示例#1
0
/*
 * This helper function handles Secure EL1 preemption. The preemption could be
 * due Non Secure interrupts or EL3 interrupts. In both the cases we context
 * switch to the normal world and in case of EL3 interrupts, it will again be
 * routed to EL3 which will get handled at the exception vectors.
 */
uint64_t tspd_handle_sp_preemption(void *handle)
{
	cpu_context_t *ns_cpu_context;

	assert(handle == cm_get_context(SECURE));
	cm_el1_sysregs_context_save(SECURE);
	/* Get a reference to the non-secure context */
	ns_cpu_context = cm_get_context(NON_SECURE);
	assert(ns_cpu_context);

	/*
	 * To allow Secure EL1 interrupt handler to re-enter TSP while TSP
	 * is preempted, the secure system register context which will get
	 * overwritten must be additionally saved. This is currently done
	 * by the TSPD S-EL1 interrupt handler.
	 */

	/*
	 * Restore non-secure state.
	 */
	cm_el1_sysregs_context_restore(NON_SECURE);
	cm_set_next_eret_context(NON_SECURE);

	/*
	 * The TSP was preempted during STD SMC execution.
	 * Return back to the normal world with SMC_PREEMPTED as error
	 * code in x0.
	 */
	SMC_RET1(ns_cpu_context, SMC_PREEMPTED);
}
示例#2
0
/*******************************************************************************
 * This function takes an SP context pointer and performs a synchronous entry
 * into it.
 ******************************************************************************/
uint64_t spm_sp_synchronous_entry(sp_context_t *sp_ctx, int can_preempt)
{
	uint64_t rc;
	unsigned int linear_id = plat_my_core_pos();

	assert(sp_ctx != NULL);

	/* Assign the context of the SP to this CPU */
	spm_cpu_set_sp_ctx(linear_id, sp_ctx);
	cm_set_context(&(sp_ctx->cpu_ctx), SECURE);

	/* Restore the context assigned above */
	cm_el1_sysregs_context_restore(SECURE);
	cm_set_next_eret_context(SECURE);

	/* Invalidate TLBs at EL1. */
	tlbivmalle1();
	dsbish();

	if (can_preempt == 1) {
		enable_intr_rm_local(INTR_TYPE_NS, SECURE);
	} else {
		disable_intr_rm_local(INTR_TYPE_NS, SECURE);
	}

	/* Enter Secure Partition */
	rc = spm_secure_partition_enter(&sp_ctx->c_rt_ctx);

	/* Save secure state */
	cm_el1_sysregs_context_save(SECURE);

	return rc;
}
示例#3
0
/*******************************************************************************
 * This function programs EL3 registers and performs other setup to enable entry
 * into the next image after BL31 at the next ERET.
 ******************************************************************************/
void bl31_prepare_next_image_entry()
{
	el_change_info_t *next_image_info;
	uint32_t scr, image_type;

	/* Determine which image to execute next */
	image_type = bl31_get_next_image_type();

	/*
	 * Setup minimal architectural state of the next highest EL to
	 * allow execution in it immediately upon entering it.
	 */
	bl31_next_el_arch_setup(image_type);

	/* Program EL3 registers to enable entry into the next EL */
	next_image_info = bl31_get_next_image_info(image_type);
	assert(next_image_info);

	scr = read_scr();
	if (image_type == NON_SECURE)
		scr |= SCR_NS_BIT;

	/*
	 * Tell the context mgmt. library to ensure that SP_EL3 points to
	 * the right context to exit from EL3 correctly.
	 */
	cm_set_el3_eret_context(next_image_info->security_state,
			next_image_info->entrypoint,
			next_image_info->spsr,
			scr);

	/* Finally set the next context */
	cm_set_next_eret_context(next_image_info->security_state);
}
/*******************************************************************************
 * This function is the handler registered for S-EL1 interrupts by the
 * OPTEED. It validates the interrupt and upon success arranges entry into
 * the OPTEE at 'optee_fiq_entry()' for handling the interrupt.
 ******************************************************************************/
static uint64_t opteed_sel1_interrupt_handler(uint32_t id,
					    uint32_t flags,
					    void *handle,
					    void *cookie)
{
	uint32_t linear_id;
	optee_context_t *optee_ctx;

	/* Check the security state when the exception was generated */
	assert(get_interrupt_src_ss(flags) == NON_SECURE);

	/* Sanity check the pointer to this cpu's context */
	assert(handle == cm_get_context(NON_SECURE));

	/* Save the non-secure context before entering the OPTEE */
	cm_el1_sysregs_context_save(NON_SECURE);

	/* Get a reference to this cpu's OPTEE context */
	linear_id = plat_my_core_pos();
	optee_ctx = &opteed_sp_context[linear_id];
	assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));

	cm_set_elr_el3(SECURE, (uint64_t)&optee_vectors->fiq_entry);
	cm_el1_sysregs_context_restore(SECURE);
	cm_set_next_eret_context(SECURE);

	/*
	 * Tell the OPTEE that it has to handle an FIQ (synchronously).
	 * Also the instruction in normal world where the interrupt was
	 * generated is passed for debugging purposes. It is safe to
	 * retrieve this address from ELR_EL3 as the secure context will
	 * not take effect until el3_exit().
	 */
	SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3());
}
示例#5
0
/*******************************************************************************
 * BL31 is responsible for setting up the runtime services for the primary cpu
 * before passing control to the bootloader or an Operating System. This
 * function calls runtime_svc_init() which initializes all registered runtime
 * services. The run time services would setup enough context for the core to
 * swtich to the next exception level. When this function returns, the core will
 * switch to the programmed exception level via. an ERET.
 ******************************************************************************/
void bl31_main(void)
{
#if DEBUG
	unsigned long mpidr = read_mpidr();
#endif

	/* Perform remaining generic architectural setup from EL3 */
	bl31_arch_setup();

	/* Perform platform setup in BL1 */
	bl31_platform_setup();

	printf("BL31 %s\n\r", build_message);

	/* Initialise helper libraries */
	bl31_lib_init();

	/* Initialize the runtime services e.g. psci */
	runtime_svc_init();

	/* Clean caches before re-entering normal world */
	dcsw_op_all(DCCSW);

	/*
	 * Use the more complex exception vectors now that context
	 * management is setup. SP_EL3 should point to a 'cpu_context'
	 * structure which has an exception stack allocated.  The PSCI
	 * service should have set the context.
	 */
	assert(cm_get_context(mpidr, NON_SECURE));
	cm_set_next_eret_context(NON_SECURE);
	cm_init_pcpu_ptr_cache();
	write_vbar_el3((uint64_t) runtime_exceptions);
	isb();
	next_image_type = NON_SECURE;

	/*
	 * All the cold boot actions on the primary cpu are done. We now need to
	 * decide which is the next image (BL32 or BL33) and how to execute it.
	 * If the SPD runtime service is present, it would want to pass control
	 * to BL32 first in S-EL1. In that case, SPD would have registered a
	 * function to intialize bl32 where it takes responsibility of entering
	 * S-EL1 and returning control back to bl31_main. Once this is done we
	 * can prepare entry into BL33 as normal.
	 */

	/*
	 * If SPD had registerd an init hook, invoke it. Pass it the information
	 * about memory extents
	 */
	if (bl32_init)
		(*bl32_init)(bl31_plat_get_bl32_mem_layout());

