示例#1
0
static THD_FUNCTION(ThreadGFXEvent, arg)
{
	(void)arg;

	chRegSetThreadName("GFXEvent");

	GEvent* pe;
	static RTCDateTime timespec;
	struct tm timeinfo;
	struct tm tim;
	struct tm *canary;
	static time_t unix_time;
	while (true) {
		pe = geventEventWait(&gl, TIME_INFINITE);
		switch (pe->type) {
			case GEVENT_GWIN_BUTTON:
				if (((GEventGWinButton*)pe)->gwin == ghBtnSettings) {
					createSettingsFrame();
					gwinShow(ghFrame1);
					updateGraph = false;
					updateSettingTime = true;
				} else if (((GEventGWinButton*)pe)->gwin == ghBtnSave) {
					timeinfo.tm_hour = atoi(gwinListGetSelectedText(ghListHour));
					timeinfo.tm_min = atoi(gwinListGetSelectedText(ghListMin));
					timeinfo.tm_sec = 0;
					timeinfo.tm_mday = atoi(gwinListGetSelectedText(ghListDay));
					timeinfo.tm_mon = gwinListGetSelected(ghListMonth);
					timeinfo.tm_year = atoi(gwinListGetSelectedText(ghListYear))-1900;
					unix_time = mktime(&timeinfo);
					canary = localtime_r(&unix_time, &tim);
					osalDbgCheck(&tim == canary);
					rtcConvertStructTmToDateTime(&tim, 0, &timespec);
					rtcSetTime(RTC_DRIVER, &timespec);
				} else if (((GEventGWinButton*)pe)->gwin == ghBtnTime) {
					updateGraph = false;
					gwinShow(ghListFreq);
				}
				break;

			case GEVENT_GWIN_CHECKBOX:
				if (((GEventGWinCheckbox*)pe)->gwin == ghCheckBoxHR) {
					if (((GEventGWinCheckbox*)pe)->isChecked)
						use12HR = true;
					else
						use12HR = false;
				}
				break;

			case GEVENT_GWIN_CLOSE:
				updateGraph = true;
				updateSettingTime = false;
				switch (activeGraph) {
					case 0:
						drawGraphLines(ghContainerGraphC);
						break;

					case 1:
						drawGraphLines(ghContainerGraphV);
						break;

					case 2:
						drawGraphLines(ghContainerGraphW);
						break;

					case 3:
						drawGraphLines(ghContainerGraphCV_1);
						drawGraphLines(ghContainerGraphCV_2);
						break;

					default:
						break;
				}
				break;

			case GEVENT_GWIN_RADIO:
				activeGraph = atoi(gwinGetText(((GEventGWinRadio *)pe)->gwin));
				setActiveGraph(activeGraph);
				break;

			case GEVENT_GWIN_LIST:
				if (((GEventGWinList*)pe)->gwin == ghListFreq)  {
					char str[5];
					uint8_t val = atoi(gwinListGetSelectedText(ghListFreq));
					GRAPH_Refresh = ((1.0/val)*1000);
					snprintf(str, 5, "%d%s", val, "Hz");
					gwinSetText(ghBtnTime, str, true);
					chThdSleepMilliseconds(10);
					gwinHide(ghListFreq);
					updateGraph = true;

					switch (activeGraph) {
					case 0:
						drawGraphLines(ghContainerGraphC);
						break;

					case 1:
						drawGraphLines(ghContainerGraphV);
						break;

					case 2:palSetPadMode(GPIOA, 5, PAL_MODE_OUTPUT_PUSHPULL); palClearPad(GPIOA, 5);
						drawGraphLines(ghContainerGraphW);
						break;

					case 3:
						drawGraphLines(ghContainerGraphCV_1);
						drawGraphLines(ghContainerGraphCV_2);
						break;

					default:
						break;
					}

				}

				break;
			default:
				break;
		}

		chThdSleepMilliseconds(500);
	}
}
THD_FUNCTION(scMS5611Thread, arg)
{
  systime_t sleep_until;
  systime_t interval_st = MS2ST(ms5611_interval_ms);
  
  (void)arg;
  chRegSetThreadName(__func__);

  SC_LOG_PRINTF("d: ms5611 init\r\n");
  
  // We need to give a bit of time to the chip until we can ask it to shut down
  // i2c not ready initially? (This is inherited from the LSM9DS0 driver)
  chThdSleepMilliseconds(20);

  ms5611_reset();
  chThdSleepMilliseconds(100);
  ms5611_reset();
  chThdSleepMilliseconds(100);
  ms5611_reset();
  chThdSleepMilliseconds(100);
  ms5611_read_prom();
  uint8_t ref_crc = ms5611_prom[MS5611_PROM_SIZE - 1] & 0x0F;
  uint8_t calc_crc = ms5611_calc_crc();
  if (ref_crc != calc_crc) {
    SC_LOG_PRINTF("e: ms5611 crc failure: 0x%x vs 0x%x\r\n", ref_crc, calc_crc);
  }

  sleep_until = chVTGetSystemTime() + interval_st;
  
  // Loop initiating measurements and waiting for results
  while (!chThdShouldTerminateX()) {
    systime_t now = chVTGetSystemTime();
    systime_t wait_time = sleep_until - now;
    uint32_t temp;
    uint32_t pres;
    msg_t msg;

    // Using a semaphore allows to cancel the sleep outside the thread
    if (chBSemWaitTimeout(&ms5611_wait_sem, wait_time) != MSG_TIMEOUT) {
      continue;
    }

    sleep_until += interval_st;
    now = chVTGetSystemTime();
    
    temp = ms5611_read(true);
    
    if (chThdShouldTerminateX()) {
      break;
    }
    
    pres = ms5611_read(false);

    chMtxLock(&data_mtx);
    ms5611_temp = temp;
    ms5611_pres = pres;
    ms5611_time_st = now;
    chMtxUnlock(&data_mtx);

    // Notify main app about new measurements being available
    msg = sc_event_msg_create_type(SC_EVENT_TYPE_MS5611_AVAILABLE);
    sc_event_msg_post(msg, SC_EVENT_MSG_POST_FROM_NORMAL);
  }
}
示例#3
0
static THD_FUNCTION(Thread1, arg) {

  (void)arg;
  chRegSetThreadName("blinker");

  while (true) {
    unsigned i;

    for (i = 0; i < 4; i++) {
      palClearPad(PORT_D, PD_LED1);
      chThdSleepMilliseconds(100);
      palClearPad(PORT_D, PD_LED2);
      chThdSleepMilliseconds(100);
      palClearPad(PORT_D, PD_LED3);
      chThdSleepMilliseconds(100);
      palClearPad(PORT_D, PD_LED4);
      chThdSleepMilliseconds(100);
      palSetPad(PORT_D, PD_LED1);
      chThdSleepMilliseconds(100);
      palSetPad(PORT_D, PD_LED2);
      chThdSleepMilliseconds(100);
      palSetPad(PORT_D, PD_LED3);
      chThdSleepMilliseconds(100);
      palSetPad(PORT_D, PD_LED4);
      chThdSleepMilliseconds(300);
    }

    for (i = 0; i < 4; i++) {
      palTogglePort(PORT_D, PAL_PORT_BIT(PD_LED1) | PAL_PORT_BIT(PD_LED2) |
                            PAL_PORT_BIT(PD_LED3) | PAL_PORT_BIT(PD_LED4));
      chThdSleepMilliseconds(500);
      palTogglePort(PORT_D, PAL_PORT_BIT(PD_LED1) | PAL_PORT_BIT(PD_LED2) |
                            PAL_PORT_BIT(PD_LED3) | PAL_PORT_BIT(PD_LED4));
      chThdSleepMilliseconds(500);
    }

    for (i = 0; i < 4; i++) {
      palTogglePad(PORT_D, PD_LED1);
      chThdSleepMilliseconds(250);
      palTogglePad(PORT_D, PD_LED1);
      palTogglePad(PORT_D, PD_LED2);
      chThdSleepMilliseconds(250);
      palTogglePad(PORT_D, PD_LED2);
      palTogglePad(PORT_D, PD_LED3);
      chThdSleepMilliseconds(250);
      palTogglePad(PORT_D, PD_LED3);
      palTogglePad(PORT_D, PD_LED4);
      chThdSleepMilliseconds(250);
      palTogglePad(PORT_D, PD_LED4);
    }

    for (i = 0; i < 4; i++) {
      palClearPort(PORT_D, PAL_PORT_BIT(PD_LED1) | PAL_PORT_BIT(PD_LED3));
      palSetPort(PORT_D, PAL_PORT_BIT(PD_LED2) | PAL_PORT_BIT(PD_LED4));
      chThdSleepMilliseconds(500);
      palClearPort(PORT_D, PAL_PORT_BIT(PD_LED2) | PAL_PORT_BIT(PD_LED4));
      palSetPort(PORT_D, PAL_PORT_BIT(PD_LED1) | PAL_PORT_BIT(PD_LED3));
      chThdSleepMilliseconds(500);
    }

    palSetPort(PORT_D, PAL_PORT_BIT(PD_LED1) | PAL_PORT_BIT(PD_LED2) |
                       PAL_PORT_BIT(PD_LED3) | PAL_PORT_BIT(PD_LED4));
  }
}
示例#4
0
文件: main.c 项目: 0x00f/ChibiOS
/*
 * Application entry point.
 */
int main(void) {

  /*
   * System initializations.
   * - HAL initialization, this also initializes the configured device drivers
   *   and performs the board-specific initializations.
   * - Kernel initialization, the main() function becomes a thread and the
   *   RTOS is active.
   */
  halInit();
  chSysInit();

  /*
   * Initializes the PWM driver 1 and ICU driver 1.
   * GPIOD10 is the PWM output.
   * GPIOA0 is the ICU input.
   * The two pins have to be externally connected together.
   */
  icuStart(&ICUD1, &icucfg);
  icuEnable(&ICUD1);

  /* Sets A0 alternative function.*/
  SIU.PCR[0].R = 0b0100010100000100;

  pwmStart(&PWMD1, &pwmcfg);
  /* Sets D10 alternative function.*/
  SIU.PCR[58].R = 0b0100010100000100;

  chThdSleepMilliseconds(2000);

  /*
   * Starts the PWM channel 0 using 75% duty cycle.
   */
  pwmEnableChannel(&PWMD1, 0, PWM_PERCENTAGE_TO_WIDTH(&PWMD1, 7500));
  chThdSleepMilliseconds(5000);

  /*
   * Changes the PWM channel 0 to 50% duty cycle.
   */
  pwmEnableChannel(&PWMD1, 0, PWM_PERCENTAGE_TO_WIDTH(&PWMD1, 5000));
  chThdSleepMilliseconds(5000);

  /*
   * Changes the PWM channel 0 to 25% duty cycle.
   */
  pwmEnableChannel(&PWMD1, 0, PWM_PERCENTAGE_TO_WIDTH(&PWMD1, 2500));
  chThdSleepMilliseconds(5000);

  /*
   * Changes PWM period and the PWM channel 0 to 50% duty cycle.
   */
  pwmChangePeriod(&PWMD1, 25000);
  pwmEnableChannel(&PWMD1, 0, PWM_PERCENTAGE_TO_WIDTH(&PWMD1, 5000));
  chThdSleepMilliseconds(5000);

  /*
   * Disables channel 0 and stops the drivers.
   */
  pwmDisableChannel(&PWMD1, 0);
  pwmStop(&PWMD1);
  icuDisable(&ICUD1);
  icuStop(&ICUD1);
  palClearPad(PORT_D, PD_LED3);
  palClearPad(PORT_D, PD_LED4);

