMRQ:  Multiply by Q stored as a product of elementary   
          transformations   

          Do for each pair of values (M,N): */

	i__1 = imx;
	for (im = 1; im <= i__1; ++im) {
	    m = muse[im - 1];
	    n = nuse[im - 1];

/*           Do for each value of LDA: */

	    i__2 = *nlda;
	    for (ilda = 1; ilda <= i__2; ++ilda) {
		lda = ldaval[ilda];

/*              Generate an M by N matrix and form its RQ decomposition. */

		clatms_(&m, &n, "Uniform", iseed, "Nonsymm", &rwork[1], &c__3,
			 &c_b24, &c_b25, &m, &n, "No packing", &a[1], &lda, &
			work[1], &info);
/* Computing MAX */
		i__3 = 1, i__4 = m * max(1,nb);
		lw = max(i__3,i__4);
		cgerqf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, &info);

/*              Do first for SIDE = 'L', then for SIDE = 'R' */

		i4 = 0;
		for (iside = 1; iside <= 2; ++iside) {
		    *(unsigned char *)side = *(unsigned char *)&sides[iside - 
			    1];

/*                 Do for each pair of values (NB, NX) in NBVAL and   
                   NXVAL. */

		    i__3 = *nnb;
		    for (inb = 1; inb <= i__3; ++inb) {
			nb = nbval[inb];
			xlaenv_(&c__1, &nb);
			nx = nxval[inb];
			xlaenv_(&c__3, &nx);

/*                    Do for each value of K in KVAL */

			i__4 = *nk;
			for (ik = 1; ik <= i__4; ++ik) {
			    k = kval[ik];

/*                       Sort out which variable is which */

			    if (iside == 1) {
				k1 = m;
				m1 = n;
				n1 = k;
/* Computing MAX */
				i__5 = 1, i__6 = n1 * max(1,nb);
				lw = max(i__5,i__6);
			    } else {
				k1 = m;
				n1 = n;
				m1 = k;
/* Computing MAX */
				i__5 = 1, i__6 = m1 * max(1,nb);
				lw = max(i__5,i__6);
			    }

/*                       Do first for TRANS = 'N', then for TRANS = 'T' */

			    itoff = 0;
			    for (itran = 1; itran <= 2; ++itran) {
				*(unsigned char *)trans = *(unsigned char *)&
					transs[itran - 1];
				ctimmg_(&c__0, &m1, &n1, &b[1], &lda, &c__0, &
					c__0);
				ic = 0;
				s1 = second_();
L110:
				cunmrq_(side, trans, &m1, &n1, &k1, &a[1], &
					lda, &tau[1], &b[1], &lda, &work[1], &
					lw, &info);
				s2 = second_();
				time = s2 - s1;
				++ic;
				if (time < *timmin) {
				    ctimmg_(&c__0, &m1, &n1, &b[1], &lda, &
					    c__0, &c__0);
				    goto L110;
				}

/*                          Subtract the time used in CTIMMG. */

				icl = 1;
				s1 = second_();
L120:
				s2 = second_();
				untime = s2 - s1;
				++icl;
				if (icl <= ic) {
				    ctimmg_(&c__0, &m1, &n1, &b[1], &lda, &
					    c__0, &c__0);
				    goto L120;
				}

				time = (time - untime) / (real) ic;
				i__5 = iside - 1;
				ops = sopla_("CUNMRQ", &m1, &n1, &k1, &i__5, &
					nb);
				reslts_ref(inb, im, ilda, i4 + itoff + ik) = 
					smflop_(&ops, &time, &info);
				itoff = *nk;
/* L130: */
			    }
/* L140: */
			}
/* L150: */
		    }
		    i4 = *nk << 1;
/* L160: */
		}
/* L170: */
	    }
/* L180: */
	}