	/*
	 * We are ready to enter the next EL. Prepare entry into the image
	 * corresponding to the desired security state after the next ERET.
	 */
	bl31_prepare_next_image_entry();
}
示例#6
0
/*******************************************************************************
 * This function is the handler registered for S-EL1 interrupts by the TSPD. It
 * validates the interrupt and upon success arranges entry into the TSP at
 * 'tsp_sel1_intr_entry()' for handling the interrupt.
 ******************************************************************************/
static uint64_t tspd_sel1_interrupt_handler(uint32_t id,
					    uint32_t flags,
					    void *handle,
					    void *cookie)
{
	uint32_t linear_id;
	tsp_context_t *tsp_ctx;

	/* Check the security state when the exception was generated */
	assert(get_interrupt_src_ss(flags) == NON_SECURE);

	/* Sanity check the pointer to this cpu's context */
	assert(handle == cm_get_context(NON_SECURE));

	/* Save the non-secure context before entering the TSP */
	cm_el1_sysregs_context_save(NON_SECURE);

	/* Get a reference to this cpu's TSP context */
	linear_id = plat_my_core_pos();
	tsp_ctx = &tspd_sp_context[linear_id];
	assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));

	/*
	 * Determine if the TSP was previously preempted. Its last known
	 * context has to be preserved in this case.
	 * The TSP should return control to the TSPD after handling this
	 * S-EL1 interrupt. Preserve essential EL3 context to allow entry into
	 * the TSP at the S-EL1 interrupt entry point using the 'cpu_context'
	 * structure. There is no need to save the secure system register
	 * context since the TSP is supposed to preserve it during S-EL1
	 * interrupt handling.
	 */
	if (get_std_smc_active_flag(tsp_ctx->state)) {
		tsp_ctx->saved_spsr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
						      CTX_SPSR_EL3);
		tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
						     CTX_ELR_EL3);
#if TSP_NS_INTR_ASYNC_PREEMPT
		/*Need to save the previously interrupted secure context */
		memcpy(&tsp_ctx->sp_ctx, &tsp_ctx->cpu_ctx, TSPD_SP_CTX_SIZE);
#endif
	}

	cm_el1_sysregs_context_restore(SECURE);
	cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->sel1_intr_entry,
		    SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));

	cm_set_next_eret_context(SECURE);

	/*
	 * Tell the TSP that it has to handle a S-EL1 interrupt synchronously.
	 * Also the instruction in normal world where the interrupt was
	 * generated is passed for debugging purposes. It is safe to retrieve
	 * this address from ELR_EL3 as the secure context will not take effect
	 * until el3_exit().
	 */
	SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_SEL1_INTR_AND_RETURN, read_elr_el3());
}
/*******************************************************************************
 * BL31 is responsible for setting up the runtime services for the primary cpu
 * before passing control to the bootloader or an Operating System. This
 * function calls runtime_svc_init() which initializes all registered runtime
 * services. The run time services would setup enough context for the core to
 * swtich to the next exception level. When this function returns, the core will
 * switch to the programmed exception level via. an ERET.
 ******************************************************************************/
void bl31_main(void)
{
#if DEBUG
    unsigned long mpidr = read_mpidr();
#endif

    /* Perform remaining generic architectural setup from EL3 */
    bl31_arch_setup();

    /* Perform platform setup in BL1 */
    bl31_platform_setup();

#if defined (__GNUC__)
    printf("BL31 Built : %s, %s\n\r", __TIME__, __DATE__);
#endif
    /* Initialise helper libraries */
    bl31_lib_init();

    /* Initialize the runtime services e.g. psci */
    runtime_svc_init();

    /* Clean caches before re-entering normal world */
    dcsw_op_all(DCCSW);

    /*
     * Use the more complex exception vectors now that context
     * management is setup. SP_EL3 should point to a 'cpu_context'
     * structure which has an exception stack allocated.  The PSCI
     * service should have set the context.
     */
    assert(cm_get_context(mpidr, NON_SECURE));
    cm_set_next_eret_context(NON_SECURE);
    write_vbar_el3((uint64_t) runtime_exceptions);

    /*
     * All the cold boot actions on the primary cpu are done. We
     * now need to decide which is the next image (BL32 or BL33)
     * and how to execute it. If the SPD runtime service is
     * present, it would want to pass control to BL32 first in
     * S-EL1. It will export the bl32_init() routine where it takes
     * responsibility of entering S-EL1 and returning control back
     * to bl31_main. Once this is done we can prepare entry into
     * BL33 as normal.
     */

    /* Tell BL32 about it memory extents as well */
    if (bl32_init)
        bl32_init(bl31_plat_get_bl32_mem_layout());

    /*
     * We are ready to enter the next EL. Prepare entry into the image
     * corresponding to the desired security state after the next ERET.
     */
    bl31_prepare_next_image_entry();
}
示例#8
0
/*******************************************************************************
 * BL31 is responsible for setting up the runtime services for the primary cpu
 * before passing control to the bootloader (UEFI) or Linux. This function calls
 * runtime_svc_init() which initializes all registered runtime services. The run
 * time services would setup enough context for the core to swtich to the next
 * exception level. When this function returns, the core will switch to the
 * programmed exception level via. an ERET.
 ******************************************************************************/
void bl31_main(void)
{
	el_change_info *next_image_info;
	uint32_t scr;

	/* Perform remaining generic architectural setup from EL3 */
	bl31_arch_setup();

	/* Perform platform setup in BL1 */
	bl31_platform_setup();

#if defined (__GNUC__)
	printf("BL31 Built : %s, %s\n\r", __TIME__, __DATE__);
#endif
	/* Initialise helper libraries */
	bl31_lib_init();

	/* Initialize the runtime services e.g. psci */
	runtime_svc_init();

	/* Clean caches before re-entering normal world */
	dcsw_op_all(DCCSW);

	/*
	 * Setup minimal architectural state of the next highest EL to
	 * allow execution in it immediately upon entering it.
	 */
	bl31_arch_next_el_setup();

	/* Program EL3 registers to enable entry into the next EL */
	next_image_info = bl31_get_next_image_info();
	scr = read_scr();
	if (next_image_info->security_state == NON_SECURE)
		scr |= SCR_NS_BIT;

	/*
	 * Tell the context mgmt. library to ensure that SP_EL3 points to
	 * the right context to exit from EL3 correctly.
	 */
	cm_set_el3_eret_context(next_image_info->security_state,
			next_image_info->entrypoint,
			next_image_info->spsr,
			scr);

	/* Finally set the next context */
	cm_set_next_eret_context(next_image_info->security_state);
}
示例#9
0
/*******************************************************************************
 * This function takes an SP context pointer and:
 * 1. Applies the S-EL1 system register context from tsp_ctx->cpu_ctx.
 * 2. Saves the current C runtime state (callee saved registers) on the stack
 *    frame and saves a reference to this state.
 * 3. Calls el3_exit() so that the EL3 system and general purpose registers
 *    from the tsp_ctx->cpu_ctx are used to enter the secure payload image.
 ******************************************************************************/
uint64_t tbase_synchronous_sp_entry(tbase_context *tbase_ctx)
{
	uint64_t rc;

	assert(tbase_ctx->c_rt_ctx == 0);

	/* Apply the Secure EL1 system register context and switch to it */
	assert(cm_get_context(SECURE) == &tbase_ctx->cpu_ctx);
	cm_el1_sysregs_context_restore(SECURE);
	cm_set_next_eret_context(SECURE);

	rc = tbase_enter_sp(&tbase_ctx->c_rt_ctx);
#if DEBUG
	tbase_ctx->c_rt_ctx = 0;
#endif

	return rc;
}
示例#10
0
uint64_t tspd_handle_sp_preemption(void *handle)
{
	cpu_context_t *ns_cpu_context;
	assert(handle == cm_get_context(SECURE));
	cm_el1_sysregs_context_save(SECURE);
	/* Get a reference to the non-secure context */
	ns_cpu_context = cm_get_context(NON_SECURE);
	assert(ns_cpu_context);