  /*
   * Normal main() thread activity, in this demo it does nothing.
   */
  while (TRUE) {
    chThdSleepMilliseconds(500);
  }
  return 0;
}
示例#5
0
文件: test.c 项目: rusefi/rusefi
/**
 * @brief   Test execution thread function.
 *
 * @param[in] p         pointer to a @p BaseChannel object for test output
 * @return              A failure boolean value.
 */
msg_t TestThread(void *p) {
  int i, j;

  chp = p;
  test_println("");
  test_println("*** ChibiOS/RT test suite");
  test_println("***");
  test_print("*** Kernel:       ");
  test_println(CH_KERNEL_VERSION);
  test_print("*** Compiled:     ");
  test_println(__DATE__ " - " __TIME__);
#ifdef CH_COMPILER_NAME
  test_print("*** Compiler:     ");
  test_println(CH_COMPILER_NAME);
#endif
  test_print("*** Architecture: ");
  test_println(CH_ARCHITECTURE_NAME);
#ifdef CH_CORE_VARIANT_NAME
  test_print("*** Core Variant: ");
  test_println(CH_CORE_VARIANT_NAME);
#endif
#ifdef CH_PORT_INFO
  test_print("*** Port Info:    ");
  test_println(CH_PORT_INFO);
#endif
#ifdef PLATFORM_NAME
  test_print("*** Platform:     ");
  test_println(PLATFORM_NAME);
#endif
#ifdef BOARD_NAME
  test_print("*** Test Board:   ");
  test_println(BOARD_NAME);
#endif
  test_println("");

  global_fail = FALSE;
  i = 0;
  while (patterns[i]) {
    j = 0;
    while (patterns[i][j]) {
      print_line();
      test_print("--- Test Case ");
      test_printn(i + 1);
      test_print(".");
      test_printn(j + 1);
      test_print(" (");
      test_print(patterns[i][j]->name);
      test_println(")");
#if DELAY_BETWEEN_TESTS > 0
      chThdSleepMilliseconds(DELAY_BETWEEN_TESTS);
#endif
      execute_test(patterns[i][j]);
      if (local_fail) {
        test_print("--- Result: FAILURE (#");
        test_printn(failpoint);
        test_print(" [");
        print_tokens();
        test_println("])");
      }
      else
        test_println("--- Result: SUCCESS");
      j++;
    }
    i++;
  }
  print_line();
  test_println("");
  test_print("Final result: ");
  if (global_fail)
    test_println("FAILURE");
  else
    test_println("SUCCESS");

  return (msg_t)global_fail;
}
示例#6
0
/*
 * Application entry point.
 */
int main(void) {
  thread_t *shelltp1 = NULL;
  thread_t *shelltp2 = NULL;

  /*
   * System initializations.
   * - HAL initialization, this also initializes the configured device drivers
   *   and performs the board-specific initializations.
   * - Kernel initialization, the main() function becomes a thread and the
   *   RTOS is active.
   */
  halInit();
  chSysInit();

  /*
   * Initializes a serial-over-USB CDC driver.
   */
  sduObjectInit(&SDU1);
  sduStart(&SDU1, &serusbcfg1);
  sduObjectInit(&SDU2);
  sduStart(&SDU2, &serusbcfg2);

  /*
   * Activates the USB driver and then the USB bus pull-up on D+.
   * Note, a delay is inserted in order to not have to disconnect the cable
   * after a reset.
   */
  usbDisconnectBus(serusbcfg1.usbp);
  chThdSleepMilliseconds(1500);
  usbStart(serusbcfg1.usbp, &usbcfg);
  usbConnectBus(serusbcfg1.usbp);

  /*
   * Shell manager initialization.
   */
  shellInit();

  /*
   * Creates the blinker thread.
   */
  chThdCreateStatic(waThread1, sizeof(waThread1), NORMALPRIO, Thread1, NULL);

  /*
   * Normal main() thread activity, in this demo it does nothing except
   * sleeping in a loop and check the button state.
   */
  while (true) {
    if (!shelltp1 && (SDU1.config->usbp->state == USB_ACTIVE))
      shelltp1 = shellCreate(&shell_cfg1, SHELL_WA_SIZE, NORMALPRIO);
    else if (chThdTerminatedX(shelltp1)) {
      chThdRelease(shelltp1);   /* Recovers memory of the previous shell.   */
      shelltp1 = NULL;          /* Triggers spawning of a new shell.        */
    }
    if (!shelltp2 && (SDU2.config->usbp->state == USB_ACTIVE))
      shelltp2 = shellCreate(&shell_cfg2, SHELL_WA_SIZE, NORMALPRIO);
    else if (chThdTerminatedX(shelltp2)) {
      chThdRelease(shelltp2);   /* Recovers memory of the previous shell.   */
      shelltp2 = NULL;          /* Triggers spawning of a new shell.        */
    }
    chThdSleepMilliseconds(1000);
  }
}
示例#7
0
/*
 * Application entry point.
 */
int main(void) {
  static const evhandler_t evhndl[] = {
    InsertHandler,
    RemoveHandler,
    ShellHandler
  };
  event_listener_t el0, el1, el2;

  /*
   * System initializations.
   * - HAL initialization, this also initializes the configured device drivers
   *   and performs the board-specific initializations.
   * - Kernel initialization, the main() function becomes a thread and the
   *   RTOS is active.
   */
  halInit();
  chSysInit();

  /*
   * Initializes a serial-over-USB CDC driver.
   */
  sduObjectInit(&SDU1);
  sduStart(&SDU1, &serusbcfg);

  /*
   * Activates the USB driver and then the USB bus pull-up on D+.
   * Note, a delay is inserted in order to not have to disconnect the cable
   * after a reset.
   */
  usbDisconnectBus(serusbcfg.usbp);
  chThdSleepMilliseconds(1500);
  usbStart(serusbcfg.usbp, &usbcfg);
  usbConnectBus(serusbcfg.usbp);

  /*
   * Shell manager initialization.
   */
  shellInit();

  /*
   * Activates the card insertion monitor.
   */
  tmr_init(&SDCD1);

  /*
   * Creates the blinker thread.
   */
  chThdCreateStatic(waThread1, sizeof(waThread1), NORMALPRIO, Thread1, NULL);

  /*
   * Normal main() thread activity, handling SD card events and shell
   * start/exit.
   */
  chEvtRegister(&inserted_event, &el0, 0);
  chEvtRegister(&removed_event, &el1, 1);
  chEvtRegister(&shell_terminated, &el2, 2);
  while (true) {
    if (!shelltp && (SDU1.config->usbp->state == USB_ACTIVE)) {
      shelltp = chThdCreateFromHeap(NULL, SHELL_WA_SIZE,
                                    "shell", NORMALPRIO + 1,
                                    shellThread, (void *)&shell_cfg1);
    }
    chEvtDispatch(evhndl, chEvtWaitOneTimeout(ALL_EVENTS, MS2ST(500)));
  }
}
示例#8
0
/*
 * Application entry point.
 */
int main(void) {
  unsigned i;
  gptcnt_t interval, threshold, worst;

  /*
   * System initializations.
   * - HAL initialization, this also initializes the configured device drivers
   *   and performs the board-specific initializations.
   * - Kernel initialization, the main() function becomes a thread and the
   *   RTOS is active.
   */
  halInit();
  chSysInit();

  /*
   * Prepares the Serial driver 1 and GPT drivers 2 and 3.
   */
  sdStart(&SD1, NULL);          /* Default is 38400-8-N-1.*/
  palSetPadMode(GPIOA, 9, PAL_MODE_ALTERNATE(7));
  palSetPadMode(GPIOA, 10, PAL_MODE_ALTERNATE(7));
  gptStart(&GPTD2, &gpt2cfg);
  gptStart(&GPTD3, &gpt3cfg);

  /*
   * Initializes the mailboxes and creates the worker threads.
   */
  for (i = 0; i < NUM_THREADS; i++) {
    chMBInit(&mb[i], b[i], MAILBOX_SIZE);
    chThdCreateStatic(waWorkerThread[i], sizeof waWorkerThread[i],
                      NORMALPRIO - 20, WorkerThread, (void *)i);
  }

  /*
   * Test procedure.
   */
  println("");
  println("*** ChibiOS/RT IRQ-STORM long duration test");
  println("***");
  print("*** Kernel:       ");
  println(CH_KERNEL_VERSION);
  print("*** Compiled:     ");
  println(__DATE__ " - " __TIME__);
#ifdef CH_COMPILER_NAME
  print("*** Compiler:     ");
  println(CH_COMPILER_NAME);
#endif
  print("*** Architecture: ");
  println(CH_ARCHITECTURE_NAME);
#ifdef CH_CORE_VARIANT_NAME
  print("*** Core Variant: ");
  println(CH_CORE_VARIANT_NAME);
#endif
#ifdef CH_PORT_INFO
  print("*** Port Info:    ");
  println(CH_PORT_INFO);
#endif
#ifdef PLATFORM_NAME
  print("*** Platform:     ");
  println(PLATFORM_NAME);
#endif
#ifdef BOARD_NAME
  print("*** Test Board:   ");
  println(BOARD_NAME);
#endif
  println("***");
  print("*** System Clock: ");
  printn(STM32_SYSCLK);
  println("");
  print("*** Iterations:   ");
  printn(ITERATIONS);
  println("");
  print("*** Randomize:    ");
  printn(RANDOMIZE);
  println("");
  print("*** Threads:      ");
  printn(NUM_THREADS);
  println("");
  print("*** Mailbox size: ");
  printn(MAILBOX_SIZE);
  println("");

  println("");
  worst = 0;
  for (i = 1; i <= ITERATIONS; i++){
    print("Iteration ");
    printn(i);
    println("");
    saturated = FALSE;
    threshold = 0;
    for (interval = 2000; interval >= 20; interval -= interval / 10) {
      gptStartContinuous(&GPTD2, interval - 1); /* Slightly out of phase.*/
      gptStartContinuous(&GPTD3, interval + 1); /* Slightly out of phase.*/
      chThdSleepMilliseconds(1000);
      gptStopTimer(&GPTD2);
      gptStopTimer(&GPTD3);
      if (!saturated)
        print(".");
      else {
        print("#");
        if (threshold == 0)
          threshold = interval;
      }
    }
    /* Gives the worker threads a chance to empty the mailboxes before next
       cycle.*/
    chThdSleepMilliseconds(20);
    println("");
    print("Saturated at ");
    printn(threshold);
    println(" uS");
    println("");
    if (threshold > worst)
      worst = threshold;
  }
  gptStopTimer(&GPTD2);
  gptStopTimer(&GPTD3);

  print("Worst case at ");
  printn(worst);
  println(" uS");
  println("");
  println("Test Complete");

  /*
   * Normal main() thread activity, nothing in this test.
   */
  while (TRUE) {
    chThdSleepMilliseconds(5000);
  }
  return 0;
}
示例#9
0
文件: main.c 项目: DuinoPilot/ChibiOS
/*
 * Application entry point.
 */
int main(void) {
  Thread *shelltp = NULL;

  /*
   * System initializations.
   * - HAL initialization, this also initializes the configured device drivers
   *   and performs the board-specific initializations.
   * - Kernel initialization, the main() function becomes a thread and the
   *   RTOS is active.
   */
  halInit();
  chSysInit();

  /*
   * Shell manager initialization.
   */
  shellInit();

  /*
   * Initializes a serial-over-USB CDC driver.
   */
  sduObjectInit(&SDU1);
  sduStart(&SDU1, &serusbcfg);