/*        Print tables of results */

	isub = 3;
	i4 = 1;
	if (imx >= 1) {
	    for (iside = 1; iside <= 2; ++iside) {
		*(unsigned char *)side = *(unsigned char *)&sides[iside - 1];
		if (iside == 1) {
		    io___49.ciunit = *nout;
		    s_wsfe(&io___49);
		    do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
		    e_wsfe();
		    if (*nlda > 1) {
			i__1 = *nlda;
			for (i__ = 1; i__ <= i__1; ++i__) {
			    io___50.ciunit = *nout;
			    s_wsfe(&io___50);
			    do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)
				    sizeof(integer));
			    e_wsfe();
/* L190: */
			}
		    }
		}
		for (itran = 1; itran <= 2; ++itran) {
		    *(unsigned char *)trans = *(unsigned char *)&transs[itran 
			    - 1];
		    i__1 = *nk;
		    for (ik = 1; ik <= i__1; ++ik) {
			if (iside == 1) {
			    n = kval[ik];
			    io___51.ciunit = *nout;
			    s_wsfe(&io___51);
			    do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
			    do_fio(&c__1, side, (ftnlen)1);
			    do_fio(&c__1, trans, (ftnlen)1);
			    do_fio(&c__1, "N", (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    e_wsfe();
			    *(unsigned char *)labm = 'M';
			} else {
			    m = kval[ik];
			    io___53.ciunit = *nout;
			    s_wsfe(&io___53);
			    do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
			    do_fio(&c__1, side, (ftnlen)1);
			    do_fio(&c__1, trans, (ftnlen)1);
			    do_fio(&c__1, "M", (ftnlen)1);
			    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
				    ;
			    e_wsfe();
			    *(unsigned char *)labm = 'N';
			}
			sprtb5_("NB", "K", labm, nnb, &nbval[1], &imx, muse, 
				nuse, nlda, &reslts_ref(1, 1, 1, i4), ldr1, 
				ldr2, nout, (ftnlen)2, (ftnlen)1, (ftnlen)1);
			++i4;
/* L200: */
		    }
/* L210: */
		}
/* L220: */
	    }
	} else {
	    io___54.ciunit = *nout;
	    s_wsfe(&io___54);
	    do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6);
	    e_wsfe();
	}
    }
L230:
    return 0;

/*     End of CTIMRQ */

} /* ctimrq_ */
示例#4
0
/* Subroutine */ int crqt01_(integer *m, integer *n, complex *a, complex *af, 
	complex *q, complex *r__, integer *lda, complex *tau, complex *work, 
	integer *lwork, real *rwork, real *result)
{
    /* System generated locals */
    integer a_dim1, a_offset, af_dim1, af_offset, q_dim1, q_offset, r_dim1, 
	    r_offset, i__1, i__2;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    real eps;
    integer info;
    extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, 
	    integer *, complex *, complex *, integer *, complex *, integer *, 
	    complex *, complex *, integer *), cherk_(char *, 
	    char *, integer *, integer *, real *, complex *, integer *, real *
, complex *, integer *);
    real resid, anorm;
    integer minmn;
    extern doublereal clange_(char *, integer *, integer *, complex *, 
	    integer *, real *), slamch_(char *);
    extern /* Subroutine */ int cgerqf_(integer *, integer *, complex *, 
	    integer *, complex *, complex *, integer *, integer *), clacpy_(
	    char *, integer *, integer *, complex *, integer *, complex *, 
	    integer *), claset_(char *, integer *, integer *, complex 
	    *, complex *, complex *, integer *);
    extern doublereal clansy_(char *, char *, integer *, complex *, integer *, 
	     real *);
    extern /* Subroutine */ int cungrq_(integer *, integer *, integer *, 
	    complex *, integer *, complex *, complex *, integer *, integer *);


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CRQT01 tests CGERQF, which computes the RQ factorization of an m-by-n */
/*  matrix A, and partially tests CUNGRQ which forms the n-by-n */
/*  orthogonal matrix Q. */

/*  CRQT01 compares R with A*Q', and checks that Q is orthogonal. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  A       (input) COMPLEX array, dimension (LDA,N) */
/*          The m-by-n matrix A. */

/*  AF      (output) COMPLEX array, dimension (LDA,N) */
/*          Details of the RQ factorization of A, as returned by CGERQF. */
/*          See CGERQF for further details. */

/*  Q       (output) COMPLEX array, dimension (LDA,N) */
/*          The n-by-n orthogonal matrix Q. */

/*  R       (workspace) COMPLEX array, dimension (LDA,max(M,N)) */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the arrays A, AF, Q and L. */
/*          LDA >= max(M,N). */

/*  TAU     (output) COMPLEX array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors, as returned */
/*          by CGERQF. */

/*  WORK    (workspace) COMPLEX array, dimension (LWORK) */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. */