	/*
	 * Restore non-secure state. The secure system
	 * register context will be saved when required.
	 */
	cm_el1_sysregs_context_restore(NON_SECURE);
	cm_set_next_eret_context(NON_SECURE);

	SMC_RET1(ns_cpu_context, SMC_PREEMPTED);
}
示例#11
0
/*******************************************************************************
 * Migrate TBASE.
 ******************************************************************************/
static void tbase_migrate_handler(uint64_t x1, uint64_t par2) {
#if DEBUG
  uint64_t mpidr = read_mpidr();
  uint32_t linear_id = platform_get_core_pos(mpidr);
  //  tbase_context *tbase_ctx = &secure_context[linear_id];
  
  DBG_PRINTF("\r\ntbase_migrate_handler %d %x %x\r\n", linear_id, x1, par2);
#endif

  // TODO: Not working, not tested at all
  //  cpu_context_t *ns_context = (cpu_context_t *) cm_get_context(NON_SECURE);
  //  gp_regs_t *ns_gpregs = get_gpregs_ctx(ns_context);
  cm_el1_sysregs_context_save(NON_SECURE);
  
  fc_response_t resp;
  /*uint64_t res = */tbase_monitor_fastcall(0/*smc_fid*/, x1, par2, 0, 0, &resp );
  
  cm_el1_sysregs_context_restore(NON_SECURE);
  cm_set_next_eret_context(NON_SECURE);
}
示例#12
0
/*******************************************************************************
 * This function takes a TLK context pointer and:
 * 1. Applies the S-EL1 system register context from tlk_ctx->cpu_ctx.
 * 2. Saves the current C runtime state (callee saved registers) on the stack
 *    frame and saves a reference to this state.
 * 3. Calls el3_exit() so that the EL3 system and general purpose registers
 *    from the tlk_ctx->cpu_ctx are used to enter the secure payload image.
 ******************************************************************************/
uint64_t tlkd_synchronous_sp_entry(tlk_context_t *tlk_ctx)
{
	uint64_t rc;

	/* Passing a NULL context is a critical programming error */
	assert(tlk_ctx);
	assert(tlk_ctx->c_rt_ctx == 0);

	/* Apply the Secure EL1 system register context and switch to it */
	assert(cm_get_context(SECURE) == &tlk_ctx->cpu_ctx);
	cm_el1_sysregs_context_restore(SECURE);
	cm_set_next_eret_context(SECURE);

	rc = tlkd_enter_sp(&tlk_ctx->c_rt_ctx);
#if DEBUG
	tlk_ctx->c_rt_ctx = 0;
#endif

	return rc;
}
示例#13
0
// ************************************************************************************
// fastcall handler
static uint64_t tbase_fastcall_handler(uint32_t smc_fid,
        uint64_t x1,
        uint64_t x2,
        uint64_t x3,
        uint64_t x4,
        void *cookie,
        void *handle,
        uint64_t flags)
{
  uint64_t mpidr = read_mpidr();
  uint32_t linear_id = platform_get_core_pos(mpidr);
  tbase_context *tbase_ctx = &secure_context[linear_id];
  int caller_security_state = flags&1;
      
  if (caller_security_state==SECURE) {
    switch(maskSWdRegister(smc_fid)) {
      case TBASE_SMC_FASTCALL_RETURN: {
        // Return values from fastcall already in cpu_context!
        // TODO: Could we skip saving sysregs?
        DBG_PRINTF( "tbase_fastcall_handler TBASE_SMC_FASTCALL_RETURN\n\r");
        tbase_synchronous_sp_exit(tbase_ctx, 0, 1);
      } 
      case TBASE_SMC_FASTCALL_CONFIG_OK: {
                                DBG_PRINTF( "tbase_fastcall_handler TBASE_SMC_FASTCALL_CONFIG_OK\n\r");
        configure_tbase(x1,x2);
        SMC_RET1(handle,smc_fid);
        break;
      } 
      case TBASE_SMC_FASTCALL_OUTPUT: {
        output(x1,x2);
        SMC_RET1(handle,smc_fid);
        break;
      }
      case TBASE_SMC_FASTCALL_STATUS: {
                                DBG_PRINTF( "tbase_fastcall_handler TBASE_SMC_FASTCALL_STATUS\n\r");
        tbase_status(x1,x2);
        SMC_RET1(handle,smc_fid);
        break;
      }
      case TBASE_SMC_FASTCALL_INPUT: {
                                DBG_PRINTF( "tbase_fastcall_handler TBASE_SMC_FASTCALL_INPUT\n\r");
        smc_fid = plat_tbase_input(x1,&x2,&(tbase_ctx->tbase_input_fastcall));
        SMC_RET3(handle,smc_fid,page_align(registerFileEnd[REGISTER_FILE_NWD] - registerFileStart[REGISTER_FILE_NWD], UP)+(uint64_t)&(tbase_ctx->tbase_input_fastcall)- registerFileStart[REGISTER_FILE_MONITOR],x2);
        break;
      }
      case TBASE_SMC_FASTCALL_DUMP: {
                                DBG_PRINTF( "tbase_fastcall_handler TBASE_SMC_FASTCALL_DUMP\n\r");
        tbase_triggerSgiDump();
        SMC_RET1(handle,smc_fid);
        break;
      }
      
      default: {
        // What now?
        DBG_PRINTF( "tbase_fastcall_handler SMC_UNK %x\n\r", smc_fid );
        SMC_RET1(handle, SMC_UNK);
        break;
      }
    }
  }
  else
  {
    if (smc_fid == TBASE_SMC_AEE_DUMP)         // N-world can request AEE Dump function
    {
      mt_atf_trigger_WDT_FIQ();
      // Once we return to the N-world's caller,
      // FIQ will be trigged and bring us on EL3 (ATF) on core #0 because HW wiring.
      // Then FIQ will be handled the same way as for HW WDT FIQ.

      //Do we need to save-recover n-context before being able to use it for return?
      cm_el1_sysregs_context_restore(NON_SECURE);
      cm_set_next_eret_context(NON_SECURE);
      return 0;
    }
    if ((tbaseExecutionStatus&TBASE_STATUS_FASTCALL_OK_BIT)==0) {
      // TBASE must be initialized to be usable
      // TODO: What is correct error code?
      DBG_PRINTF( "tbase_fastcall_handler tbase not ready for fastcall\n\r" );
      SMC_RET1(handle, SMC_UNK);
      return 0;
    }
    if(tbase_ctx->state == TBASE_STATE_OFF) {
      DBG_PRINTF( "tbase_fastcall_handler tbase not ready for fastcall\n\r" );
      SMC_RET1(handle, SMC_UNK);
      return 0;
    }

    DBG_PRINTF( "tbase_fastcall_handler NWd %x\n\r", smc_fid );
    // So far all fastcalls go to tbase
    // Save NWd context
    gp_regs_t *ns_gpregs = get_gpregs_ctx((cpu_context_t *)handle);
    write_ctx_reg(ns_gpregs, CTX_GPREG_X0, smc_fid ); // These are not saved yet
    write_ctx_reg(ns_gpregs, CTX_GPREG_X1, x1 );
    write_ctx_reg(ns_gpregs, CTX_GPREG_X2, x2 );
    write_ctx_reg(ns_gpregs, CTX_GPREG_X3, x3 );
    cm_el1_sysregs_context_save(NON_SECURE);