  /*
   * Activates the USB driver and then the USB bus pull-up on D+.
   * Note, a delay is inserted in order to not have to disconnect the cable
   * after a reset.
   */
  usbDisconnectBus(serusbcfg.usbp);
  chThdSleepMilliseconds(1000);
  usbStart(serusbcfg.usbp, &usbcfg);
  usbConnectBus(serusbcfg.usbp);

  /*
   * Activates the serial driver 2 using the driver default configuration.
   * PA2(TX) and PA3(RX) are routed to USART2.
   */
  sdStart(&SD2, NULL);
  palSetPadMode(GPIOA, 2, PAL_MODE_ALTERNATE(7));
  palSetPadMode(GPIOA, 3, PAL_MODE_ALTERNATE(7));

  /*
   * Initializes the SPI driver 1 in order to access the MEMS. The signals
   * are already initialized in the board file.
   */
  spiStart(&SPID1, &spi1cfg);

  /*
   * Initializes the SPI driver 2. The SPI2 signals are routed as follow:
   * PB12 - NSS.
   * PB13 - SCK.
   * PB14 - MISO.
   * PB15 - MOSI.
   */
  spiStart(&SPID2, &spi2cfg);
  palSetPad(GPIOB, 12);
  palSetPadMode(GPIOB, 12, PAL_MODE_OUTPUT_PUSHPULL |
                           PAL_STM32_OSPEED_HIGHEST);           /* NSS.     */
  palSetPadMode(GPIOB, 13, PAL_MODE_ALTERNATE(5) |
                           PAL_STM32_OSPEED_HIGHEST);           /* SCK.     */
  palSetPadMode(GPIOB, 14, PAL_MODE_ALTERNATE(5));              /* MISO.    */
  palSetPadMode(GPIOB, 15, PAL_MODE_ALTERNATE(5) |
                           PAL_STM32_OSPEED_HIGHEST);           /* MOSI.    */

  /*
   * Initializes the PWM driver 4, routes the TIM4 outputs to the board LEDs.
   */
  pwmStart(&PWMD4, &pwmcfg);
  palSetPadMode(GPIOD, GPIOD_LED4, PAL_MODE_ALTERNATE(2));      /* Green.   */
  palSetPadMode(GPIOD, GPIOD_LED3, PAL_MODE_ALTERNATE(2));      /* Orange.  */
  palSetPadMode(GPIOD, GPIOD_LED5, PAL_MODE_ALTERNATE(2));      /* Red.     */
  palSetPadMode(GPIOD, GPIOD_LED6, PAL_MODE_ALTERNATE(2));      /* Blue.    */

  /*
   * Creates the example thread.
   */
  chThdCreateStatic(waThread1, sizeof(waThread1),
                    NORMALPRIO + 10, Thread1, NULL);

  /*
   * Normal main() thread activity, in this demo it just performs
   * a shell respawn upon its termination.
   */
  while (TRUE) {
    if (!shelltp) {
      if (SDU1.config->usbp->state == USB_ACTIVE) {
        /* Spawns a new shell.*/
        shelltp = shellCreate(&shell_cfg1, SHELL_WA_SIZE, NORMALPRIO);
      }
    }
    else {
      /* If the previous shell exited.*/
      if (chThdTerminated(shelltp)) {
        /* Recovers memory of the previous shell.*/
        chThdRelease(shelltp);
        shelltp = NULL;
      }
    }
    chThdSleepMilliseconds(500);
  }
}
示例#10
0
static msg_t     thdUsbStorage(void *arg)
{
  (void) arg; // unused
  chRegSetThreadName("UsbStorage:polling");
  uint antiBounce=5;
  EventListener connected;

  // Should use EXTI interrupt instead of active polling,
  // but in the chibios_opencm3 implementation, since EXTI is
  // used via libopencm3, ISR are routed on pprz/opencm3 and cannot
  // be used concurrently by chibios api
  // Should be fixed when using chibios-rt branch
  while (!chThdShouldTerminate() && antiBounce) {
    const bool_t usbConnected = palReadPad (GPIOA, GPIOA_OTG_FS_VBUS);
    if (usbConnected)
      antiBounce--;
    else
      antiBounce=5;

    chThdSleepMilliseconds(20);
  }
  isRunning = true;
  chRegSetThreadName("UsbStorage:connected");

  /* Stop the logs*/
  chibios_logFinish (true);


  /* connect sdcard sdc interface sdio */
  if (sdioConnect () == false)
    chThdExit (RDY_TIMEOUT);

  /* initialize the USB mass storage driver */
  msdInit(&UMSD1);

  /* start the USB mass storage service */
  msdStart(&UMSD1, &msdConfig);

  /* start the USB driver */
  usbDisconnectBus(&USBD1);
  chThdSleepMilliseconds(1000);
  usbStart(&USBD1, &usbConfig);
  usbConnectBus(&USBD1);

  /* wait for a real usb storage connexion before shutting down autopilot */
  chEvtRegisterMask(&UMSD1.evt_connected, &connected, EVENT_MASK(1));
  chEvtWaitOne(EVENT_MASK(1));

  /* stop autopilot */
  if (pprzThdPtr != NULL) {
    chThdTerminate (pprzThdPtr);
    chThdWait (pprzThdPtr);
    pprzThdPtr = NULL;
  }

  /* wait until usb-storage is unmount and usb cable is unplugged*/
  while (!chThdShouldTerminate() && palReadPad (GPIOA, GPIOA_OTG_FS_VBUS)) {
    chThdSleepMilliseconds(10);
  }


  /* then close open descriptors and reboot autopilot */
  usbDisconnectBus(&USBD1);
  chThdSleepMilliseconds(500);
  msdStop(&UMSD1);
  sdioDisconnect ();

  MCU_RESTART();
  return RDY_OK;
}
示例#11
0
 static void sleepMilliseconds(uint32_t ms)
 {
     chThdSleepMilliseconds(ms);
 }
示例#12
0
THD_FUNCTION(Thread1, arg) {

  (void)arg;

  /*
   * Activate the serial driver 0 using the driver default configuration.
   */
  sdStart(&SD0, NULL);

  while (chnGetTimeout(&SD0, TIME_INFINITE)) {
    chnWrite(&SD0, (const uint8_t *)start_msg, strlen(start_msg));
    chThdSleepMilliseconds(2000);

    /* Test 1 - use DMA engine to execute a word-wise memory-to-memory copy. */
    chnWrite(&SD0, (const uint8_t *)test_1_msg, strlen(test_1_msg));
    strcpy(instring, "After DMA test  \r\n");
    strcpy(outstring, "Before DMA test \r\n");
    if (strcmp("Before DMA test \r\n", outstring)) {
      chnWrite(&SD0, (const uint8_t *)fail_string, strlen(fail_string));
    }
    request = &test_1_req;
    chSysLock();
    dmaRequestS(request, TIME_INFINITE);
    chSysUnlock();
    if (strcmp("After DMA test  \r\n", outstring)) {
      chnWrite(&SD0, (const uint8_t *)fail_string, strlen(fail_string));
    }
    else {
      chnWrite(&SD0, (const uint8_t *)succeed_string, strlen(succeed_string));
    }

    /* Test 2 - use DMA engine to execute a byte-wise memory-to-memory copy. */
    chnWrite(&SD0, (const uint8_t *)test_2_msg, strlen(test_2_msg));
    strcpy(instring, "After DMA test  \r\n");
    strcpy(outstring, "Before DMA test \r\n");
    if (strcmp("Before DMA test \r\n", outstring)) {
      chnWrite(&SD0, (const uint8_t *)fail_string, strlen(fail_string));
    }
    request = &test_2_req;
    chSysLock();
    dmaRequestS(request, TIME_INFINITE);
    chSysUnlock();
    if (strcmp("After DMA test  \r\n", outstring)) {
      chnWrite(&SD0, (const uint8_t *)fail_string, strlen(fail_string));
    }
    else {
      chnWrite(&SD0, (const uint8_t *)succeed_string, strlen(succeed_string));
    }

    /* Test 3 - use DMA engine to execute a word-wise memory-to-memory set. */
    chnWrite(&SD0, (const uint8_t *)test_3_msg, strlen(test_3_msg));
    strcpy(instring, "After DMA test  \r\n");
    strcpy(outstring, "Before DMA test \r\n");
    if (strcmp("Before DMA test \r\n", outstring)) {
      chnWrite(&SD0, (const uint8_t *)fail_string, strlen(fail_string));
    }
    request = &test_3_req;
    chSysLock();
    dmaRequestS(request, TIME_INFINITE);
    chSysUnlock();
    if (strcmp("AAAAAAAAAAAAAAAA\r\n", outstring)) {
      chnWrite(&SD0, (const uint8_t *)fail_string, strlen(fail_string));
    }
    else {
      chnWrite(&SD0, (const uint8_t *)succeed_string, strlen(succeed_string));
    }

    /* Test 4 - use DMA engine to execute a word-wise memory-to-memory copy,
     * then call a callback. */
    chnWrite(&SD0, (const uint8_t *)test_4_msg, strlen(test_4_msg));
    strcpy(instring, "After DMA test  \r\n");
    strcpy(outstring, "Before DMA test \r\n");
    cb_arg = 1;
    if (strcmp("Before DMA test \r\n", outstring) || (cb_arg != 1)) {
      chnWrite(&SD0, (const uint8_t *)fail_string, strlen(fail_string));
    }
    request = &test_4_req;
    chSysLock();
    dmaRequestS(request, TIME_INFINITE);
    chSysUnlock();
    if (strcmp("After DMA test  \r\n", outstring) || cb_arg) {
      chnWrite(&SD0, (const uint8_t *)fail_string, strlen(fail_string));
    }
    else {
      chnWrite(&SD0, (const uint8_t *)succeed_string, strlen(succeed_string));
    }

    /* Test 5 - use exclusive DMA channel 0 to execute a word-wise
     * memory-to-memory copy. */
    chnWrite(&SD0, (const uint8_t *)test_5_msg, strlen(test_5_msg));
    strcpy(instring, "After DMA test  \r\n");
    strcpy(outstring, "Before DMA test \r\n");
    if (strcmp("Before DMA test \r\n", outstring)) {
      chnWrite(&SD0, (const uint8_t *)fail_string, strlen(fail_string));
    }
    request = &test_5_req;
    chSysLock();
    dmaAcquireI(&ch, 0);
    chSysUnlock();
    dmaTransfer(&ch, request);
    if (strcmp("After DMA test  \r\n", outstring)) {
      chnWrite(&SD0, (const uint8_t *)fail_string, strlen(fail_string));
    }
    else {
      chnWrite(&SD0, (const uint8_t *)succeed_string, strlen(succeed_string));
    }

    /* Test 6 - Attempt to claim DMA channel 0, fail, release it, attempt to
     * claim it again */
    chnWrite(&SD0, (const uint8_t *)test_6_msg, strlen(test_6_msg));
    chSysLock();
    result = dmaAcquireI(&ch, 0);
    chSysUnlock();
    if (!result) {
      chnWrite(&SD0, (const uint8_t *)fail_string, strlen(fail_string));
    }
    dmaRelease(&ch);
    chSysLock();
    result = dmaAcquireI(&ch, 0);
    chSysUnlock();
    if (result) {
      chnWrite(&SD0, (const uint8_t *)fail_string, strlen(fail_string));
    }
    else {
      chnWrite(&SD0, (const uint8_t *)succeed_string, strlen(succeed_string));
    }
    dmaRelease(&ch);