/*  RWORK   (workspace) REAL array, dimension (max(M,N)) */

/*  RESULT  (output) REAL array, dimension (2) */
/*          The test ratios: */
/*          RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS ) */
/*          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    r_dim1 = *lda;
    r_offset = 1 + r_dim1;
    r__ -= r_offset;
    q_dim1 = *lda;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    af_dim1 = *lda;
    af_offset = 1 + af_dim1;
    af -= af_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    --work;
    --rwork;
    --result;

    /* Function Body */
    minmn = min(*m,*n);
    eps = slamch_("Epsilon");

/*     Copy the matrix A to the array AF. */

    clacpy_("Full", m, n, &a[a_offset], lda, &af[af_offset], lda);

/*     Factorize the matrix A in the array AF. */

    s_copy(srnamc_1.srnamt, "CGERQF", (ftnlen)32, (ftnlen)6);
    cgerqf_(m, n, &af[af_offset], lda, &tau[1], &work[1], lwork, &info);

/*     Copy details of Q */

    claset_("Full", n, n, &c_b1, &c_b1, &q[q_offset], lda);
    if (*m <= *n) {
	if (*m > 0 && *m < *n) {
	    i__1 = *n - *m;
	    clacpy_("Full", m, &i__1, &af[af_offset], lda, &q[*n - *m + 1 + 
		    q_dim1], lda);
	}
	if (*m > 1) {
	    i__1 = *m - 1;
	    i__2 = *m - 1;
	    clacpy_("Lower", &i__1, &i__2, &af[(*n - *m + 1) * af_dim1 + 2], 
		    lda, &q[*n - *m + 2 + (*n - *m + 1) * q_dim1], lda);
	}
    } else {
	if (*n > 1) {
	    i__1 = *n - 1;
	    i__2 = *n - 1;
	    clacpy_("Lower", &i__1, &i__2, &af[*m - *n + 2 + af_dim1], lda, &
		    q[q_dim1 + 2], lda);
	}
    }

/*     Generate the n-by-n matrix Q */

    s_copy(srnamc_1.srnamt, "CUNGRQ", (ftnlen)32, (ftnlen)6);
    cungrq_(n, n, &minmn, &q[q_offset], lda, &tau[1], &work[1], lwork, &info);

/*     Copy R */

    claset_("Full", m, n, &c_b12, &c_b12, &r__[r_offset], lda);
    if (*m <= *n) {
	if (*m > 0) {
	    clacpy_("Upper", m, m, &af[(*n - *m + 1) * af_dim1 + 1], lda, &
		    r__[(*n - *m + 1) * r_dim1 + 1], lda);
	}
    } else {
	if (*m > *n && *n > 0) {
	    i__1 = *m - *n;
	    clacpy_("Full", &i__1, n, &af[af_offset], lda, &r__[r_offset], 
		    lda);
	}
	if (*n > 0) {
	    clacpy_("Upper", n, n, &af[*m - *n + 1 + af_dim1], lda, &r__[*m - 
		    *n + 1 + r_dim1], lda);
	}
    }

/*     Compute R - A*Q' */

    cgemm_("No transpose", "Conjugate transpose", m, n, n, &c_b19, &a[
	    a_offset], lda, &q[q_offset], lda, &c_b20, &r__[r_offset], lda);

/*     Compute norm( R - Q'*A ) / ( N * norm(A) * EPS ) . */

    anorm = clange_("1", m, n, &a[a_offset], lda, &rwork[1]);
    resid = clange_("1", m, n, &r__[r_offset], lda, &rwork[1]);
    if (anorm > 0.f) {
	result[1] = resid / (real) max(1,*n) / anorm / eps;
    } else {
	result[1] = 0.f;
    }

/*     Compute I - Q*Q' */

    claset_("Full", n, n, &c_b12, &c_b20, &r__[r_offset], lda);
    cherk_("Upper", "No transpose", n, n, &c_b28, &q[q_offset], lda, &c_b29, &
	    r__[r_offset], lda);

/*     Compute norm( I - Q*Q' ) / ( N * EPS ) . */

    resid = clansy_("1", "Upper", n, &r__[r_offset], lda, &rwork[1]);

    result[2] = resid / (real) max(1,*n) / eps;

    return 0;