    // Load SWd context
    tbase_setup_entry_nwd((cpu_context_t *)handle,ENTRY_OFFSET_FASTCALL);
#if DEBUG
    print_fastcall_params("entry", NON_SECURE);
#endif
    tbase_synchronous_sp_entry(tbase_ctx);
    cm_el1_sysregs_context_restore(NON_SECURE);
    cm_set_next_eret_context(NON_SECURE);
    return 0; // Does not seem to matter what we return
  }
}
示例#14
0
/*******************************************************************************
 * BL31 is responsible for setting up the runtime services for the primary cpu
 * before passing control to the bootloader or an Operating System. This
 * function calls runtime_svc_init() which initializes all registered runtime
 * services. The run time services would setup enough context for the core to
 * swtich to the next exception level. When this function returns, the core will
 * switch to the programmed exception level via. an ERET.
 ******************************************************************************/
void bl31_main(void)
{
#if DEBUG
	unsigned long mpidr = read_mpidr();
#endif
	atf_arg_t_ptr teearg = (atf_arg_t_ptr)(uintptr_t)TEE_BOOT_INFO_ADDR;
	 
	if(teearg->atf_log_buf_size != 0)
	{
	    teearg->atf_aee_debug_buf_size = ATF_AEE_BUFFER_SIZE;
        teearg->atf_aee_debug_buf_start = teearg->atf_log_buf_start + teearg->atf_log_buf_size - ATF_AEE_BUFFER_SIZE;
		mt_log_setup(teearg->atf_log_buf_start, teearg->atf_log_buf_size, teearg->atf_aee_debug_buf_size);
		printf("ATF log service is registered (0x%x, aee:0x%x)\n", teearg->atf_log_buf_start, teearg->atf_aee_debug_buf_start);
	}
	else
	{
		teearg->atf_aee_debug_buf_size = 0;
		teearg->atf_aee_debug_buf_start = 0;        
	}    

	/* Perform remaining generic architectural setup from EL3 */
	bl31_arch_setup();

	/* Perform platform setup in BL1 */
	bl31_platform_setup();

	printf("BL31 %s\n\r", build_message);

	/* Initialise helper libraries */
	bl31_lib_init();

	/* Initialize the runtime services e.g. psci */
	runtime_svc_init();

	/* Clean caches before re-entering normal world */
	dcsw_op_all(DCCSW);

	/*
	 * Use the more complex exception vectors now that context
	 * management is setup. SP_EL3 should point to a 'cpu_context'
	 * structure which has an exception stack allocated.  The PSCI
	 * service should have set the context.
	 */
	assert(cm_get_context(mpidr, NON_SECURE));
	cm_set_next_eret_context(NON_SECURE);
	cm_init_pcpu_ptr_cache();
	write_vbar_el3((uint64_t) runtime_exceptions);
	isb();
	next_image_type = NON_SECURE;

	/*
	 * All the cold boot actions on the primary cpu are done. We now need to
	 * decide which is the next image (BL32 or BL33) and how to execute it.
	 * If the SPD runtime service is present, it would want to pass control
	 * to BL32 first in S-EL1. In that case, SPD would have registered a
	 * function to intialize bl32 where it takes responsibility of entering
	 * S-EL1 and returning control back to bl31_main. Once this is done we
	 * can prepare entry into BL33 as normal.
	 */

	/*
	 * If SPD had registerd an init hook, invoke it.
	 */
    if(teearg->tee_support)
    {
        printf("[BL31] Jump to secure OS for initialization!\n\r");
        if (bl32_init)
        {
            (*bl32_init)(teearg->tee_entry, teearg->tee_boot_arg_addr);
        }
        else
        {
            printf("[ERROR] Secure OS is not initialized!\n\r");
            //assert(0);            
        }
	}
    else
    {
        printf("[BL31] Jump to FIQD for initialization!\n\r");
        if (bl32_init)
        {
            (*bl32_init)(0, 0);
        }
    }

	/*
	 * We are ready to enter the next EL. Prepare entry into the image
	 * corresponding to the desired security state after the next ERET.
	 */
	bl31_prepare_next_image_entry();
    
    printf("[BL31] Final dump!\n\r");

	clear_uart_flag();
    
    printf("[BL31] SHOULD not dump in UART but in log buffer!\n\r");
}
示例#15
0
/*******************************************************************************
 * This function programs EL3 registers and performs other setup to enable entry
 * into the next image after BL31 at the next ERET.
 ******************************************************************************/
void bl31_prepare_next_image_entry()
{
	entry_point_info_t *next_image_info;
	uint32_t scr, image_type;
	cpu_context_t *ctx;
	gp_regs_t *gp_regs;

	/* Determine which image to execute next */
	image_type = bl31_get_next_image_type();

	/*
	 * Setup minimal architectural state of the next highest EL to
	 * allow execution in it immediately upon entering it.
	 */
	bl31_next_el_arch_setup(image_type);

	/* Program EL3 registers to enable entry into the next EL */
	next_image_info = bl31_plat_get_next_image_ep_info(image_type);
	assert(next_image_info);
	assert(image_type == GET_SECURITY_STATE(next_image_info->h.attr));

	scr = read_scr();
	scr &= ~SCR_NS_BIT;
	if (image_type == NON_SECURE)
		scr |= SCR_NS_BIT;

	scr &= ~SCR_RW_BIT;
	if ((next_image_info->spsr & (1 << MODE_RW_SHIFT)) ==
				(MODE_RW_64 << MODE_RW_SHIFT))
	{
		scr |= SCR_RW_BIT;
		scr |= SCR_HCE_BIT;
	}
	else
	{
		scr &= ~(SCR_HCE_BIT);
	}

	/*
	 * FIXME: Need a configurable flag when we have hypervisor installed
	 * This is for PSCI CPU_UP api to work correctly
	 * PSCI uses scr.hce to determine the target CPU of CPU_UP
	 * returns to NS world with HYP mode(HCE is set) or SVC mode(HCE is not set)
	 * (refer to psci_set_ns_entry_info() in psci_common.c)
	 * since we don't have hypervisor installed for now, we need to
	 * enter linux with SVC mode.
	 */
	// FIXME: For 64bit kernel, we need return to normal world with EL2
	// Temporary comment out this to enable 64bit kernel smp.
	// Need a method to configure this for 32bit/64bit kernel
	//scr &= ~(SCR_HCE_BIT);

	/*
	 * Tell the context mgmt. library to ensure that SP_EL3 points to
	 * the right context to exit from EL3 correctly.
	 */
	cm_set_el3_eret_context(image_type,
			next_image_info->pc,
			next_image_info->spsr,
			scr);

	/*
	 * Save the args generated in BL2 for the image in the right context
	 * used on its entry
	 */
	ctx = cm_get_context(read_mpidr(), image_type);
	gp_regs = get_gpregs_ctx(ctx);
	memcpy(gp_regs, (void *)&next_image_info->args, sizeof(aapcs64_params_t));

	/* Finally set the next context */
	cm_set_next_eret_context(image_type);
}
示例#16
0
void bl31_prepare_k64_entry(void)
{
	entry_point_info_t *next_image_info;
	uint32_t scr, image_type;
	cpu_context_t *ctx;
	gp_regs_t *gp_regs;

	/* Determine which image to execute next */
	image_type = NON_SECURE; //bl31_get_next_image_type();

	/*
	 * Setup minimal architectural state of the next highest EL to
	 * allow execution in it immediately upon entering it.
	 */
	bl31_next_el_arch_setup(image_type);

	/* Program EL3 registers to enable entry into the next EL */
	next_image_info = bl31_plat_get_next_kernel_ep_info(image_type);


	assert(next_image_info);
	assert(image_type == GET_SECURITY_STATE(next_image_info->h.attr));