    /* Test 7 - use exclusive DMA channel 1 to execute a word-wise
     * memory-to-memory copy. */
    chnWrite(&SD0, (const uint8_t *)test_7_msg, strlen(test_7_msg));
    strcpy(instring, "After DMA test  \r\n");
    strcpy(outstring, "Before DMA test \r\n");
    if (strcmp("Before DMA test \r\n", outstring)) {
      chnWrite(&SD0, (const uint8_t *)fail_string, strlen(fail_string));
    }
    request = &test_5_req;
    chSysLock();
    dmaAcquireI(&ch, 1);
    chSysUnlock();
    dmaTransfer(&ch, request);
    if (strcmp("After DMA test  \r\n", outstring)) {
      chnWrite(&SD0, (const uint8_t *)fail_string, strlen(fail_string));
    }
    else {
      chnWrite(&SD0, (const uint8_t *)succeed_string, strlen(succeed_string));
    }
    dmaRelease(&ch);
    
    /* Test 8 - Claim all 3 DMA channels, attempt dmaRequest, fail */
    chnWrite(&SD0, (const uint8_t *)test_8_msg, strlen(test_8_msg));
    chSysLock();
    result = dmaAcquireI(&ch, 0);
    chSysUnlock();
    if (result) {
      chnWrite(&SD0, (const uint8_t *)fail_string, strlen(fail_string));
    }
    chSysLock();
    result = dmaAcquireI(&ch1, 1);
    chSysUnlock();
    if (result) {
      chnWrite(&SD0, (const uint8_t *)fail_string, strlen(fail_string));
    }
    chSysLock();
    result = dmaAcquireI(&ch2, 2);
    chSysUnlock();
    if (result) {
      chnWrite(&SD0, (const uint8_t *)fail_string, strlen(fail_string));
    }
    chSysLock();
    result_i = dmaRequestS(request, TIME_IMMEDIATE);
    chSysUnlock();
    if (result_i > 0) {
      chnWrite(&SD0, (const uint8_t *)fail_string, strlen(fail_string));
    }
    else {
      chnWrite(&SD0, (const uint8_t *)succeed_string, strlen(succeed_string));
    }
    dmaRelease(&ch);
    dmaRelease(&ch1);
    dmaRelease(&ch2);

  }
}
示例#13
0
文件: main.c 项目: GotoHack/ChibiOS
/*
 * Application entry point.
 */
int main(void) {
  /*
   * System initializations.
   * - HAL initialization, this also initializes the configured device drivers
   *   and performs the board-specific initializations.
   * - Kernel initialization, the main() function becomes a thread and the
   *   RTOS is active.
   */
  halInit();
  chSysInit();

  /*
   * Activates the serial driver 2 and SDC driver 1 using default
   * configuration.
   */
  sdStart(&SD6, NULL);

  BaseSequentialStream *chp = (BaseSequentialStream *)&SD6;
  chprintf(chp, "running main()\r\n");
  chThdSleepMilliseconds(50);

#if STM32_USB_USE_OTG2
  USBDriver *usb_driver = &USBD2;
#else
  USBDriver *usb_driver = &USBD1;
#endif

  /*
   * Activates the card insertion monitor.
   */
  init_sd();
  chprintf(chp, "done starting SDC\r\n");
  const bool_t sdcConnectStatus = sdcConnect(&SDCD1);
  if( sdcConnectStatus != CH_SUCCESS ) {
    chprintf(chp, "failed to connect to SD Card, sdcConnectStatus = %u\r\n", sdcConnectStatus);
    for(;;) {
      chThdSleepMilliseconds(3000);
    }
  }

  chprintf(chp, "setting up MSD\r\n");
  const usb_msd_driver_state_t msd_driver_state = msdInit(usb_driver, (BaseBlockDevice*)&SDCD1, &UMSD1, USB_MS_DATA_EP, USB_MSD_INTERFACE_NUMBER);
  if( msd_driver_state != USB_MSD_DRIVER_OK ) {
    chprintf(chp, "Error initing USB MSD, %d %s\r\n", msd_driver_state, usb_msd_driver_state_t_to_str(msd_driver_state));
  }
  UMSD1.chp = chp;

  chprintf(chp, "Initializing SDU1...\r\n");
  serusbcfg.usbp = usb_driver;
  sduObjectInit(&SDU1);

  /*Disconnect the USB Bus*/
  usbDisconnectBus(usb_driver);
  chThdSleepMilliseconds(200);

  /*Start the useful functions*/
  sduStart(&SDU1, &serusbcfg);
  msdStart(&UMSD1);
  usbStart(usb_driver, &msd_usb_config);

  /*Connect the USB Bus*/
  usbConnectBus(usb_driver);

  /*
   * Creates the blinker thread.
   */
  chprintf(chp, "starting blinker thread\r\n");
  chThdCreateStatic(waThread1, sizeof(waThread1), NORMALPRIO, Thread1, NULL);

  while (TRUE) {
    palTogglePad(GPIOC, GPIOC_LED);
    chThdSleepMilliseconds(500);
  }
}
int main(void) {
	Thread * pub_tp = NULL;
	Thread * sub_tp = NULL;

	halInit();
	chSysInit();

	/*
	 * Initializes a serial-over-USB CDC driver.
	 */
#if USE_USB_SERIAL
	sduObjectInit(&SDU1);
	sduStart(&SDU1, &serusbcfg);
#endif

	/*
	 * Activates the USB driver and then the USB bus pull-up on D+.
	 * Note, a delay is inserted in order to not have to disconnect the cable
	 * after a reset.
	 */
#if USE_USB_SERIAL
	usbDisconnectBus(serusbcfg.usbp);
	chThdSleepMilliseconds(500);
	usbStart(serusbcfg.usbp, &usbcfg);
	usbConnectBus(serusbcfg.usbp);
#endif

	/* Start the serial driver. */
#if !USE_USB_SERIAL
	sdStart(&SD3, NULL);
#endif

	for (;;) {
#if USE_USB_SERIAL
		if (!pub_tp && (SDU1.config->usbp->state == USB_ACTIVE)) {
#else
		if (!pub_tp) {
#endif
			pub_tp = chThdCreateFromHeap(NULL, THD_WA_SIZE(2048), NORMALPRIO, rosserial_pub_thread, NULL);
		} else if (chThdTerminated(pub_tp)) {
			chThdRelease(pub_tp);
			pub_tp = NULL;
		}

		chThdSleepMilliseconds(123);

#if USE_USB_SERIAL
		if (!sub_tp && (SDU1.config->usbp->state == USB_ACTIVE)) {
#else
		if (!sub_tp) {
#endif
			sub_tp = chThdCreateFromHeap(NULL, THD_WA_SIZE(2048), NORMALPRIO, rosserial_sub_thread, NULL);
		} else if (chThdTerminated(sub_tp)) {
			chThdRelease(sub_tp);
			sub_tp = NULL;
		}

		chThdSleepMilliseconds(500);
	}

	return CH_SUCCESS;
}
}
示例#15
0
文件: main.c 项目: 0x00f/ChibiOS
/*
 * Application entry point.
 */
int main(void) {

  /* Initialization of all the imported components in the order specified in
	 the application wizard. The function is generated automatically.*/
  componentsInit();

  palClearPad(PORT11, P11_LED4);

  /*
   * Initializes the PWM driver 8 and ICU driver 1.
   * PIN80 is the PWM output.
   * PIN63 is the ICU input.
   * The two pins have to be externally connected together.
   */

  /* Sets PIN63 alternative function.*/
  SIU.PCR[179].R = 0b0000010100001100;

  /* Sets PIN80 alternative function.*/
  SIU.PCR[202].R = 0b0000011000001100;

  icuStart(&ICUD1, &icucfg);
  icuEnable(&ICUD1);
  pwmStart(&PWMD8, &pwmcfg);

  chThdSleepMilliseconds(2000);

  /*
   * Starts the PWM channel 0 using 75% duty cycle.
   */
  pwmEnableChannel(&PWMD8, 0, PWM_PERCENTAGE_TO_WIDTH(&PWMD8, 7500));
  chThdSleepMilliseconds(5000);

  /*
   * Changes the PWM channel 0 to 50% duty cycle.
   */
  pwmEnableChannel(&PWMD8, 0, PWM_PERCENTAGE_TO_WIDTH(&PWMD8, 5000));
  chThdSleepMilliseconds(5000);

  /*
   * Changes the PWM channel 0 to 25% duty cycle.
   */
  pwmEnableChannel(&PWMD8, 0, PWM_PERCENTAGE_TO_WIDTH(&PWMD8, 2500));
  chThdSleepMilliseconds(5000);

  /*
   * Changes PWM period and the PWM channel 0 to 50% duty cycle.
   */
  pwmChangePeriod(&PWMD8, 25000);
  pwmEnableChannel(&PWMD8, 0, PWM_PERCENTAGE_TO_WIDTH(&PWMD8, 5000));
  chThdSleepMilliseconds(5000);

  /*
   * Disables PWM channel 0 and stops the drivers.
   */
  pwmDisableChannel(&PWMD8, 0);
  pwmStop(&PWMD8);

  /*
   * Disables and stops the ICU drivers.
   */

  icuDisable(&ICUD1);
  icuStop(&ICUD1);

  palClearPad(PORT11, P11_LED3);
  palClearPad(PORT11, P11_LED4);

  /*
   * Normal main() thread activity, in this demo it does nothing.
   */
  while (TRUE) {
    chThdSleepMilliseconds(500);
  }
  return 0;
}
示例#16
0
static THD_FUNCTION(Thread1, arg) {

  (void)arg;

  /*
   * Activates the serial driver 1 using the driver default configuration.
   */
  sdStart(&SD1, NULL);

  while (true) {
    unsigned i;

    for (i = 0; i < 4; i++) {
      palClearPad(PORT_E, PE_LED1);
      chThdSleepMilliseconds(100);
      palClearPad(PORT_E, PE_LED2);
      chThdSleepMilliseconds(100);
      palClearPad(PORT_E, PE_LED3);
      chThdSleepMilliseconds(100);
      palClearPad(PORT_E, PE_LED4);
      chThdSleepMilliseconds(100);
      palSetPad(PORT_E, PE_LED1);
      chThdSleepMilliseconds(100);
      palSetPad(PORT_E, PE_LED2);
      chThdSleepMilliseconds(100);
      palSetPad(PORT_E, PE_LED3);
      chThdSleepMilliseconds(100);
      palSetPad(PORT_E, PE_LED4);
      chThdSleepMilliseconds(300);
    }

    for (i = 0; i < 4; i++) {
      palTogglePort(PORT_E, PAL_PORT_BIT(PE_LED1) | PAL_PORT_BIT(PE_LED2) |
                            PAL_PORT_BIT(PE_LED3) | PAL_PORT_BIT(PE_LED4));
      chThdSleepMilliseconds(500);
      palTogglePort(PORT_E, PAL_PORT_BIT(PE_LED1) | PAL_PORT_BIT(PE_LED2) |
                            PAL_PORT_BIT(PE_LED3) | PAL_PORT_BIT(PE_LED4));
      chThdSleepMilliseconds(500);
    }

    for (i = 0; i < 4; i++) {
      palTogglePad(PORT_E, PE_LED1);
      chThdSleepMilliseconds(250);
      palTogglePad(PORT_E, PE_LED1);
      palTogglePad(PORT_E, PE_LED2);
      chThdSleepMilliseconds(250);
      palTogglePad(PORT_E, PE_LED2);
      palTogglePad(PORT_E, PE_LED3);
      chThdSleepMilliseconds(250);
      palTogglePad(PORT_E, PE_LED3);
      palTogglePad(PORT_E, PE_LED4);
      chThdSleepMilliseconds(250);
      palTogglePad(PORT_E, PE_LED4);
    }

    for (i = 0; i < 4; i++) {
      palClearPort(PORT_E, PAL_PORT_BIT(PE_LED1) | PAL_PORT_BIT(PE_LED3));
      palSetPort(PORT_E, PAL_PORT_BIT(PE_LED2) | PAL_PORT_BIT(PE_LED4));
      chThdSleepMilliseconds(500);
      palClearPort(PORT_E, PAL_PORT_BIT(PE_LED2) | PAL_PORT_BIT(PE_LED4));
      palSetPort(PORT_E, PAL_PORT_BIT(PE_LED1) | PAL_PORT_BIT(PE_LED3));
      chThdSleepMilliseconds(500);
    }

    palSetPort(PORT_E, PAL_PORT_BIT(PE_LED1) | PAL_PORT_BIT(PE_LED2) |
                       PAL_PORT_BIT(PE_LED3) | PAL_PORT_BIT(PE_LED4));
  }
}
示例#17
0
文件: main.c 项目: pfhnr/stm32
int main(void) {
	static Thread            *shelltp       = NULL;
	static const evhandler_t evhndl_main[]       = {
			extdetail_WKUP_button_handler
	};
	struct EventListener     el0;