/*     End of CRQT01 */

} /* crqt01_ */
示例#5
0
文件: crqt01.c 项目: zangel/uquad
/* Subroutine */ int crqt01_(integer *m, integer *n, complex *a, complex *af, 
	complex *q, complex *r__, integer *lda, complex *tau, complex *work, 
	integer *lwork, real *rwork, real *result)
{
    /* System generated locals */
    integer a_dim1, a_offset, af_dim1, af_offset, q_dim1, q_offset, r_dim1, 
	    r_offset, i__1, i__2;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    static integer info;
    extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, 
	    integer *, complex *, complex *, integer *, complex *, integer *, 
	    complex *, complex *, integer *), cherk_(char *, 
	    char *, integer *, integer *, real *, complex *, integer *, real *
	    , complex *, integer *);
    static real resid, anorm;
    static integer minmn;
    extern doublereal clange_(char *, integer *, integer *, complex *, 
	    integer *, real *), slamch_(char *);
    extern /* Subroutine */ int cgerqf_(integer *, integer *, complex *, 
	    integer *, complex *, complex *, integer *, integer *), clacpy_(
	    char *, integer *, integer *, complex *, integer *, complex *, 
	    integer *), claset_(char *, integer *, integer *, complex 
	    *, complex *, complex *, integer *);
    extern doublereal clansy_(char *, char *, integer *, complex *, integer *,
	     real *);
    extern /* Subroutine */ int cungrq_(integer *, integer *, integer *, 
	    complex *, integer *, complex *, complex *, integer *, integer *);
    static real eps;


#define q_subscr(a_1,a_2) (a_2)*q_dim1 + a_1
#define q_ref(a_1,a_2) q[q_subscr(a_1,a_2)]
#define r___subscr(a_1,a_2) (a_2)*r_dim1 + a_1
#define r___ref(a_1,a_2) r__[r___subscr(a_1,a_2)]
#define af_subscr(a_1,a_2) (a_2)*af_dim1 + a_1
#define af_ref(a_1,a_2) af[af_subscr(a_1,a_2)]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    CRQT01 tests CGERQF, which computes the RQ factorization of an m-by-n   
    matrix A, and partially tests CUNGRQ which forms the n-by-n   
    orthogonal matrix Q.   

    CRQT01 compares R with A*Q', and checks that Q is orthogonal.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A.  N >= 0.   

    A       (input) COMPLEX array, dimension (LDA,N)   
            The m-by-n matrix A.   

    AF      (output) COMPLEX array, dimension (LDA,N)   
            Details of the RQ factorization of A, as returned by CGERQF.   
            See CGERQF for further details.   

    Q       (output) COMPLEX array, dimension (LDA,N)   
            The n-by-n orthogonal matrix Q.   

    R       (workspace) COMPLEX array, dimension (LDA,max(M,N))   

    LDA     (input) INTEGER   
            The leading dimension of the arrays A, AF, Q and L.   
            LDA >= max(M,N).   

    TAU     (output) COMPLEX array, dimension (min(M,N))   
            The scalar factors of the elementary reflectors, as returned   
            by CGERQF.   

    WORK    (workspace) COMPLEX array, dimension (LWORK)   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.   

    RWORK   (workspace) REAL array, dimension (max(M,N))   

    RESULT  (output) REAL array, dimension (2)   
            The test ratios:   
            RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS )   
            RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )   

    =====================================================================   


       Parameter adjustments */
    r_dim1 = *lda;
    r_offset = 1 + r_dim1 * 1;
    r__ -= r_offset;
    q_dim1 = *lda;
    q_offset = 1 + q_dim1 * 1;
    q -= q_offset;
    af_dim1 = *lda;
    af_offset = 1 + af_dim1 * 1;
    af -= af_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --tau;
    --work;
    --rwork;
    --result;

    /* Function Body */
    minmn = min(*m,*n);
    eps = slamch_("Epsilon");

/*     Copy the matrix A to the array AF. */

    clacpy_("Full", m, n, &a[a_offset], lda, &af[af_offset], lda);

/*     Factorize the matrix A in the array AF. */

    s_copy(srnamc_1.srnamt, "CGERQF", (ftnlen)6, (ftnlen)6);
    cgerqf_(m, n, &af[af_offset], lda, &tau[1], &work[1], lwork, &info);

