示例#1
0
int i2c_stm32_runtime_configure(struct device *dev, u32_t config)
{
	const struct i2c_stm32_config *cfg = DEV_CFG(dev);
	struct i2c_stm32_data *data = DEV_DATA(dev);
	I2C_TypeDef *i2c = cfg->i2c;
	u32_t clock = 0U;
	int ret;

#if defined(CONFIG_SOC_SERIES_STM32F3X) || defined(CONFIG_SOC_SERIES_STM32F0X)
	LL_RCC_ClocksTypeDef rcc_clocks;

	/*
	 * STM32F0/3 I2C's independent clock source supports only
	 * HSI and SYSCLK, not APB1. We force clock variable to
	 * SYSCLK frequency.
	 */
	LL_RCC_GetSystemClocksFreq(&rcc_clocks);
	clock = rcc_clocks.SYSCLK_Frequency;
#else
	clock_control_get_rate(device_get_binding(STM32_CLOCK_CONTROL_NAME),
			(clock_control_subsys_t *) &cfg->pclken, &clock);
#endif /* CONFIG_SOC_SERIES_STM32F3X) || CONFIG_SOC_SERIES_STM32F0X */

	data->dev_config = config;

	k_sem_take(&data->bus_mutex, K_FOREVER);
	LL_I2C_Disable(i2c);
	LL_I2C_SetMode(i2c, LL_I2C_MODE_I2C);
	ret = stm32_i2c_configure_timing(dev, clock);
	k_sem_give(&data->bus_mutex);

	return ret;
}
示例#2
0
static int mcux_lpuart_init(struct device *dev)
{
	const struct mcux_lpuart_config *config = dev->config->config_info;
	lpuart_config_t uart_config;
	struct device *clock_dev;
	u32_t clock_freq;

	clock_dev = device_get_binding(config->clock_name);
	if (clock_dev == NULL) {
		return -EINVAL;
	}

	if (clock_control_get_rate(clock_dev, config->clock_subsys,
				   &clock_freq)) {
		return -EINVAL;
	}

	LPUART_GetDefaultConfig(&uart_config);
	uart_config.enableTx = true;
	uart_config.enableRx = true;
	uart_config.baudRate_Bps = config->baud_rate;

	LPUART_Init(config->base, &uart_config, clock_freq);

#ifdef CONFIG_UART_INTERRUPT_DRIVEN
	config->irq_config_func(dev);
#endif

	return 0;
}
示例#3
0
static int mcux_wdog_install_timeout(struct device *dev,
				     const struct wdt_timeout_cfg *cfg)
{
	const struct mcux_wdog_config *config = dev->config->config_info;
	struct mcux_wdog_data *data = dev->driver_data;
	struct device *clock_dev;
	u32_t clock_freq;

	if (data->timeout_valid) {
		LOG_ERR("No more timeouts can be installed");
		return -ENOMEM;
	}

	clock_dev = device_get_binding(config->clock_name);
	if (clock_dev == NULL) {
		return -EINVAL;
	}

	if (clock_control_get_rate(clock_dev, config->clock_subsys,
				   &clock_freq)) {
		return -EINVAL;
	}

	WDOG_GetDefaultConfig(&data->wdog_config);

	data->wdog_config.timeoutValue = clock_freq * cfg->window.max / 1000;

	if (cfg->window.min) {
		data->wdog_config.enableWindowMode = true;
		data->wdog_config.windowValue =
			clock_freq * cfg->window.min / 1000;
	} else {
		data->wdog_config.enableWindowMode = false;
		data->wdog_config.windowValue = 0;
	}

	if ((data->wdog_config.timeoutValue < MIN_TIMEOUT) ||
	    (data->wdog_config.timeoutValue < data->wdog_config.windowValue)) {
		LOG_ERR("Invalid timeout");
		return -EINVAL;
	}

	data->wdog_config.clockSource = kWDOG_LpoClockSource;
	data->wdog_config.enableInterrupt = cfg->callback != NULL;
	data->callback = cfg->callback;
	data->timeout_valid = true;

	return 0;
}
示例#4
0
static int spi_stm32_configure(struct spi_config *config)
{
	const struct spi_stm32_config *cfg = CONFIG_CFG(config);
	struct spi_stm32_data *data = CONFIG_DATA(config);
	const u32_t scaler[] = {
		LL_SPI_BAUDRATEPRESCALER_DIV2,
		LL_SPI_BAUDRATEPRESCALER_DIV4,
		LL_SPI_BAUDRATEPRESCALER_DIV8,
		LL_SPI_BAUDRATEPRESCALER_DIV16,
		LL_SPI_BAUDRATEPRESCALER_DIV32,
		LL_SPI_BAUDRATEPRESCALER_DIV64,
		LL_SPI_BAUDRATEPRESCALER_DIV128,
		LL_SPI_BAUDRATEPRESCALER_DIV256
	};
	SPI_TypeDef *spi = cfg->spi;
	u32_t clock;
	int br;