	/*
	 * System initializations.
	 * - HAL initialization, this also initializes the configured device drivers
	 *   and performs the board-specific initializations.
	 * - Kernel initialization, the main() function becomes a thread and the
	 *   RTOS is active.
	 */
	halInit();
	chSysInit();

	extdetail_init();

	palSetPad(GPIOC, GPIOC_LED);
	palSetPad(GPIOA, GPIOA_SPI1_SCK);
	palSetPad(GPIOA, GPIOA_SPI1_NSS);

	/*
	 * SPI1 I/O pins setup.
	 */
	palSetPadMode(adis_connections.spi_sck_port, adis_connections.spi_sck_pad,
			PAL_MODE_ALTERNATE(5) |
			PAL_STM32_OSPEED_HIGHEST);
	palSetPadMode(adis_connections.spi_miso_port, adis_connections.spi_miso_pad,
			PAL_MODE_ALTERNATE(5) |
			PAL_STM32_OSPEED_HIGHEST| PAL_STM32_PUDR_FLOATING);
	palSetPadMode(adis_connections.spi_mosi_port, adis_connections.spi_mosi_pad,
			PAL_MODE_ALTERNATE(5) |
			PAL_STM32_OSPEED_HIGHEST );
	palSetPadMode(adis_connections.spi_cs_port, adis_connections.spi_cs_pad,
			PAL_MODE_OUTPUT_PUSHPULL |
			PAL_STM32_OSPEED_HIGHEST);

	palSetPad(GPIOA, GPIOA_SPI1_SCK);
	palSetPad(GPIOA, GPIOA_SPI1_NSS);

	/*!
	 * Initializes a serial-over-USB CDC driver.
	 */
	sduObjectInit(&SDU_PSAS);
	sduStart(&SDU_PSAS, &serusbcfg);

	/*!
	 * Activates the USB driver and then the USB bus pull-up on D+.
	 * Note, a delay is inserted in order to not have to disconnect the cable
	 * after a reset.
	 */
	usbDisconnectBus(serusbcfg.usbp);
	chThdSleepMilliseconds(1000);
	usbStart(serusbcfg.usbp, &usbcfg);
	usbConnectBus(serusbcfg.usbp);

	shellInit();

	iwdg_begin();

	/*!
	 * Activates the serial driver 6 and SDC driver 1 using default
	 * configuration.
	 */
	sdStart(&SD6, NULL);

	spiStart(&SPID1, &adis_spicfg);       /* Set transfer parameters.  */

	chThdSleepMilliseconds(300);

	adis_init();
	adis_reset();

	/*! Activates the EXT driver 1. */
	extStart(&EXTD1, &extcfg);

	chThdCreateStatic(waThread_blinker,      sizeof(waThread_blinker),      NORMALPRIO, Thread_blinker,      NULL);
	chThdCreateStatic(waThread_adis_dio1,    sizeof(waThread_adis_dio1),    NORMALPRIO, Thread_adis_dio1,    NULL);
	chThdCreateStatic(waThread_adis_newdata, sizeof(waThread_adis_newdata), NORMALPRIO, Thread_adis_newdata, NULL);
	chThdCreateStatic(waThread_indwatchdog,  sizeof(waThread_indwatchdog),  NORMALPRIO, Thread_indwatchdog,  NULL);

	chEvtRegister(&extdetail_wkup_event, &el0, 0);
	while (TRUE) {
		if (!shelltp && (SDU_PSAS.config->usbp->state == USB_ACTIVE))
			shelltp = shellCreate(&shell_cfg1, SHELL_WA_SIZE, NORMALPRIO);
		else if (chThdTerminated(shelltp)) {
			chThdRelease(shelltp);    /* Recovers memory of the previous shell.   */
			shelltp = NULL;           /* Triggers spawning of a new shell.        */
		}
		chEvtDispatch(evhndl_main, chEvtWaitOneTimeout((eventmask_t)1, MS2ST(500)));
	}
}
示例#18
0
文件: hip9011.cpp 项目: rusefi/rusefi
void Hip9011Hardware::sendSyncCommand(unsigned char command) {
	SPI_SYNCHRONOUS(command);
	chThdSleepMilliseconds(10);
}
示例#19
0
/*
 * Application entry point.
 */
int main(void) {

  size_t start = 1100;
  size_t end = 1150;
  volatile int32_t adc_its = 0;
  volatile int32_t spi_its = 0;
  volatile int32_t uart_its = 0;
  volatile int32_t adc_its_idle = 0;
  volatile int32_t spi_its_idle = 0;
  volatile int32_t uart_its_idle = 0;
  volatile uint32_t idle_thread_cnt = 0;

  #if EMCNAND_USE_KILL_TEST
  size_t kill = 8000;
  #endif

  /*
   * System initializations.
   * - HAL initialization, this also initializes the configured device drivers
   *   and performs the board-specific initializations.
   * - Kernel initialization, the main() function becomes a thread and the
   *   RTOS is active.
   */
  halInit();
  chSysInit();

  emcStart(&EMCD1, &emccfg);
#if !STM32_EMC_EMCNAND_USE_FSMC_INT
  extStart(&EXTD1, &extcfg);
#endif
  emcnandStart(&EMCNANDD1, &nandcfg);

  chThdSleepMilliseconds(4000);

  chThdCreateStatic(fsmcIdleThreadWA,
        sizeof(fsmcIdleThreadWA),
        NORMALPRIO - 20,
        fsmcIdleThread,
        NULL);

  nand_wp_release();

  dma_storm_adc_start();
  dma_storm_uart_start();
  dma_storm_spi_start();
  T = chVTGetSystemTimeX();
  general_test(&EMCNANDD1, start, end, 1);
  T = chVTGetSystemTimeX() - T;
  adc_its = dma_storm_adc_stop();
  uart_its = dma_storm_uart_stop();
  spi_its = dma_storm_spi_stop();
  chSysLock();
  idle_thread_cnt = IdleCnt;
  IdleCnt = 0;
  chSysUnlock();

  dma_storm_adc_start();
  dma_storm_uart_start();
  dma_storm_spi_start();
  chThdSleep(T);
  adc_its_idle = dma_storm_adc_stop();
  uart_its_idle = dma_storm_uart_stop();
  spi_its_idle = dma_storm_spi_stop();

  osalDbgCheck(idle_thread_cnt > (IdleCnt / 4));
  osalDbgCheck(abs(adc_its - adc_its_idle)   < (adc_its_idle  / 20));
  osalDbgCheck(abs(uart_its - uart_its_idle) < (uart_its_idle / 20));
  osalDbgCheck(abs(spi_its - spi_its_idle)   < (spi_its_idle  / 10));

  ecc_test(&EMCNANDD1, end);

#if EMCNAND_USE_KILL_TEST
  kill_block(&EMCNANDD1, kill);
#endif

  nand_wp_assert();

  /*
   * Normal main() thread activity, in this demo it does nothing.
   */
  while (TRUE) {
    chThdSleepMilliseconds(500);
  }
}
示例#20
0
文件: ADIS16405.c 项目: pfhnr/stm32
/*! \brief Reset the ADIS
 */
void adis_reset() {
	palClearPad(adis_connections.reset_port, adis_connections.reset_pad);
	chThdSleepMilliseconds(ADIS_RESET_MSECS);
	palSetPad(adis_connections.reset_port, adis_connections.reset_pad);
	chThdSleepMilliseconds(ADIS_RESET_MSECS);
}
示例#21
0
/**
 * @brief   IRQ storm execution.
 *
 * @param[in] cfg       pointer to the test configuration structure
 *
 * @api
 */
void irq_storm_execute(const irq_storm_config_t *cfg) {
  unsigned i;
  gptcnt_t interval, threshold, worst;

  /* Global configuration pointer.*/
  config = cfg;

  /* Starting timers using the stored configurations.*/
  gptStart(cfg->gpt1p, cfg->gptcfg1p);
  gptStart(cfg->gpt2p, cfg->gptcfg2p);

  /*
   * Initializes the mailboxes and creates the worker threads.
   */
  for (i = 0; i < IRQ_STORM_CFG_NUM_THREADS; i++) {
    chMBObjectInit(&mb[i], b[i], IRQ_STORM_CFG_MAILBOX_SIZE);
    threads[i] = chThdCreateStatic(irq_storm_thread_wa[i],
                                   sizeof irq_storm_thread_wa[i],
                                   IRQ_STORM_CFG_THREADS_PRIORITY,
                                   irq_storm_thread,
                                   (void *)i);
  }

  /* Printing environment information.*/
  chprintf(cfg->out, "");
  chprintf(cfg->out, "\r\n*** ChibiOS/RT IRQ-STORM long duration test\r\n***\r\n");
  chprintf(cfg->out, "*** Kernel:       %s\r\n", CH_KERNEL_VERSION);
  chprintf(cfg->out, "*** Compiled:     %s\r\n", __DATE__ " - " __TIME__);
#ifdef PORT_COMPILER_NAME
  chprintf(cfg->out, "*** Compiler:     %s\r\n", PORT_COMPILER_NAME);
#endif
  chprintf(cfg->out, "*** Architecture: %s\r\n", PORT_ARCHITECTURE_NAME);
#ifdef PORT_CORE_VARIANT_NAME
  chprintf(cfg->out, "*** Core Variant: %s\r\n", PORT_CORE_VARIANT_NAME);
#endif
  chprintf(cfg->out, "*** System Clock: %d\r\n", cfg->sysclk);
#ifdef PORT_INFO
  chprintf(cfg->out, "*** Port Info:    %s\r\n", PORT_INFO);
#endif
#ifdef PLATFORM_NAME
  chprintf(cfg->out, "*** Platform:     %s\r\n", PLATFORM_NAME);
#endif
#ifdef BOARD_NAME
  chprintf(cfg->out, "*** Test Board:   %s\r\n", BOARD_NAME);
#endif
  chprintf(cfg->out, "***\r\n");
  chprintf(cfg->out, "*** Iterations:   %d\r\n", IRQ_STORM_CFG_ITERATIONS);
  chprintf(cfg->out, "*** Randomize:    %d\r\n", IRQ_STORM_CFG_RANDOMIZE);
  chprintf(cfg->out, "*** Threads:      %d\r\n", IRQ_STORM_CFG_NUM_THREADS);
  chprintf(cfg->out, "*** Mailbox size: %d\r\n\r\n", IRQ_STORM_CFG_MAILBOX_SIZE);

  /* Test loop.*/
  worst = 0;
  for (i = 1; i <= IRQ_STORM_CFG_ITERATIONS; i++){

    chprintf(cfg->out, "Iteration %d\r\n", i);
    saturated = false;
    threshold = 0;