/*     Copy details of Q */

    claset_("Full", n, n, &c_b1, &c_b1, &q[q_offset], lda);
    if (*m <= *n) {
	if (*m > 0 && *m < *n) {
	    i__1 = *n - *m;
	    clacpy_("Full", m, &i__1, &af[af_offset], lda, &q_ref(*n - *m + 1,
		     1), lda);
	}
	if (*m > 1) {
	    i__1 = *m - 1;
	    i__2 = *m - 1;
	    clacpy_("Lower", &i__1, &i__2, &af_ref(2, *n - *m + 1), lda, &
		    q_ref(*n - *m + 2, *n - *m + 1), lda);
	}
    } else {
	if (*n > 1) {
	    i__1 = *n - 1;
	    i__2 = *n - 1;
	    clacpy_("Lower", &i__1, &i__2, &af_ref(*m - *n + 2, 1), lda, &
		    q_ref(2, 1), lda);
	}
    }

/*     Generate the n-by-n matrix Q */

    s_copy(srnamc_1.srnamt, "CUNGRQ", (ftnlen)6, (ftnlen)6);
    cungrq_(n, n, &minmn, &q[q_offset], lda, &tau[1], &work[1], lwork, &info);

/*     Copy R */

    claset_("Full", m, n, &c_b12, &c_b12, &r__[r_offset], lda);
    if (*m <= *n) {
	if (*m > 0) {
	    clacpy_("Upper", m, m, &af_ref(1, *n - *m + 1), lda, &r___ref(1, *
		    n - *m + 1), lda);
	}
    } else {
	if (*m > *n && *n > 0) {
	    i__1 = *m - *n;
	    clacpy_("Full", &i__1, n, &af[af_offset], lda, &r__[r_offset], 
		    lda);
	}
	if (*n > 0) {
	    clacpy_("Upper", n, n, &af_ref(*m - *n + 1, 1), lda, &r___ref(*m 
		    - *n + 1, 1), lda);
	}
    }

/*     Compute R - A*Q' */

    cgemm_("No transpose", "Conjugate transpose", m, n, n, &c_b19, &a[
	    a_offset], lda, &q[q_offset], lda, &c_b20, &r__[r_offset], lda);

/*     Compute norm( R - Q'*A ) / ( N * norm(A) * EPS ) . */

    anorm = clange_("1", m, n, &a[a_offset], lda, &rwork[1]);
    resid = clange_("1", m, n, &r__[r_offset], lda, &rwork[1]);
    if (anorm > 0.f) {
	result[1] = resid / (real) max(1,*n) / anorm / eps;
    } else {
	result[1] = 0.f;
    }

/*     Compute I - Q*Q' */

    claset_("Full", n, n, &c_b12, &c_b20, &r__[r_offset], lda);
    cherk_("Upper", "No transpose", n, n, &c_b28, &q[q_offset], lda, &c_b29, &
	    r__[r_offset], lda);

/*     Compute norm( I - Q*Q' ) / ( N * EPS ) . */

    resid = clansy_("1", "Upper", n, &r__[r_offset], lda, &rwork[1]);

    result[2] = resid / (real) max(1,*n) / eps;

    return 0;

/*     End of CRQT01 */

} /* crqt01_ */
示例#6
0
/* Subroutine */ int cggqrf_(integer *n, integer *m, integer *p, complex *a, 
	integer *lda, complex *taua, complex *b, integer *ldb, complex *taub, 
	complex *work, integer *lwork, integer *info)
{
/*  -- LAPACK routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    CGGQRF computes a generalized QR factorization of an N-by-M matrix A 
  
    and an N-by-P matrix B:   

                A = Q*R,        B = Q*T*Z,   

    where Q is an N-by-N unitary matrix, Z is a P-by-P unitary matrix,   
    and R and T assume one of the forms:   

    if N >= M,  R = ( R11 ) M  ,   or if N < M,  R = ( R11  R12 ) N,   
                    (  0  ) N-M                         N   M-N   
                       M   

    where R11 is upper triangular, and   

    if N <= P,  T = ( 0  T12 ) N,   or if N > P,  T = ( T11 ) N-P,   
                     P-N  N                           ( T21 ) P   
                                                         P   

    where T12 or T21 is upper triangular.   

    In particular, if B is square and nonsingular, the GQR factorization 
  
    of A and B implicitly gives the QR factorization of inv(B)*A:   

                 inv(B)*A = Z'*(inv(T)*R)   

    where inv(B) denotes the inverse of the matrix B, and Z' denotes the 
  
    conjugate transpose of matrix Z.   