	if (spi_context_configured(&data->ctx, config)) {
		/* Nothing to do */
		return 0;
	}

	if (SPI_WORD_SIZE_GET(config->operation) != 8) {
		return -ENOTSUP;
	}

	clock_control_get_rate(device_get_binding(STM32_CLOCK_CONTROL_NAME),
			       (clock_control_subsys_t) &cfg->pclken, &clock);

	for (br = 1 ; br <= ARRAY_SIZE(scaler) ; ++br) {
		u32_t clk = clock >> br;

		if (clk < config->frequency) {
			break;
		}
	}

	if (br > ARRAY_SIZE(scaler)) {
		SYS_LOG_ERR("Unsupported frequency %uHz, max %uHz, min %uHz",
			    config->frequency,
			    clock >> 1,
			    clock >> ARRAY_SIZE(scaler));
		return -EINVAL;
	}
示例#5
0
static inline void uart_stm32_set_baudrate(struct device *dev, u32_t baud_rate)
{
	const struct uart_stm32_config *config = DEV_CFG(dev);
	struct uart_stm32_data *data = DEV_DATA(dev);
	USART_TypeDef *UartInstance = UART_STRUCT(dev);

	u32_t clock_rate;

	/* Get clock rate */
	clock_control_get_rate(data->clock,
			       (clock_control_subsys_t *)&config->pclken,
			       &clock_rate);



#ifdef CONFIG_LPUART_1
	if (IS_LPUART_INSTANCE(UartInstance)) {
		LL_LPUART_SetBaudRate(UartInstance,
				      clock_rate,
#ifdef USART_PRESC_PRESCALER
				      LL_USART_PRESCALER_DIV1,
#endif
				      baud_rate);
	} else {
#endif /* CONFIG_LPUART_1 */

		LL_USART_SetBaudRate(UartInstance,
				     clock_rate,
#ifdef USART_PRESC_PRESCALER
				     LL_USART_PRESCALER_DIV1,
#endif
#ifdef USART_CR1_OVER8
				     LL_USART_OVERSAMPLING_16,
#endif
				     baud_rate);

#ifdef CONFIG_LPUART_1
	}
#endif /* CONFIG_LPUART_1 */
}
示例#6
0
/*
 * Get the clock rate (cycles per second) for a PWM pin.
 *
 * Parameters
 * dev: Pointer to PWM device structure
 * pwm: PWM port number
 * cycles: Pointer to the memory to store clock rate (cycles per second)
 *
 * return 0, or negative errno code
 */
static int pwm_stm32_get_cycles_per_sec(struct device *dev, u32_t pwm,
					u64_t *cycles)
{
	const struct pwm_stm32_config *cfg = DEV_CFG(dev);
	struct pwm_stm32_data *data = DEV_DATA(dev);
	u32_t bus_clk, tim_clk;

	if (cycles == NULL) {
		return -EINVAL;
	}

	/* Timer clock depends on APB prescaler */
	clock_control_get_rate(data->clock,
			(clock_control_subsys_t *)&cfg->pclken, &bus_clk);

	tim_clk = __get_tim_clk(bus_clk,
			(clock_control_subsys_t *)&cfg->pclken);

	*cycles = (u64_t)(tim_clk / (data->pwm_prescaler + 1));

	return 0;
}
示例#7
0
static inline void uart_stm32_set_baudrate(struct device *dev, u32_t baud_rate)
{
	const struct uart_stm32_config *config = DEV_CFG(dev);
	struct uart_stm32_data *data = DEV_DATA(dev);
#ifdef CONFIG_LPUART_1
	USART_TypeDef *UartInstance = UART_STRUCT(dev);
#endif
	u32_t clock_rate;

	/* Get clock rate */
	clock_control_get_rate(data->clock,
			       (clock_control_subsys_t *)&config->pclken,
			       &clock_rate);

#ifdef CONFIG_LPUART_1
	if (IS_LPUART_INSTANCE(UartInstance)) {
		uart_stm32_lpuart_set_baud_rate(dev, clock_rate, baud_rate);
	} else {
		uart_stm32_usart_set_baud_rate(dev, clock_rate, baud_rate);
	}
#else
	uart_stm32_usart_set_baud_rate(dev, clock_rate, baud_rate);
#endif
}
示例#8
0
static int adc_stm32_init(struct device *dev)
{
	struct adc_stm32_data *data = dev->driver_data;
	const struct adc_stm32_cfg *config = dev->config->config_info;
	struct device *clk =
		device_get_binding(STM32_CLOCK_CONTROL_NAME);
	ADC_TypeDef *adc = (ADC_TypeDef *)config->base;