    /* Timer intervals starting at 2mS then decreased by 10% after each
       cycle.*/
    for (interval = 2000; interval >= 2; interval -= (interval + 9) / 10) {

      /* Timers programmed slightly out of phase each other.*/
      gptStartContinuous(cfg->gpt1p, interval - 1); /* Slightly out of phase.*/
      gptStartContinuous(cfg->gpt2p, interval + 1); /* Slightly out of phase.*/

      /* Storming for one second.*/
      chThdSleepMilliseconds(1000);

      /* Timers stopped.*/
      gptStopTimer(cfg->gpt1p);
      gptStopTimer(cfg->gpt2p);

      /* Did the storm saturate the threads chain?*/
      if (!saturated)
        chprintf(cfg->out, ".");
      else {
        chprintf(cfg->out, "#");
        if (threshold == 0)
          threshold = interval;
        break;
      }
    }
    /* Gives threads a chance to empty the mailboxes before next cycle.*/
    chThdSleepMilliseconds(20);
    chprintf(cfg->out, "\r\nSaturated at %d uS\r\n\r\n", threshold);
    if (threshold > worst)
      worst = threshold;
  }
  gptStopTimer(cfg->gpt1p);
  gptStopTimer(cfg->gpt2p);

  chprintf(cfg->out, "Worst case at %d uS\r\n", worst);
  chprintf(cfg->out, "\r\nTest Complete\r\n");

  /* Terminating threads and cleaning up.*/
  for (i = 0; i < IRQ_STORM_CFG_NUM_THREADS; i++) {
    chThdTerminate(threads[i]);
    chThdWait(threads[i]);
    threads[i] = NULL;
  }
}
示例#22
0
/*
 * Application entry point.
 */
int main(void) {

  /*
   * System initializations.
   * - HAL initialization, this also initializes the configured device drivers
   *   and performs the board-specific initializations.
   * - Kernel initialization, the main() function becomes a thread and the
   *   RTOS is active.
   */
  halInit();
  chSysInit();

  /*
   * Initializes the PWM driver 2 and ICU driver 3.
   * GPIOA15 is the PWM output.
   * GPIOC6 is the ICU input.
   * The two pins have to be externally connected together.
   */
  pwmStart(&PWMD2, &pwmcfg);
  palSetPadMode(GPIOA, 15, PAL_MODE_ALTERNATE(1));
  icuStart(&ICUD3, &icucfg);
  palSetPadMode(GPIOC, 6, PAL_MODE_ALTERNATE(2));
  icuEnable(&ICUD3);
  chThdSleepMilliseconds(2000);

  /*
   * Starts the PWM channel 0 using 75% duty cycle.
   */
  pwmEnableChannel(&PWMD2, 0, PWM_PERCENTAGE_TO_WIDTH(&PWMD2, 7500));
  chThdSleepMilliseconds(5000);

  /*
   * Changes the PWM channel 0 to 50% duty cycle.
   */
  pwmEnableChannel(&PWMD2, 0, PWM_PERCENTAGE_TO_WIDTH(&PWMD2, 5000));
  chThdSleepMilliseconds(5000);

  /*
   * Changes the PWM channel 0 to 25% duty cycle.
   */
  pwmEnableChannel(&PWMD2, 0, PWM_PERCENTAGE_TO_WIDTH(&PWMD2, 2500));
  chThdSleepMilliseconds(5000);

  /*
   * Changes PWM period to half second the duty cycle becomes 50%
   * implicitly.
   */
  pwmChangePeriod(&PWMD2, 5000);
  chThdSleepMilliseconds(5000);

  /*
   * Disables channel 0 and stops the drivers.
   */
  pwmDisableChannel(&PWMD2, 0);
  pwmStop(&PWMD2);
  icuDisable(&ICUD3);
  icuStop(&ICUD3);
  palClearPad(GPIOD, GPIOD_LED4);
  palClearPad(GPIOD, GPIOD_LED5);

  /*
   * Normal main() thread activity, in this demo it does nothing.
   */
  while (TRUE) {
    chThdSleepMilliseconds(500);
  }
  return 0;
}
示例#23
0
static THD_FUNCTION(Thread1, arg) {

  (void)arg;

  /*
   * Activates the serial driver 1 using the driver default configuration.
   */
  sdStart(&SD1, NULL);

  while (TRUE) {
    unsigned i;

    chnWriteTimeout(&SD1, (uint8_t *)"Hello World!\r\n", 14, TIME_INFINITE);

    for (i = 0; i < 4; i++) {
      palClearPad(PORT_E, PE_LED1);
      chThdSleepMilliseconds(100);
      palClearPad(PORT_E, PE_LED2);
      chThdSleepMilliseconds(100);
      palClearPad(PORT_E, PE_LED3);
      chThdSleepMilliseconds(100);
      palClearPad(PORT_E, PE_LED4);
      chThdSleepMilliseconds(100);
      palSetPad(PORT_E, PE_LED1);
      chThdSleepMilliseconds(100);
      palSetPad(PORT_E, PE_LED2);
      chThdSleepMilliseconds(100);
      palSetPad(PORT_E, PE_LED3);
      chThdSleepMilliseconds(100);
      palSetPad(PORT_E, PE_LED4);
      chThdSleepMilliseconds(300);
    }

    for (i = 0; i < 4; i++) {
      palTogglePort(PORT_E, PAL_PORT_BIT(PE_LED1) | PAL_PORT_BIT(PE_LED2) |
                            PAL_PORT_BIT(PE_LED3) | PAL_PORT_BIT(PE_LED4));
      chThdSleepMilliseconds(500);
      palTogglePort(PORT_E, PAL_PORT_BIT(PE_LED1) | PAL_PORT_BIT(PE_LED2) |
                            PAL_PORT_BIT(PE_LED3) | PAL_PORT_BIT(PE_LED4));
      chThdSleepMilliseconds(500);
    }

    for (i = 0; i < 4; i++) {
      palTogglePad(PORT_E, PE_LED1);
      chThdSleepMilliseconds(250);
      palTogglePad(PORT_E, PE_LED1);
      palTogglePad(PORT_E, PE_LED2);
      chThdSleepMilliseconds(250);
      palTogglePad(PORT_E, PE_LED2);
      palTogglePad(PORT_E, PE_LED3);
      chThdSleepMilliseconds(250);
      palTogglePad(PORT_E, PE_LED3);
      palTogglePad(PORT_E, PE_LED4);
      chThdSleepMilliseconds(250);
      palTogglePad(PORT_E, PE_LED4);
    }

    for (i = 0; i < 4; i++) {
      palClearPort(PORT_E, PAL_PORT_BIT(PE_LED1) | PAL_PORT_BIT(PE_LED3));
      palSetPort(PORT_E, PAL_PORT_BIT(PE_LED2) | PAL_PORT_BIT(PE_LED4));
      chThdSleepMilliseconds(500);
      palClearPort(PORT_E, PAL_PORT_BIT(PE_LED2) | PAL_PORT_BIT(PE_LED4));
      palSetPort(PORT_E, PAL_PORT_BIT(PE_LED1) | PAL_PORT_BIT(PE_LED3));
      chThdSleepMilliseconds(500);
    }

    palSetPort(PORT_E, PAL_PORT_BIT(PE_LED1) | PAL_PORT_BIT(PE_LED2) |
                       PAL_PORT_BIT(PE_LED3) | PAL_PORT_BIT(PE_LED4));
  }
}
示例#24
0
文件: main.c 项目: devlware/ChibiOS
/*
 * Application entry point.
 */
int main(void) {

  /*
   * System initializations.
   * - HAL initialization, this also initializes the configured device drivers
   *   and performs the board-specific initializations.
   * - Kernel initialization, the main() function becomes a thread and the
   *   RTOS is active.
   */
  halInit();
  chSysInit();

  /*
   * Initializes a serial-over-USB CDC driver.
   */
  sduObjectInit(&SDU1);
  sduStart(&SDU1, &serusbcfg);

  /*
   * Activates the USB driver and then the USB bus pull-up on D+.
   * Note, a delay is inserted in order to not have to disconnect the cable
   * after a reset.
   */
  usbDisconnectBus(serusbcfg.usbp);
  chThdSleepMilliseconds(1500);
  usbStart(serusbcfg.usbp, &usbcfg);
  usbConnectBus(serusbcfg.usbp);

  /*
   * Creates the blinker thread.
   */
  chThdCreateStatic(waThread1, sizeof(waThread1), NORMALPRIO + 1, Thread1, NULL);

  /*
   * L3GD20 Object Initialization
   */
  l3gd20ObjectInit(&L3GD20D1);

  /*
   * Activates the L3GD20 driver.
   */
  l3gd20Start(&L3GD20D1, &l3gd20cfg);

  while(!palReadLine(LINE_BUTTON)){
    chprintf(chp, "Press BTN to calibrate gyroscope...\r\n");
    chThdSleepMilliseconds(150);
#if CHPRINTF_USE_ANSI_CODE
    chprintf(chp, "\033[2J\033[1;1H");
#endif
  }

  chprintf(chp, "Calibrating Gyroscope sampling bias...\r\n");
  chprintf(chp, "Keep it in the rest position while red LED is on\r\n");
  chThdSleepMilliseconds(3000);

  palSetLine(LINE_LED10_RED);
  chThdSleepMilliseconds(1000);

  gyroscopeSampleBias(&L3GD20D1);
  palClearLine(LINE_LED10_RED);
#if CHPRINTF_USE_ANSI_CODE
  chprintf(chp, "\033[2J\033[1;1H");
#endif

  while (TRUE) {
    palToggleLine(LINE_LED10_RED);
    gyroscopeReadRaw(&L3GD20D1, rawdata);
    for(i = 0; i < L3GD20_NUMBER_OF_AXES; i++)
      chprintf(chp, "RAW-%c:%d\r\n", axesID[i], rawdata[i]);

    gyroscopeReadCooked(&L3GD20D1, cookeddata);
    for(i = 0; i < L3GD20_NUMBER_OF_AXES; i++)
      chprintf(chp, "COOKED-%c:%.3f\r\n", axesID[i], cookeddata[i]);

    gyroscopeGetTemp(&L3GD20D1, &temperature);
    chprintf(chp, "TEMP:%.1f C°\r\n", temperature);

    chThdSleepMilliseconds(150);
#if CHPRINTF_USE_ANSI_CODE
    chprintf(chp, "\033[2J\033[1;1H");
#endif
  }
  l3gd20Stop(&L3GD20D1);
}
示例#25
0
static msg_t stThread(StepperMotor *motor) {
	chRegSetThreadName("stepper");

	// try to get saved stepper position (-1 for no data)
	motor->currentPosition = loadStepperPos();

	// first wait until at least 1 slowADC sampling is complete
	waitForSlowAdc();
	// now check if stepper motor re-initialization is requested - if the throttle pedal is pressed at startup
	bool forceStepperParking = !engine->rpmCalculator.isRunning(PASS_ENGINE_PARAMETER_SIGNATURE) && getTPS(PASS_ENGINE_PARAMETER_SIGNATURE) > STEPPER_PARKING_TPS;
	if (boardConfiguration->stepperForceParkingEveryRestart)
		forceStepperParking = true;
	scheduleMsg(logger, "Stepper: savedStepperPos=%d forceStepperParking=%d (tps=%.2f)", motor->currentPosition, (forceStepperParking ? 1 : 0), getTPS(PASS_ENGINE_PARAMETER_SIGNATURE));

	if (motor->currentPosition < 0 || forceStepperParking) {
		// reset saved value
		saveStepperPos(-1);
		