    Arguments   
    =========   

    N       (input) INTEGER   
            The number of rows of the matrices A and B. N >= 0.   

    M       (input) INTEGER   
            The number of columns of the matrix A.  M >= 0.   

    P       (input) INTEGER   
            The number of columns of the matrix B.  P >= 0.   

    A       (input/output) COMPLEX array, dimension (LDA,M)   
            On entry, the N-by-M matrix A.   
            On exit, the elements on and above the diagonal of the array 
  
            contain the min(N,M)-by-M upper trapezoidal matrix R (R is   
            upper triangular if N >= M); the elements below the diagonal, 
  
            with the array TAUA, represent the unitary matrix Q as a   
            product of min(N,M) elementary reflectors (see Further   
            Details).   

    LDA     (input) INTEGER   
            The leading dimension of the array A. LDA >= max(1,N).   

    TAUA    (output) COMPLEX array, dimension (min(N,M))   
            The scalar factors of the elementary reflectors which   
            represent the unitary matrix Q (see Further Details).   

    B       (input/output) COMPLEX array, dimension (LDB,P)   
            On entry, the N-by-P matrix B.   
            On exit, if N <= P, the upper triangle of the subarray   
            B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; 
  
            if N > P, the elements on and above the (N-P)-th subdiagonal 
  
            contain the N-by-P upper trapezoidal matrix T; the remaining 
  
            elements, with the array TAUB, represent the unitary   
            matrix Z as a product of elementary reflectors (see Further   
            Details).   

    LDB     (input) INTEGER   
            The leading dimension of the array B. LDB >= max(1,N).   

    TAUB    (output) COMPLEX array, dimension (min(N,P))   
            The scalar factors of the elementary reflectors which   
            represent the unitary matrix Z (see Further Details).   

    WORK    (workspace/output) COMPLEX array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK. LWORK >= max(1,N,M,P).   
            For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), 
  
            where NB1 is the optimal blocksize for the QR factorization   
            of an N-by-M matrix, NB2 is the optimal blocksize for the   
            RQ factorization of an N-by-P matrix, and NB3 is the optimal 
  
            blocksize for a call of CUNMQR.   

    INFO    (output) INTEGER   
             = 0:  successful exit   
             < 0:  if INFO = -i, the i-th argument had an illegal value. 
  

    Further Details   
    ===============   

    The matrix Q is represented as a product of elementary reflectors   

       Q = H(1) H(2) . . . H(k), where k = min(n,m).   

    Each H(i) has the form   

       H(i) = I - taua * v * v'   

    where taua is a complex scalar, and v is a complex vector with   
    v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), 
  
    and taua in TAUA(i).   
    To form Q explicitly, use LAPACK subroutine CUNGQR.   
    To use Q to update another matrix, use LAPACK subroutine CUNMQR.   

    The matrix Z is represented as a product of elementary reflectors   

       Z = H(1) H(2) . . . H(k), where k = min(n,p).   

    Each H(i) has the form   

       H(i) = I - taub * v * v'   

    where taub is a complex scalar, and v is a complex vector with   
    v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in 
  
    B(n-k+i,1:p-k+i-1), and taub in TAUB(i).   
    To form Z explicitly, use LAPACK subroutine CUNGRQ.   
    To use Z to update another matrix, use LAPACK subroutine CUNMRQ.   

    ===================================================================== 
  


       Test the input parameters   

    
   Parameter adjustments   
       Function Body */
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
    doublereal d__1;
    /* Local variables */
    static integer lopt;
    extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, 
	    integer *, complex *, complex *, integer *, integer *), cgerqf_(
	    integer *, integer *, complex *, integer *, complex *, complex *, 
	    integer *, integer *), xerbla_(char *, integer *), 
	    cunmqr_(char *, char *, integer *, integer *, integer *, complex *
	    , integer *, complex *, complex *, integer *, complex *, integer *
	    , integer *);


#define TAUA(I) taua[(I)-1]
#define TAUB(I) taub[(I)-1]
#define WORK(I) work[(I)-1]

#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]
#define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)]