    /* check is set 64bit kernel*/
    printf("next_image_info->spsr = 0x%llx\n", next_image_info->spsr);

	scr = read_scr();
	scr &= ~SCR_NS_BIT;
	if (image_type == NON_SECURE)
		scr |= SCR_NS_BIT;

	scr &= ~SCR_RW_BIT;
	if ((next_image_info->spsr & (1 << MODE_RW_SHIFT)) ==
				(MODE_RW_64 << MODE_RW_SHIFT))
    {
		scr |= SCR_RW_BIT;

        printf("spsr is 64 bit\n");
    }

	scr |= SCR_HCE_BIT;

	/*
	 * Tell the context mgmt. library to ensure that SP_EL3 points to
	 * the right context to exit from EL3 correctly.
	 */
	cm_set_el3_eret_context(image_type,
			next_image_info->pc,
			next_image_info->spsr,
			scr);

	/*
	 * Save the args generated in BL2 for the image in the right context
	 * used on its entry
	 */
	ctx = cm_get_context(read_mpidr(), image_type);
	gp_regs = get_gpregs_ctx(ctx);
	memcpy(gp_regs, (void *)&next_image_info->args, sizeof(aapcs64_params_t));

    printf("Finally set the next context\n");

	/* Finally set the next context */
	cm_set_next_eret_context(image_type);
}
示例#17
0
static uint64_t tbase_smc_handler(uint32_t smc_fid,
        uint64_t x1,
        uint64_t x2,
        uint64_t x3,
        uint64_t x4,
        void *cookie,
        void *handle,
        uint64_t flags)
{
  uint64_t mpidr = read_mpidr();
  uint32_t linear_id = platform_get_core_pos(mpidr);
  tbase_context *tbase_ctx = &secure_context[linear_id];
  int caller_security_state = flags&1;
 
  DBG_PRINTF("tbase_smc_handler %d %x\n\r", caller_security_state, smc_fid);  
  
  if (caller_security_state==SECURE) {
    // Yield to NWd
    // TODO: Check id
    if (tbaseInitStatus==TBASE_INIT_CONFIG_OK) {
      // Save sysregs to all cores.
      // After this tbase can work on any core.
      save_sysregs_allcore();
      tbaseInitStatus = TBASE_INIT_SYSREGS_OK;
      if (tbaseExecutionStatus==TBASE_STATUS_UNINIT) {
        tbaseExecutionStatus = TBASE_STATUS_NORMAL;
      }
    }
    // If above check fails, it is not possible to return to tbase.
    tbase_synchronous_sp_exit(tbase_ctx, 0, 1);
  } 
  else {
    if ((tbaseExecutionStatus&TBASE_STATUS_SMC_OK_BIT)==0) {
      // TBASE must be initialized to be usable
      DBG_PRINTF( "tbase_smc_handler tbase not ready for smc.\n\r");
      // TODO: What is correct error code?
      SMC_RET1(handle, SMC_UNK);
      return 1;
    }
    if(tbase_ctx->state == TBASE_STATE_OFF) {
      DBG_PRINTF( "tbase_smc_handler tbase not ready for fastcall\n\r" );
      return 1;
    }

    // NSIQ, go to SWd
    // TODO: Check id?
    
    // Save NWd
    gp_regs_t *ns_gpregs = get_gpregs_ctx((cpu_context_t *)handle);
    write_ctx_reg(ns_gpregs, CTX_GPREG_X0, smc_fid );
    write_ctx_reg(ns_gpregs, CTX_GPREG_X1, x1 );
    write_ctx_reg(ns_gpregs, CTX_GPREG_X2, x2 );
    write_ctx_reg(ns_gpregs, CTX_GPREG_X3, x3 );
    cm_el1_sysregs_context_save(NON_SECURE);
    
    // Load SWd
    tbase_setup_entry_nwd((cpu_context_t *)handle,ENTRY_OFFSET_SMC);
    // Enter tbase. tbase must return using normal SMC, which will continue here.   
    tbase_synchronous_sp_entry(tbase_ctx);
    // Load NWd
    cm_el1_sysregs_context_restore(NON_SECURE);
    cm_set_next_eret_context(NON_SECURE);
  }
  return 0;
}
示例#18
0
//************************************************************************************************
// FIQ handler for FIQ when in NWd
uint64_t tbase_fiq_handler( uint32_t id,
          uint32_t flags,
          void *handle,
          void *cookie)
{
  uint64_t mpidr;
  uint32_t linear_id;
  tbase_context *tbase_ctx;

  mpidr = read_mpidr();
  linear_id = platform_get_core_pos(mpidr);
  tbase_ctx = &secure_context[linear_id];
  assert(&tbase_ctx->cpu_ctx == cm_get_context(SECURE));
  
  /* Check if the vector has been entered for SGI/FIQ dump reason */
  if (id == FIQ_SMP_CALL_SGI) {
    /* ACK gic */
    {
        unsigned int iar;
        iar = gicc_read_IAR(get_plat_config()->gicc_base);
        gicc_write_EOIR(get_plat_config()->gicc_base, iar);
    }
    /* Save the non-secure context before entering the TSP */
    cm_el1_sysregs_context_save(NON_SECURE);
    /* Call customer's dump implementation */
    plat_tbase_dump();
    // Load NWd
    //cm_el1_sysregs_context_restore(NON_SECURE);
    //cm_set_next_eret_context(NON_SECURE);
  } 
  else {

    /* Check the security state when the exception was generated */
    assert(get_interrupt_src_ss(flags) == NON_SECURE);

    /* Sanity check the pointer to this cpu's context */
    assert(handle == cm_get_context(NON_SECURE));

    if ((tbaseExecutionStatus&TBASE_STATUS_SMC_OK_BIT)==0) {
      // TBASE must be initialized to be usable
      // TODO: What should we really do here?
      // We should disable FIQs to prevent futher interrupts
      DBG_PRINTF( "tbase_interrupt_handler tbase not ready for interrupt\n\r" );
      return 1;
    }
    if(tbase_ctx->state == TBASE_STATE_OFF) {
      DBG_PRINTF( "tbase_interrupt_handler tbase not ready for fastcall\n\r" );
      return 1;
    }

    /* Save the non-secure context before entering the TSP */
    cm_el1_sysregs_context_save(NON_SECURE);

    /* Switch to secure context now */
    cm_el1_sysregs_context_restore(SECURE);
    cm_set_next_eret_context(SECURE);

    // Load SWd context
    tbase_setup_entry_nwd((cpu_context_t *)handle,ENTRY_OFFSET_FIQ);
  
    // Enter tbase. tbase must return using normal SMC, which will continue here.
    tbase_synchronous_sp_entry(tbase_ctx);

    // Load NWd
    cm_el1_sysregs_context_restore(NON_SECURE);
    cm_set_next_eret_context(NON_SECURE);
  }

  return 0;
}
示例#19
0
/*******************************************************************************
 * This function is responsible for handling all SMCs in the Trusted OS/App
 * range from the non-secure state as defined in the SMC Calling Convention
 * Document. It is also responsible for communicating with the Secure
 * payload to delegate work and return results back to the non-secure
 * state. Lastly it will also return any information that OPTEE needs to do
 * the work assigned to it.
 ******************************************************************************/
uint64_t opteed_smc_handler(uint32_t smc_fid,
			 uint64_t x1,
			 uint64_t x2,
			 uint64_t x3,
			 uint64_t x4,
			 void *cookie,
			 void *handle,
			 uint64_t flags)
{
	cpu_context_t *ns_cpu_context;
	unsigned long mpidr = read_mpidr();
	uint32_t linear_id = platform_get_core_pos(mpidr);
	optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
	uint64_t rc;