		/**
		 * let's park the motor in a known position to begin with
		 *
		 * I believe it's safer to retract the valve for parking - at least on a bench I've seen valves
		 * disassembling themselves while pushing too far out.
		 *
		 * Add extra steps to compensate step skipping by some old motors.
		 */
		int numParkingSteps = (int)efiRound((1.0f + (float)boardConfiguration->stepperParkingExtraSteps / PERCENT_MULT) * motor->totalSteps, 1.0f);
		for (int i = 0; i < numParkingSteps; i++) {
			motor->pulse();
		}

		// set & save zero stepper position after the parking completion
		motor->currentPosition = 0;
		saveStepperPos(motor->currentPosition);
	} else {
		// The initial target position should correspond to the saved stepper position.
		// Idle thread starts later and sets a new target position.
		motor->setTargetPosition(motor->currentPosition);
	}

	while (true) {
		int targetPosition = motor->getTargetPosition();
		int currentPosition = motor->currentPosition;

		if (targetPosition == currentPosition) {
			chThdSleepMilliseconds(motor->reactionTime);
			continue;
		}
		bool isIncrementing = targetPosition > currentPosition;
		motor->setDirection(isIncrementing);
		if (isIncrementing) {
			motor->currentPosition++;
		} else {
			motor->currentPosition--;
		}
		motor->pulse();
		// save position to backup RTC register
		saveStepperPos(motor->currentPosition);
	}

	// let's part the motor in a known position to begin with
//	for (int i = 0; i < ST_COUNT / 2; i++) {
//		motor->pulse();
//	}

	return 0;
}
示例#26
0
/*
 * Application entry point.
 */
int main(void) {

   /*
   * System initializations.
   * - HAL initialization, this also initializes the configured device drivers
   *   and performs the board-specific initializations.
   * - Kernel initialization, the main() function becomes a thread and the
   *   RTOS is active.
   */

  uint32_t tempR, tempP, tempY;
  float Roll,Pitch,Yaw;  


  halInit();
  chSysInit();
  i2c_setup();

  palSetPadMode(IOPORT1, 8, PAL_MODE_INPUT);      // PA8 - RADIO INPUT
 
  palSetPadMode(IOPORT2, 13, PAL_MODE_STM32_ALTERNATE_OPENDRAIN);     /* SCK. */
  palSetPadMode(IOPORT2, 14, PAL_MODE_STM32_ALTERNATE_PUSHPULL);     /* MISO.*/
  palSetPadMode(IOPORT2, 15, PAL_MODE_STM32_ALTERNATE_OPENDRAIN);     /* MOSI.*/
  palSetPadMode(IOPORT2, 12, PAL_MODE_STM32_ALTERNATE_OPENDRAIN);

  palSetPadMode(IOPORT3, 11, PAL_MODE_OUTPUT_PUSHPULL);
  
  chMtxInit(&mtx_imu);
  chMtxInit(&mutex_motors);

  palClearPad(IOPORT3,10);
  //palClearPad(IOPORT3,11);
  /*
   * Activates the USB driver and then the USB bus pull-up on D+.
   */
  sduObjectInit(&SDU1);
  sduStart(&SDU1, &serusbcfg);
  usbConnectBus(serusbcfg.usbp);
  //palClearPad(GPIOC, GPIOC_USB_DISC);
  
  icuStart(&ICUD1, &icucfg);
  icuEnable(&ICUD1);
  
  chThdSleepSeconds(1);
  
  chThdCreateStatic(waThread1, sizeof(waThread1), HIGHPRIO, Thread1, NULL);

  //chThdCreateStatic(waMotorsThread, sizeof(waMotorsThread), NORMALPRIO, MotorsThread, NULL);

 
  spiAcquireBus(&SPID2);                        /* Acquire ownership of the bus.    */
  spiStart(&SPID2, &ls_spicfg);                 /* Setup transfer parameters.       */
  spiSelect(&SPID2);


  KP = 1;
  KI = 1;
  KD = 0;

  while (TRUE) {

	while(!(SPID2.spi->SR & SPI_SR_RXNE)); 
	 	
  		spiReceive(&SPID2,24,rxbuf_16bit);

//	Floating point calculation of Roll/Pitch/Yaw inside the microcontroller. Decomment next 6 lines if you want to implement
//	the control Law.

	tempR = (uint32_t)((rxbuf_16bit[0] << 31) | (rxbuf_16bit[1] << 23) | (rxbuf_16bit[2] << 11) | rxbuf_16bit[3]);
	tempP = (uint32_t)((rxbuf_16bit[4] << 31) | (rxbuf_16bit[5] << 23) | (rxbuf_16bit[6] << 11) | rxbuf_16bit[7]);
	tempY = (uint32_t)((rxbuf_16bit[8] << 31) | (rxbuf_16bit[9] << 23) | (rxbuf_16bit[10] << 11) | rxbuf_16bit[11]);
		
	Roll = (*(float*)&tempR);
	Pitch = (*(float*)&tempP); 					
	Yaw = (*(float*)&tempY);
	
	// CONTROL LAW HERE
	//++ (ROLL,PITCH,YAW ERRORS) -----> [CONTROLLER] -----> (MOTORS INPUT)
	

	// PID Control Law
	
	roll_error = 0 - Roll;
        pitch_error = 0 - Pitch;
        yaw_error = 0 - Yaw;

        roll_I = roll_I + roll_error*0.01;
        pitch_I = pitch_I + pitch_error*0.01;

        roll_D = (roll_error - roll_prev_error)/0.01;
        pitch_D = (pitch_error - pitch_prev_error)/0.01;

        roll_controller_output = (int8_t)(KP*roll_error + KI*roll_I + KD*roll_D);
        pitch_controller_output = (int8_t)(KP*pitch_error + KI*pitch_I + KD*pitch_D);

        //roll_controller_output = (int8_t)roll_error;
        //pitch_controller_output = (int8_t)pitch_error;


        roll_prev_error = roll_error;
        pitch_prev_error = pitch_error;


	//-------------------------------------------------------------------

	blctrl20_set_velocity();


	palSetPad(IOPORT3,11);


/*	SPI FLOATING POINT TEST PACKET (sending 5.6F)	
	rxbuf_16bit[0] = 0;
	rxbuf_16bit[1] = 129;
	rxbuf_16bit[2] = 1638;
	rxbuf_16bit[3] = 819;
	rxbuf_16bit[4] = 0;
	rxbuf_16bit[5] = 129;
	rxbuf_16bit[6] = 1638;
	rxbuf_16bit[7] = 819;
	rxbuf_16bit[8] = 1;
	rxbuf_16bit[9] = 129;
	rxbuf_16bit[10] = 1638;
	rxbuf_16bit[11] = 819;
*/	



	if(SDU1.config->usbp->state==USB_ACTIVE)
	{
//		chprintf((BaseChannel *)&SDU1,"S:%6d:%6d:%6d:%6d:%6d:%6d:%6d:%6d:%6d:%6d:%6d:%6d:E\r\n",rxbuf_16bit[0],rxbuf_16bit[1],rxbuf_16bit[2],rxbuf_16bit[3],rxbuf_16bit[4],rxbuf_16bit[5],rxbuf_16bit[6],rxbuf_16bit[7],rxbuf_16bit[8],rxbuf_16bit[9],rxbuf_16bit[10],rxbuf_16bit[11]);
		chprintf((BaseChannel *)&SDU1, "S:%6D:%6D:%6D:%6D:%6D:%6D:%6D:%6D:%6D:%6D:%6D:%6D:%6D:%6D:%6D:%6D:%6D:%6D:%6D:%6D:E\r\n",rxbuf_16bit[0],rxbuf_16bit[1],rxbuf_16bit[2],rxbuf_16bit[3],rxbuf_16bit[4],rxbuf_16bit[5],rxbuf_16bit[6],rxbuf_16bit[7],rxbuf_16bit[8],rxbuf_16bit[9],rxbuf_16bit[10],rxbuf_16bit[11],(int8_t)Roll,(int8_t)Pitch,(int8_t)Yaw,icu_ch[3],icu_ch[4],roll_controller_output,pitch_controller_output,yaw_controller_output);

	}

    	chThdSleepMilliseconds(10);
  }
  spiUnselect(&SPID2);
  spiReleaseBus(&SPID2);                        /* Ownership release.               */


}
示例#27
0
//Wireless 
static void cmd_nrf(BaseSequentialStream *chp, int argc, char *argv[]) {
  if(*(argv[0]) == 'c'){
    channel = strtol(argv[1], NULL, 0);
    nrf24l01SetChannel(&nrf24l01, channel);
    chprintf((BaseSequentialStream*)&SD1, "Channel set to %d.\n\r", channel);
  }

  
  else if(*(argv[0]) == 'a'){
    if(strlen(argv[1]) == 5){
      int i = 0;
      uint8_t add[5];
      for(i; i<5; i++){
	addr[i] = *(argv[1]+i);
      }
      serialOutBuf[0] = msg_seq;
      serialOutBuf[2] = addr[0];
      serialOutBuf[3] = addr[1];
      serialOutBuf[4] = addr[2];
      serialOutBuf[5] = addr[3];
      serialOutBuf[6] = addr[4];
      nrf24l01SetRXAddress(&nrf24l01, 0, addr);
      
     
      chprintf((BaseSequentialStream*)&SD1, "Personal Address set to %s.\n\r", addr);
      
      
      //addr = add;
    }else {
      chprintf((BaseSequentialStream*)&SD1, "Not an appropriate length address.");
    }
  }



  else if(*(argv[0]) == 't'){
    int i=0;
    for(i; i<5; i++){
      target_addr[i] = *(argv[1] + i);
    }
    chprintf((BaseSequentialStream*)&SD1, "%s.\n\r", target_addr);
    //chprintf((BaseSequentialStream*)&SD1, "Sending...");
    nrf24l01SetTXAddress(&nrf24l01, target_addr);
    int msg_size = strlen(argv[2]);
    serialOutBuf[0] = msg_seq;
    serialOutBuf[7] = ',';
    serialOutBuf[8] = msg_type;
    serialOutBuf[9] = ',';
    serialOutBuf[10] = msg_size;
    serialOutBuf[11] = ',';

    for(i=0;i<(msg_size);i++){
      serialOutBuf[i+12] = *(argv[2] + i);
    }
    wait_for_ack = 1;
    for(i=0; i<5; i++){
      chMtxLock(&nrfMutex);
      chnWriteTimeout(&nrf24l01.channels[0], serialOutBuf, 32, MS2ST(100));
      chMtxUnlock(&nrfMutex);
      chThdSleepMilliseconds(200);
      if (!wait_for_ack) break;
      chprintf((BaseSequentialStream*)&SD1, "failed to send %d\n\r", i);
    }
    msg_seq = msg_seq ^ 1;
  }

  else if(*(argv[0]) == 'r'){
      if (*(argv[1]) == 'l'){
	int i,j;
	for(i=0; i<iter; i++){
	  chprintf((BaseSequentialStream*)&SD1, "%d. <", i+1);
	  for(j=0; j<5; j++){
	    chprintf((BaseSequentialStream*)&SD1, "%c", rec_list[(iter-1)-i][j]);
	  }
	  chprintf((BaseSequentialStream*)&SD1, ">, <%d> \n\r", rec_list[(iter-1)-i][5]); 
	}
      }else{
	int j;
	fifo = (fifo+1)%10;
	if(fifo != iter){
	  for(j=0; j<5; j++){
	    chprintf((BaseSequentialStream*)&SD1, "%c", rec_list[fifo][j]);
	  }
	  chprintf((BaseSequentialStream*)&SD1, ": " ); 
	  for(j=0; j<(serialInBuf[10]);j++){
	    chprintf((BaseSequentialStream*)&SD1, "%c ",  serialInBuf[12+j]);
	  }
	  chprintf((BaseSequentialStream*)&SD1, "\n\r");
	}
	for(j=0; j<26; j++){
	rec_list[fifo][j] = 0;
	}
      }
  }
}
示例#28
0
文件: lcd.cpp 项目: Kreyl/nute
void Lcd_t::Init() {
    // ==== Backlight: Timer15 Ch2 ====
    // Setup pin
    PinSetupAlterFuncOutput(LCD_GPIO, LCD_BCKLT, omPushPull, ps50MHz);
    // Remap Timer15 to PB14 & PB15
    AFIO->MAPR2 |= 0x00000001;
    // Setup timer15
    rccEnableAPB2(RCC_APB2ENR_TIM15EN, false);