    *info = 0;
    if (*n < 0) {
	*info = -1;
    } else if (*m < 0) {
	*info = -2;
    } else if (*p < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    } else if (*ldb < max(1,*n)) {
	*info = -8;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = max(1,*n), i__1 = max(i__1,*m);
	if (*lwork < max(i__1,*p)) {
	    *info = -11;
	}
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CGGQRF", &i__1);
	return 0;
    }

/*     QR factorization of N-by-M matrix A: A = Q*R */

    cgeqrf_(n, m, &A(1,1), lda, &TAUA(1), &WORK(1), lwork, info);
    lopt = WORK(1).r;

/*     Update B := Q'*B. */

    i__1 = min(*n,*m);
    cunmqr_("Left", "Conjugate Transpose", n, p, &i__1, &A(1,1), lda, &
	    TAUA(1), &B(1,1), ldb, &WORK(1), lwork, info);
/* Computing MAX */
    i__1 = lopt, i__2 = (integer) WORK(1).r;
    lopt = max(i__1,i__2);

/*     RQ factorization of N-by-P matrix B: B = T*Z. */

    cgerqf_(n, p, &B(1,1), ldb, &TAUB(1), &WORK(1), lwork, info);
/* Computing MAX */
    i__1 = lopt, i__2 = (integer) WORK(1).r;
    d__1 = (doublereal) max(i__1,i__2);
    WORK(1).r = d__1, WORK(1).i = 0.f;

    return 0;

/*     End of CGGQRF */

} /* cggqrf_ */
示例#7
0
/* Subroutine */ int cerrrq_(char *path, integer *nunit)
{
    /* System generated locals */
    integer i__1;
    real r__1, r__2;
    complex q__1;

    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    complex a[4]	/* was [2][2] */, b[2];
    integer i__, j;
    complex w[2], x[2], af[4]	/* was [2][2] */;
    integer info;
    extern /* Subroutine */ int cgerq2_(integer *, integer *, complex *, 
	    integer *, complex *, complex *, integer *), cungr2_(integer *, 
	    integer *, integer *, complex *, integer *, complex *, complex *, 
	    integer *), cunmr2_(char *, char *, integer *, integer *, integer 
	    *, complex *, integer *, complex *, complex *, integer *, complex 
	    *, integer *), alaesm_(char *, logical *, integer 
	    *), cgerqf_(integer *, integer *, complex *, integer *, 
	    complex *, complex *, integer *, integer *), cgerqs_(integer *, 
	    integer *, integer *, complex *, integer *, complex *, complex *, 
	    integer *, complex *, integer *, integer *), chkxer_(char *, 
	    integer *, integer *, logical *, logical *), cungrq_(
	    integer *, integer *, integer *, complex *, integer *, complex *, 
	    complex *, integer *, integer *), cunmrq_(char *, char *, integer 
	    *, integer *, integer *, complex *, integer *, complex *, complex 
	    *, integer *, complex *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CERRRQ tests the error exits for the COMPLEX routines */
/*  that use the RQ decomposition of a general matrix. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 2; ++j) {
	for (i__ = 1; i__ <= 2; ++i__) {
	    i__1 = i__ + (j << 1) - 3;
	    r__1 = 1.f / (real) (i__ + j);
	    r__2 = -1.f / (real) (i__ + j);
	    q__1.r = r__1, q__1.i = r__2;
	    a[i__1].r = q__1.r, a[i__1].i = q__1.i;
	    i__1 = i__ + (j << 1) - 3;
	    r__1 = 1.f / (real) (i__ + j);
	    r__2 = -1.f / (real) (i__ + j);
	    q__1.r = r__1, q__1.i = r__2;
	    af[i__1].r = q__1.r, af[i__1].i = q__1.i;
/* L10: */
	}
	i__1 = j - 1;
	b[i__1].r = 0.f, b[i__1].i = 0.f;
	i__1 = j - 1;
	w[i__1].r = 0.f, w[i__1].i = 0.f;
	i__1 = j - 1;
	x[i__1].r = 0.f, x[i__1].i = 0.f;
/* L20: */
    }
    infoc_1.ok = TRUE_;