	/*
	 * Determine which security state this SMC originated from
	 */

	if (is_caller_non_secure(flags)) {
		/*
		 * This is a fresh request from the non-secure client.
		 * The parameters are in x1 and x2. Figure out which
		 * registers need to be preserved, save the non-secure
		 * state and send the request to the secure payload.
		 */
		assert(handle == cm_get_context(NON_SECURE));

		cm_el1_sysregs_context_save(NON_SECURE);

		/*
		 * We are done stashing the non-secure context. Ask the
		 * OPTEE to do the work now.
		 */

		/*
		 * Verify if there is a valid context to use, copy the
		 * operation type and parameters to the secure context
		 * and jump to the fast smc entry point in the secure
		 * payload. Entry into S-EL1 will take place upon exit
		 * from this function.
		 */
		assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));

		/* Set appropriate entry for SMC.
		 * We expect OPTEE to manage the PSTATE.I and PSTATE.F
		 * flags as appropriate.
		 */
		if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
			cm_set_elr_el3(SECURE, (uint64_t)
					&optee_vectors->fast_smc_entry);
		} else {
			cm_set_elr_el3(SECURE, (uint64_t)
					&optee_vectors->std_smc_entry);
		}

		cm_el1_sysregs_context_restore(SECURE);
		cm_set_next_eret_context(SECURE);

		/* Propagate hypervisor client ID */
		write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
			      CTX_GPREG_X7,
			      read_ctx_reg(get_gpregs_ctx(handle),
					   CTX_GPREG_X7));

		SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3);
	}

	/*
	 * Returning from OPTEE
	 */

	switch (smc_fid) {
	/*
	 * OPTEE has finished initialising itself after a cold boot
	 */
	case TEESMC_OPTEED_RETURN_ENTRY_DONE:
		/*
		 * Stash the OPTEE entry points information. This is done
		 * only once on the primary cpu
		 */
		assert(optee_vectors == NULL);
		optee_vectors = (optee_vectors_t *) x1;

		if (optee_vectors) {
			set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON);

			/*
			 * OPTEE has been successfully initialized.
			 * Register power management hooks with PSCI
			 */
			psci_register_spd_pm_hook(&opteed_pm);

			/*
			 * Register an interrupt handler for S-EL1 interrupts
			 * when generated during code executing in the
			 * non-secure state.
			 */
			flags = 0;
			set_interrupt_rm_flag(flags, NON_SECURE);
			rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
						opteed_sel1_interrupt_handler,
						flags);
			if (rc)
				panic();
		}

		/*
		 * OPTEE reports completion. The OPTEED must have initiated
		 * the original request through a synchronous entry into
		 * OPTEE. Jump back to the original C runtime context.
		 */
		opteed_synchronous_sp_exit(optee_ctx, x1);


	/*
	 * These function IDs is used only by OP-TEE to indicate it has
	 * finished:
	 * 1. turning itself on in response to an earlier psci
	 *    cpu_on request
	 * 2. resuming itself after an earlier psci cpu_suspend
	 *    request.
	 */
	case TEESMC_OPTEED_RETURN_ON_DONE:
	case TEESMC_OPTEED_RETURN_RESUME_DONE:


	/*
	 * These function IDs is used only by the SP to indicate it has
	 * finished:
	 * 1. suspending itself after an earlier psci cpu_suspend
	 *    request.
	 * 2. turning itself off in response to an earlier psci
	 *    cpu_off request.
	 */
	case TEESMC_OPTEED_RETURN_OFF_DONE:
	case TEESMC_OPTEED_RETURN_SUSPEND_DONE:
	case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE:
	case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE:

		/*
		 * OPTEE reports completion. The OPTEED must have initiated the
		 * original request through a synchronous entry into OPTEE.
		 * Jump back to the original C runtime context, and pass x1 as
		 * return value to the caller
		 */
		opteed_synchronous_sp_exit(optee_ctx, x1);

	/*
	 * OPTEE is returning from a call or being preempted from a call, in
	 * either case execution should resume in the normal world.
	 */
	case TEESMC_OPTEED_RETURN_CALL_DONE:
		/*
		 * This is the result from the secure client of an
		 * earlier request. The results are in x0-x3. Copy it
		 * into the non-secure context, save the secure state
		 * and return to the non-secure state.
		 */
		assert(handle == cm_get_context(SECURE));
		cm_el1_sysregs_context_save(SECURE);

		/* Get a reference to the non-secure context */
		ns_cpu_context = cm_get_context(NON_SECURE);
		assert(ns_cpu_context);

		/* Restore non-secure state */
		cm_el1_sysregs_context_restore(NON_SECURE);
		cm_set_next_eret_context(NON_SECURE);

		SMC_RET4(ns_cpu_context, x1, x2, x3, x4);

	/*
	 * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution
	 * should resume in the normal world.
	 */
	case TEESMC_OPTEED_RETURN_FIQ_DONE:
		/* Get a reference to the non-secure context */
		ns_cpu_context = cm_get_context(NON_SECURE);
		assert(ns_cpu_context);

		/*
		 * Restore non-secure state. There is no need to save the
		 * secure system register context since OPTEE was supposed
		 * to preserve it during S-EL1 interrupt handling.
		 */
		cm_el1_sysregs_context_restore(NON_SECURE);
		cm_set_next_eret_context(NON_SECURE);

		SMC_RET0((uint64_t) ns_cpu_context);

	default:
		panic();
	}
}
示例#20
0
/*******************************************************************************
 * This function is the handler registered for S-EL1 interrupts by the FIQD. It
 * validates the interrupt and upon success arranges entry into the TSP at
 * 'tsp_fiq_entry()' for handling the interrupt.
 ******************************************************************************/
static uint64_t fiqd_sel1_interrupt_handler(uint32_t id,
					    uint32_t flags,
					    void *handle,
					    void *cookie)
{	
	unsigned int iar;

	/* Check the security state when the exception was generated */
	assert(get_interrupt_src_ss(flags) == NON_SECURE);

#if IMF_READ_INTERRUPT_ID
	/* Check the security status of the interrupt */
	assert(plat_ic_get_interrupt_type(id) == INTR_TYPE_S_EL1);
#endif

	/* Sanity check the pointer to this cpu's context */
	assert(handle == cm_get_context(NON_SECURE));

	/* Save the non-secure context before entering the TSP */
	cm_el1_sysregs_context_save(NON_SECURE);

	iar = get_ack_info();
	ack_sgi(iar);

	if(id == WDT_IRQ_BIT_ID)
	{
		/* FIX-ME : change 0xFE to the kernel online CPU mask */
		fiq_smp_call_function(0xFE, aee_wdt_dump, 0, 0);
		aee_wdt_dump();
	}

	if(id == FIQ_SMP_CALL_SGI)
	{
		fiq_icc_isr();
	}

	SMC_RET0(handle);    
#if 0
	/* Get a reference to this cpu's TSP context */
	linear_id = platform_get_core_pos(mpidr);
	tsp_ctx = &fiqd_sp_context[linear_id];
	assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));