	LOG_DBG("Initializing....");

	data->dev = dev;
#if defined(CONFIG_SOC_SERIES_STM32F0X) || defined(CONFIG_SOC_SERIES_STM32L0X)
	/*
	 * All conversion time for all channels on one ADC instance for F0 and
	 * L0 series chips has to be the same. This additional variable is for
	 * checking if the conversion time selection of all channels on one ADC
	 * instance is the same.
	 */
	data->acq_time_index = -1;
#endif

	if (clock_control_on(clk,
		(clock_control_subsys_t *) &config->pclken) != 0) {
		return -EIO;
	}

#if defined(CONFIG_SOC_SERIES_STM32L4X)
	/*
	 * L4 series STM32 needs to be awaken from deep sleep mode, and restore
	 * its calibration parameters if there are some previously stored
	 * calibration parameters.
	 */
	LL_ADC_DisableDeepPowerDown(adc);
#endif
	/*
	 * F3 and L4 ADC modules need some time to be stabilized before
	 * performing any enable or calibration actions.
	 */
#if defined(CONFIG_SOC_SERIES_STM32F3X) || \
	defined(CONFIG_SOC_SERIES_STM32L4X)
	LL_ADC_EnableInternalRegulator(adc);
	k_busy_wait(LL_ADC_DELAY_INTERNAL_REGUL_STAB_US);
#endif

#if defined(CONFIG_SOC_SERIES_STM32F0X) || \
	defined(CONFIG_SOC_SERIES_STM32L0X)
	LL_ADC_SetClock(adc, LL_ADC_CLOCK_SYNC_PCLK_DIV4);
#elif defined(CONFIG_SOC_SERIES_STM32F3X) || \
	defined(CONFIG_SOC_SERIES_STM32L4X)
	LL_ADC_SetCommonClock(__LL_ADC_COMMON_INSTANCE(),
			LL_ADC_CLOCK_SYNC_PCLK_DIV4);
#endif

#if !defined(CONFIG_SOC_SERIES_STM32F2X) && \
	!defined(CONFIG_SOC_SERIES_STM32F4X) && \
	!defined(CONFIG_SOC_SERIES_STM32F7X) && \
	!defined(CONFIG_SOC_SERIES_STM32F1X)
	/*
	 * Calibration of F1 series has to be started after ADC Module is
	 * enabled.
	 */
	adc_stm32_calib(dev);
#endif

#if defined(CONFIG_SOC_SERIES_STM32F0X) || \
	defined(CONFIG_SOC_SERIES_STM32L0X)
	if (LL_ADC_IsActiveFlag_ADRDY(adc)) {
		LL_ADC_ClearFlag_ADRDY(adc);
	}

	/*
	 * These two series STM32 has one internal voltage reference source
	 * to be enabled.
	 */
	LL_ADC_SetCommonPathInternalCh(ADC, LL_ADC_PATH_INTERNAL_VREFINT);
#endif

#if defined(CONFIG_SOC_SERIES_STM32F0X) || \
	defined(CONFIG_SOC_SERIES_STM32F3X) || \
	defined(CONFIG_SOC_SERIES_STM32L0X) || \
	defined(CONFIG_SOC_SERIES_STM32L4X)
	/*
	 * ADC modules on these series have to wait for some cycles to be
	 * enabled.
	 */
	u32_t adc_rate, wait_cycles;

	if (clock_control_get_rate(clk,
		(clock_control_subsys_t *) &config->pclken, &adc_rate) < 0) {
		LOG_ERR("ADC clock rate get error.");
	}

	wait_cycles = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / adc_rate *
		      LL_ADC_DELAY_CALIB_ENABLE_ADC_CYCLES;

	for (int i = wait_cycles; i >= 0; i--)
		;
#endif

	LL_ADC_Enable(adc);

#ifdef CONFIG_SOC_SERIES_STM32L4X
	/*
	 * Enabling ADC modules in L4 series may fail if they are still not
	 * stabilized, this will wait for a short time to ensure ADC modules
	 * are properly enabled.
	 */
	u32_t countTimeout = 0;

	while (LL_ADC_IsActiveFlag_ADRDY(adc) == 0) {
		if (LL_ADC_IsEnabled(adc) == 0UL) {
			LL_ADC_Enable(adc);
			countTimeout++;
			if (countTimeout == 10) {
				return -ETIMEDOUT;
			}
		}
	}
#endif

	config->irq_cfg_func();

#ifdef CONFIG_SOC_SERIES_STM32F1X
	/* Calibration of F1 must starts after two cycles after ADON is set. */
	LL_ADC_StartCalibration(adc);
	LL_ADC_REG_SetTriggerSource(adc, LL_ADC_REG_TRIG_SOFTWARE);
#endif
	adc_context_unlock_unconditionally(&data->ctx);

	return 0;
}