/*     Error exits for RQ factorization */

/*     CGERQF */

    s_copy(srnamc_1.srnamt, "CGERQF", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cgerqf_(&c_n1, &c__0, a, &c__1, b, w, &c__1, &info);
    chkxer_("CGERQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cgerqf_(&c__0, &c_n1, a, &c__1, b, w, &c__1, &info);
    chkxer_("CGERQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    cgerqf_(&c__2, &c__1, a, &c__1, b, w, &c__2, &info);
    chkxer_("CGERQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    cgerqf_(&c__2, &c__1, a, &c__2, b, w, &c__1, &info);
    chkxer_("CGERQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     CGERQ2 */

    s_copy(srnamc_1.srnamt, "CGERQ2", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cgerq2_(&c_n1, &c__0, a, &c__1, b, w, &info);
    chkxer_("CGERQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cgerq2_(&c__0, &c_n1, a, &c__1, b, w, &info);
    chkxer_("CGERQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    cgerq2_(&c__2, &c__1, a, &c__1, b, w, &info);
    chkxer_("CGERQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     CGERQS */

    s_copy(srnamc_1.srnamt, "CGERQS", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cgerqs_(&c_n1, &c__0, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("CGERQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cgerqs_(&c__0, &c_n1, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("CGERQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cgerqs_(&c__2, &c__1, &c__0, a, &c__2, x, b, &c__1, w, &c__1, &info);
    chkxer_("CGERQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cgerqs_(&c__0, &c__0, &c_n1, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("CGERQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cgerqs_(&c__2, &c__2, &c__0, a, &c__1, x, b, &c__2, w, &c__1, &info);
    chkxer_("CGERQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 8;
    cgerqs_(&c__2, &c__2, &c__0, a, &c__2, x, b, &c__1, w, &c__1, &info);
    chkxer_("CGERQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 10;
    cgerqs_(&c__1, &c__1, &c__2, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("CGERQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     CUNGRQ */

    s_copy(srnamc_1.srnamt, "CUNGRQ", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cungrq_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &c__1, &info);
    chkxer_("CUNGRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cungrq_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &c__1, &info);
    chkxer_("CUNGRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cungrq_(&c__2, &c__1, &c__0, a, &c__2, x, w, &c__2, &info);
    chkxer_("CUNGRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cungrq_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &c__1, &info);
    chkxer_("CUNGRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cungrq_(&c__1, &c__2, &c__2, a, &c__1, x, w, &c__1, &info);
    chkxer_("CUNGRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cungrq_(&c__2, &c__2, &c__0, a, &c__1, x, w, &c__2, &info);
    chkxer_("CUNGRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 8;
    cungrq_(&c__2, &c__2, &c__0, a, &c__2, x, w, &c__1, &info);
    chkxer_("CUNGRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     CUNGR2 */

    s_copy(srnamc_1.srnamt, "CUNGR2", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cungr2_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &info);
    chkxer_("CUNGR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cungr2_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &info);
    chkxer_("CUNGR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cungr2_(&c__2, &c__1, &c__0, a, &c__2, x, w, &info);
    chkxer_("CUNGR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cungr2_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &info);
    chkxer_("CUNGR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cungr2_(&c__1, &c__2, &c__2, a, &c__2, x, w, &info);
    chkxer_("CUNGR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cungr2_(&c__2, &c__2, &c__0, a, &c__1, x, w, &info);
    chkxer_("CUNGR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     CUNMRQ */

    s_copy(srnamc_1.srnamt, "CUNMRQ", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cunmrq_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cunmrq_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cunmrq_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    cunmrq_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cunmrq_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cunmrq_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cunmrq_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    cunmrq_("L", "N", &c__2, &c__1, &c__2, a, &c__1, x, af, &c__2, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    cunmrq_("R", "N", &c__1, &c__2, &c__2, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 10;
    cunmrq_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 12;
    cunmrq_("L", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 12;
    cunmrq_("R", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, &
	    info);
    chkxer_("CUNMRQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     CUNMR2 */

    s_copy(srnamc_1.srnamt, "CUNMR2", (ftnlen)32, (ftnlen)6);
    infoc_1.infot = 1;
    cunmr2_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNMR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    cunmr2_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNMR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    cunmr2_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNMR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    cunmr2_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNMR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cunmr2_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNMR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cunmr2_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNMR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    cunmr2_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNMR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    cunmr2_("L", "N", &c__2, &c__1, &c__2, a, &c__1, x, af, &c__2, w, &info);
    chkxer_("CUNMR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    cunmr2_("R", "N", &c__1, &c__2, &c__2, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNMR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 10;
    cunmr2_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("CUNMR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of CERRRQ */

} /* cerrrq_ */