    TIM15->CR1 = 0x01;      // Enable timer
    TIM15->CR2 = 0;
    TIM15->PSC = 0;         // Do not divide input freq
    TIM15->ARR = 100;       // Autoreload register: full brightness=100
    TIM15->BDTR = 0xC000;   // Main output Enable
    TIM15->CCMR1 = 0x6000;  // PWM mode1 on Ch2 enabled
    TIM15->CCER = 0x0010;   // Output2 enabled, polarity not inverted

    BackligthValue = 0;
    // ==== GPIOs ====
    // Configure LCD_XRES, LCD_XCS, LCD_SCLK & LCD_SDA as Push-Pull output
    InitGpios();

    // ========================= Init LCD ======================================
    SCLK_Lo();
    XCS_Hi();
    // Reset display
    XRES_Lo();
    chThdSleepMilliseconds(9);
    XRES_Hi();
    WriteCmd(0xAF);    // display ON
    // Reset display again
    XRES_Lo();
    chThdSleepMilliseconds(7);
    XRES_Hi();
    chThdSleepMilliseconds(7);
    // Initial commands
    WriteCmd(0xAF);    // display ON
    WriteCmd(0xA4);    // Set normal display mode
    WriteCmd(0x2F);    // Charge pump on
    WriteCmd(0x40);    // Set start row address = 0

//    WriteCmd(0xC8);    // mirror Y axis
//    WriteCmd(0xA1);    // Mirror X axis
    // Set x=0, y=0
    WriteCmd(0xB3);    // Y axis initialization
    WriteCmd(0x10);    // X axis initialisation1
    WriteCmd(0x08);    // X axis initialisation2

    Cls();             // clear LCD buffer

    draw_mode = OVERWRITE;

// ====================== Switch to USART + DMA ============================
#ifdef ENABLE_DMAUSART_MODE
    PinSetupAlterFuncOutput(LCD_GPIO, LCD_SCLK, omPushPull, ps50MHz);
    PinSetupAlterFuncOutput(LCD_GPIO, LCD_SDA, omPushPull, ps50MHz);
    // Workaround hardware bug with disabled CK3 when SPI2 is enabled
    SPI2->CR2 |= SPI_CR2_SSOE;
    // ==== USART init ====
    rccEnableUSART3(false);
    // Usart clock: enabled, idle low, first edge, enable last bit pulse

    // Usart itself
    LCD_USART->BRR = Clk.APB1FreqHz / 100000;
    LCD_USART->CR1 = USART_CR1_TE |   /* Transmitter enabled */                 \
                     USART_CR1_M;     /* 9 bit */
    LCD_USART->CR2 = USART_CR2_CLKEN |  \
                     USART_CR2_LBCL;

    LCD_USART->CR3 = USART_CR3_DMAT;   // Enable DMA at transmitter

    LCD_USART->CR1 |= USART_CR1_UE;        // Enable USART
    // ==== DMA ====
    rccEnableDMA1();
    dmaStreamAllocate(LCD_DMA, IRQ_PRIO_MEDIUM, LcdDmaCompIrq, NULL);
    dmaStreamSetPeripheral(LCD_DMA, &USART3->DR);
    dmaStreamSetMemory0(LCD_DMA, (uint32_t)&IBuf[0]);
    dmaStreamSetMode      (LCD_DMA, LCD_DMA_MODE);
    // Start transmission
    XCS_Lo();

//    DMA_Cmd(DMA1_Channel2, ENABLE);          // Enable USARTy DMA TX Channel
#else
    for(int i=0; i < 864; i++) WriteData(0x00); // Clear all screen
#endif
    Backlight(0);
    chThdCreateStatic(waLcdThread, sizeof(waLcdThread), NORMALPRIO, (tfunc_t)LcdThread, NULL);
}
示例#29
0
/*
 * Application entry point.
 */
int main(void) {
    color_t color = Black;
    uint16_t pen = 0;
    Thread *shelltp = NULL;

  /*
   * System initializations.
   * - HAL initialization, this also initializes the configured device drivers
   *   and performs the board-specific initializations.
   * - Kernel initialization, the main() function becomes a thread and the
   *   RTOS is active.
   */
    halInit();
    chSysInit();

    gdispInit();
    ginputGetMouse(0);
    gdispSetOrientation(GDISP_ROTATE_90);

    drawScreen();

  /*
   * Initializes a serial-over-USB CDC driver.
   */
  sduObjectInit(&SDU1);
  sduStart(&SDU1, &serusbcfg);

  /*
   * Activates the USB driver and then the USB bus pull-up on D+.
   * Note, a delay is inserted in order to not have to disconnect the cable
   * after a reset.
   */
  usbDisconnectBus(serusbcfg.usbp);
  chThdSleepMilliseconds(1000);
  usbStart(serusbcfg.usbp, &usbcfg);
  usbConnectBus(serusbcfg.usbp);

  /*
   * Shell manager initialization.
   */
  shellInit();

  /*
   * Creates the blinker thread.
   */
  chThdCreateStatic(waThread1, sizeof(waThread1), NORMALPRIO, Thread1, NULL);

  /*
   * Normal main() thread activity, in this demo it does nothing except
   * sleeping in a loop and check the button state.
   */
  while (TRUE) {
    if (!shelltp && (SDU1.config->usbp->state == USB_ACTIVE))
      shelltp = shellCreate(&shell_cfg1, SHELL_WA_SIZE, NORMALPRIO);
    else if (chThdTerminated(shelltp)) {
      chThdRelease(shelltp);    /* Recovers memory of the previous shell.   */
      shelltp = NULL;           /* Triggers spawning of a new shell.        */
    }

    ginputGetMouseStatus(0, &ev);
    if (!(ev.current_buttons & GINPUT_MOUSE_BTN_LEFT))
    {
        chThdSleepMicroseconds(500); // Senza questo sleep l'USB non parte
        continue;
    }

    /* inside color box ? */
    if(ev.y >= OFFSET && ev.y <= COLOR_SIZE) {
      if(GET_COLOR(0))   color = Black;
      else if(GET_COLOR(1))   color = Red;
      else if(GET_COLOR(2))   color = Yellow;
      else if(GET_COLOR(3))   color = Green;
      else if(GET_COLOR(4))   color = Blue;
      else if(GET_COLOR(5))   color = White;

    /* inside pen box ? */
    } else if(ev.x >= OFFSET && ev.x <= PEN_SIZE) {
      if(GET_PEN(1))             pen = 0;
      else if(GET_PEN(2))             pen = 1;
      else if(GET_PEN(3))             pen = 2;
      else if(GET_PEN(4))             pen = 3;
      else if(GET_PEN(5))             pen = 4;

    /* inside drawing area ? */
    } else if(DRAW_AREA(ev.x, ev.y)) {
      if(pen == 0)
         gdispDrawPixel(ev.x, ev.y, color);
      else
          gdispFillCircle(ev.x, ev.y, pen, color);
    }
  }
}
示例#30
0
/**
 * @brief   Performs the initialization procedure on the inserted card.
 * @details This function should be invoked when a card is inserted and
 *          brings the driver in the @p MMC_READY state where it is possible
 *          to perform read and write operations.
 * @note    It is possible to invoke this function from the insertion event
 *          handler.
 *
 * @param[in] mmcp      pointer to the @p MMCDriver object
 *
 * @return              The operation status.
 * @retval HAL_SUCCESS   the operation succeeded and the driver is now
 *                      in the @p MMC_READY state.
 * @retval HAL_FAILED    the operation failed.
 *
 * @api
 */
bool mmcConnect(MMCDriver *mmcp) {
  unsigned i;
  uint8_t r3[4];

  osalDbgCheck(mmcp != NULL);

  osalDbgAssert((mmcp->state == BLK_ACTIVE) || (mmcp->state == BLK_READY),
                "invalid state");

  /* Connection procedure in progress.*/
  mmcp->state = BLK_CONNECTING;
  mmcp->block_addresses = FALSE;

  /* Slow clock mode and 128 clock pulses.*/
  spiStart(mmcp->config->spip, mmcp->config->lscfg);
  spiIgnore(mmcp->config->spip, 16);

  /* SPI mode selection.*/
  i = 0;
  while (TRUE) {
    if (send_command_R1(mmcp, MMCSD_CMD_GO_IDLE_STATE, 0) == 0x01)
      break;
    if (++i >= MMC_CMD0_RETRY)
      goto failed;
    chThdSleepMilliseconds(10);
  }

  /* Try to detect if this is a high capacity card and switch to block
     addresses if possible.
     This method is based on "How to support SDC Ver2 and high capacity cards"
     by ElmChan.*/
  if (send_command_R3(mmcp, MMCSD_CMD_SEND_IF_COND,
                      MMCSD_CMD8_PATTERN, r3) != 0x05) {

    /* Switch to SDHC mode.*/
    i = 0;
    while (TRUE) {
      if ((send_command_R1(mmcp, MMCSD_CMD_APP_CMD, 0) == 0x01) &&
          (send_command_R3(mmcp, MMCSD_CMD_APP_OP_COND,
                           0x400001aa, r3) == 0x00))
        break;

      if (++i >= MMC_ACMD41_RETRY)
        goto failed;
      chThdSleepMilliseconds(10);
    }

    /* Execute dedicated read on OCR register */
    send_command_R3(mmcp, MMCSD_CMD_READ_OCR, 0, r3);

    /* Check if CCS is set in response. Card operates in block mode if set.*/
    if (r3[0] & 0x40)
      mmcp->block_addresses = TRUE;
  }

  /* Initialization.*/
  i = 0;
  while (TRUE) {
    uint8_t b = send_command_R1(mmcp, MMCSD_CMD_INIT, 0);
    if (b == 0x00)
      break;
    if (b != 0x01)
      goto failed;
    if (++i >= MMC_CMD1_RETRY)
      goto failed;
    chThdSleepMilliseconds(10);
  }

  /* Initialization complete, full speed.*/
  spiStart(mmcp->config->spip, mmcp->config->hscfg);

  /* Setting block size.*/
  if (send_command_R1(mmcp, MMCSD_CMD_SET_BLOCKLEN,
                      MMCSD_BLOCK_SIZE) != 0x00)
    goto failed;

  /* Determine capacity.*/
  if (read_CxD(mmcp, MMCSD_CMD_SEND_CSD, mmcp->csd))
    goto failed;
  mmcp->capacity = mmcsdGetCapacity(mmcp->csd);
  if (mmcp->capacity == 0)
    goto failed;

  if (read_CxD(mmcp, MMCSD_CMD_SEND_CID, mmcp->cid))
    goto failed;

  mmcp->state = BLK_READY;
  return HAL_SUCCESS;

  /* Connection failed, state reset to BLK_ACTIVE.*/
failed:
  spiStop(mmcp->config->spip);
  mmcp->state = BLK_ACTIVE;
  return HAL_FAILED;
}