	/*
	 * Determine if the TSP was previously preempted. Its last known
	 * context has to be preserved in this case.
	 * The TSP should return control to the FIQD after handling this
	 * FIQ. Preserve essential EL3 context to allow entry into the
	 * TSP at the FIQ entry point using the 'cpu_context' structure.
	 * There is no need to save the secure system register context
	 * since the TSP is supposed to preserve it during S-EL1 interrupt
	 * handling.
	 */
	if (get_std_smc_active_flag(tsp_ctx->state)) {
		tsp_ctx->saved_spsr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
						      CTX_SPSR_EL3);
		tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
						     CTX_ELR_EL3);
	}

	cm_el1_sysregs_context_restore(SECURE);
	cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->fiq_entry,
		    SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));
	cm_set_next_eret_context(SECURE);

	/*
	 * Tell the TSP that it has to handle an FIQ synchronously. Also the
	 * instruction in normal world where the interrupt was generated is
	 * passed for debugging purposes. It is safe to retrieve this address
	 * from ELR_EL3 as the secure context will not take effect until
	 * el3_exit().
	 */
	SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_FIQ_AND_RETURN, read_elr_el3());
#endif    
}
示例#21
0
/*******************************************************************************
 * This function is responsible for handling all SMCs in the Trusted OS/App
 * range from the non-secure state as defined in the SMC Calling Convention
 * Document. It is also responsible for communicating with the Secure payload
 * to delegate work and return results back to the non-secure state. Lastly it
 * will also return any information that the secure payload needs to do the
 * work assigned to it.
 ******************************************************************************/
uint64_t tspd_smc_handler(uint32_t smc_fid,
			 uint64_t x1,
			 uint64_t x2,
			 uint64_t x3,
			 uint64_t x4,
			 void *cookie,
			 void *handle,
			 uint64_t flags)
{
	cpu_context_t *ns_cpu_context;
	uint32_t linear_id = plat_my_core_pos(), ns;
	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
	uint64_t rc;
#if TSP_INIT_ASYNC
	entry_point_info_t *next_image_info;
#endif

	/* Determine which security state this SMC originated from */
	ns = is_caller_non_secure(flags);

	switch (smc_fid) {

	/*
	 * This function ID is used by TSP to indicate that it was
	 * preempted by a normal world IRQ.
	 *
	 */
	case TSP_PREEMPTED:
		if (ns)
			SMC_RET1(handle, SMC_UNK);

		return tspd_handle_sp_preemption(handle);

	/*
	 * This function ID is used only by the TSP to indicate that it has
	 * finished handling a S-EL1 FIQ interrupt. Execution should resume
	 * in the normal world.
	 */
	case TSP_HANDLED_S_EL1_FIQ:
		if (ns)
			SMC_RET1(handle, SMC_UNK);

		assert(handle == cm_get_context(SECURE));

		/*
		 * Restore the relevant EL3 state which saved to service
		 * this SMC.
		 */
		if (get_std_smc_active_flag(tsp_ctx->state)) {
			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
				    CTX_SPSR_EL3,
				    tsp_ctx->saved_spsr_el3);
			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
				    CTX_ELR_EL3,
				    tsp_ctx->saved_elr_el3);
#if TSPD_ROUTE_IRQ_TO_EL3
			/*
			 * Need to restore the previously interrupted
			 * secure context.
			 */
			memcpy(&tsp_ctx->cpu_ctx, &tsp_ctx->sp_ctx,
				TSPD_SP_CTX_SIZE);
#endif
		}

		/* Get a reference to the non-secure context */
		ns_cpu_context = cm_get_context(NON_SECURE);
		assert(ns_cpu_context);

		/*
		 * Restore non-secure state. There is no need to save the
		 * secure system register context since the TSP was supposed
		 * to preserve it during S-EL1 interrupt handling.
		 */
		cm_el1_sysregs_context_restore(NON_SECURE);
		cm_set_next_eret_context(NON_SECURE);

		SMC_RET0((uint64_t) ns_cpu_context);


	/*
	 * This function ID is used only by the TSP to indicate that it was
	 * interrupted due to a EL3 FIQ interrupt. Execution should resume
	 * in the normal world.
	 */
	case TSP_EL3_FIQ:
		if (ns)
			SMC_RET1(handle, SMC_UNK);

		assert(handle == cm_get_context(SECURE));

		/* Assert that standard SMC execution has been preempted */
		assert(get_std_smc_active_flag(tsp_ctx->state));

		/* Save the secure system register state */
		cm_el1_sysregs_context_save(SECURE);

		/* Get a reference to the non-secure context */
		ns_cpu_context = cm_get_context(NON_SECURE);
		assert(ns_cpu_context);

		/* Restore non-secure state */
		cm_el1_sysregs_context_restore(NON_SECURE);
		cm_set_next_eret_context(NON_SECURE);

		SMC_RET1(ns_cpu_context, TSP_EL3_FIQ);


	/*
	 * This function ID is used only by the SP to indicate it has
	 * finished initialising itself after a cold boot
	 */
	case TSP_ENTRY_DONE:
		if (ns)
			SMC_RET1(handle, SMC_UNK);

		/*
		 * Stash the SP entry points information. This is done
		 * only once on the primary cpu
		 */
		assert(tsp_vectors == NULL);
		tsp_vectors = (tsp_vectors_t *) x1;

		if (tsp_vectors) {
			set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON);

			/*
			 * TSP has been successfully initialized. Register power
			 * managemnt hooks with PSCI
			 */
			psci_register_spd_pm_hook(&tspd_pm);

			/*
			 * Register an interrupt handler for S-EL1 interrupts
			 * when generated during code executing in the
			 * non-secure state.
			 */
			flags = 0;
			set_interrupt_rm_flag(flags, NON_SECURE);
			rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
						tspd_sel1_interrupt_handler,
						flags);
			if (rc)
				panic();

#if TSPD_ROUTE_IRQ_TO_EL3
			/*
			 * Register an interrupt handler for NS interrupts when
			 * generated during code executing in secure state are
			 * routed to EL3.
			 */
			flags = 0;
			set_interrupt_rm_flag(flags, SECURE);

			rc = register_interrupt_type_handler(INTR_TYPE_NS,
						tspd_ns_interrupt_handler,
						flags);
			if (rc)
				panic();

			/*
			 * Disable the interrupt NS locally since it will be enabled globally
			 * within cm_init_my_context.
			 */
			disable_intr_rm_local(INTR_TYPE_NS, SECURE);
#endif
		}


#if TSP_INIT_ASYNC
		/* Save the Secure EL1 system register context */
		assert(cm_get_context(SECURE) == &tsp_ctx->cpu_ctx);
		cm_el1_sysregs_context_save(SECURE);

		/* Program EL3 registers to enable entry into the next EL */
		next_image_info = bl31_plat_get_next_image_ep_info(NON_SECURE);
		assert(next_image_info);
		assert(NON_SECURE ==
				GET_SECURITY_STATE(next_image_info->h.attr));

		cm_init_my_context(next_image_info);
		cm_prepare_el3_exit(NON_SECURE);
		SMC_RET0(cm_get_context(NON_SECURE));
#else
		/*
		 * SP reports completion. The SPD must have initiated
		 * the original request through a synchronous entry
		 * into the SP. Jump back to the original C runtime
		 * context.
		 */
		tspd_synchronous_sp_exit(tsp_ctx, x1);
#endif

	/*
	 * These function IDs is used only by the SP to indicate it has
	 * finished:
	 * 1. turning itself on in response to an earlier psci
	 *    cpu_on request
	 * 2. resuming itself after an earlier psci cpu_suspend
	 *    request.
	 */
	case TSP_ON_DONE:
	case TSP_RESUME_DONE:

	/*
	 * These function IDs is used only by the SP to indicate it has
	 * finished:
	 * 1. suspending itself after an earlier psci cpu_suspend
	 *    request.
	 * 2. turning itself off in response to an earlier psci
	 *    cpu_off request.
	 */
	case TSP_OFF_DONE:
	case TSP_SUSPEND_DONE:
	case TSP_SYSTEM_OFF_DONE:
	case TSP_SYSTEM_RESET_DONE:
		if (ns)
			SMC_RET1(handle, SMC_UNK);

		/*
		 * SP reports completion. The SPD must have initiated the
		 * original request through a synchronous entry into the SP.
		 * Jump back to the original C runtime context, and pass x1 as
		 * return value to the caller
		 */
		tspd_synchronous_sp_exit(tsp_ctx, x1);

		/*
		 * Request from non-secure client to perform an
		 * arithmetic operation or response from secure
		 * payload to an earlier request.
		 */
	case TSP_FAST_FID(TSP_ADD):
	case TSP_FAST_FID(TSP_SUB):
	case TSP_FAST_FID(TSP_MUL):
	case TSP_FAST_FID(TSP_DIV):

	case TSP_STD_FID(TSP_ADD):
	case TSP_STD_FID(TSP_SUB):
	case TSP_STD_FID(TSP_MUL):
	case TSP_STD_FID(TSP_DIV):
		if (ns) {
			/*
			 * This is a fresh request from the non-secure client.
			 * The parameters are in x1 and x2. Figure out which
			 * registers need to be preserved, save the non-secure
			 * state and send the request to the secure payload.
			 */
			assert(handle == cm_get_context(NON_SECURE));

			/* Check if we are already preempted */
			if (get_std_smc_active_flag(tsp_ctx->state))
				SMC_RET1(handle, SMC_UNK);

			cm_el1_sysregs_context_save(NON_SECURE);

			/* Save x1 and x2 for use by TSP_GET_ARGS call below */
			store_tsp_args(tsp_ctx, x1, x2);

			/*
			 * We are done stashing the non-secure context. Ask the
			 * secure payload to do the work now.
			 */

			/*
			 * Verify if there is a valid context to use, copy the
			 * operation type and parameters to the secure context
			 * and jump to the fast smc entry point in the secure
			 * payload. Entry into S-EL1 will take place upon exit
			 * from this function.
			 */
			assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));

			/* Set appropriate entry for SMC.
			 * We expect the TSP to manage the PSTATE.I and PSTATE.F
			 * flags as appropriate.
			 */
			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
				cm_set_elr_el3(SECURE, (uint64_t)
						&tsp_vectors->fast_smc_entry);
			} else {
				set_std_smc_active_flag(tsp_ctx->state);
				cm_set_elr_el3(SECURE, (uint64_t)
						&tsp_vectors->std_smc_entry);
#if TSPD_ROUTE_IRQ_TO_EL3
				/*
				 * Enable the routing of NS interrupts to EL3
				 * during STD SMC processing on this core.
				 */
				enable_intr_rm_local(INTR_TYPE_NS, SECURE);
#endif
			}

			cm_el1_sysregs_context_restore(SECURE);
			cm_set_next_eret_context(SECURE);
			SMC_RET3(&tsp_ctx->cpu_ctx, smc_fid, x1, x2);
		} else {
			/*
			 * This is the result from the secure client of an
			 * earlier request. The results are in x1-x3. Copy it
			 * into the non-secure context, save the secure state
			 * and return to the non-secure state.
			 */
			assert(handle == cm_get_context(SECURE));
			cm_el1_sysregs_context_save(SECURE);

			/* Get a reference to the non-secure context */
			ns_cpu_context = cm_get_context(NON_SECURE);
			assert(ns_cpu_context);

			/* Restore non-secure state */
			cm_el1_sysregs_context_restore(NON_SECURE);
			cm_set_next_eret_context(NON_SECURE);
			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_STD) {
				clr_std_smc_active_flag(tsp_ctx->state);
#if TSPD_ROUTE_IRQ_TO_EL3
				/*
				 * Disable the routing of NS interrupts to EL3
				 * after STD SMC processing is finished on this
				 * core.
				 */
				disable_intr_rm_local(INTR_TYPE_NS, SECURE);
#endif
			}

			SMC_RET3(ns_cpu_context, x1, x2, x3);
		}

		break;

		/*
		 * Request from non secure world to resume the preempted
		 * Standard SMC call.
		 */
	case TSP_FID_RESUME:
		/* RESUME should be invoked only by normal world */
		if (!ns) {
			assert(0);
			break;
		}

		/*
		 * This is a resume request from the non-secure client.
		 * save the non-secure state and send the request to
		 * the secure payload.
		 */
		assert(handle == cm_get_context(NON_SECURE));

		/* Check if we are already preempted before resume */
		if (!get_std_smc_active_flag(tsp_ctx->state))
			SMC_RET1(handle, SMC_UNK);

		cm_el1_sysregs_context_save(NON_SECURE);

		/*
		 * We are done stashing the non-secure context. Ask the
		 * secure payload to do the work now.
		 */
#if TSPD_ROUTE_IRQ_TO_EL3
		/*
		 * Enable the routing of NS interrupts to EL3 during resumption
		 * of STD SMC call on this core.
		 */
		enable_intr_rm_local(INTR_TYPE_NS, SECURE);
#endif



		/* We just need to return to the preempted point in
		 * TSP and the execution will resume as normal.
		 */
		cm_el1_sysregs_context_restore(SECURE);
		cm_set_next_eret_context(SECURE);
		SMC_RET0(&tsp_ctx->cpu_ctx);

		/*
		 * This is a request from the secure payload for more arguments
		 * for an ongoing arithmetic operation requested by the
		 * non-secure world. Simply return the arguments from the non-
		 * secure client in the original call.
		 */
	case TSP_GET_ARGS:
		if (ns)
			SMC_RET1(handle, SMC_UNK);

		get_tsp_args(tsp_ctx, x1, x2);
		SMC_RET2(handle, x1, x2);

	case TOS_CALL_COUNT:
		/*
		 * Return the number of service function IDs implemented to
		 * provide service to non-secure
		 */
		SMC_RET1(handle, TSP_NUM_FID);

	case TOS_UID:
		/* Return TSP UID to the caller */
		SMC_UUID_RET(handle, tsp_uuid);

	case TOS_CALL_VERSION:
		/* Return the version of current implementation */
		SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR);

	default:
		break;
	}

	SMC_RET1(handle, SMC_UNK);
}
示例#22
0
static int32_t tbase_init_entry()
{
  DBG_PRINTF("tbase_init\n\r");

  // Save el1 registers in case non-secure world has already been set up.
  cm_el1_sysregs_context_save(NON_SECURE);

  uint64_t mpidr = read_mpidr();
  uint32_t linear_id = platform_get_core_pos(mpidr);
  tbase_context *tbase_ctx = &secure_context[linear_id];
  
  
  // Note: mapping is 1:1, so physical and virtual addresses are here the same.
  cpu_context_t *ns_entry_context = (cpu_context_t *) cm_get_context(mpidr, NON_SECURE);  
  
  // ************************************************************************************
  // Configure parameter passing to tbase
  
  // Calculate page start addresses for register areas.
  registerFileStart[REGISTER_FILE_NWD] = page_align((uint64_t)&ns_entry_context, DOWN);
  registerFileStart[REGISTER_FILE_MONITOR] = page_align((uint64_t)&msm_area, DOWN);

  // Calculate page end addresses for register areas.
  registerFileEnd[REGISTER_FILE_NWD] = (uint64_t)(&ns_entry_context[TBASE_CORE_COUNT]);
  registerFileEnd[REGISTER_FILE_MONITOR] = ((uint64_t)&msm_area) +sizeof(msm_area);

  int32_t totalPages = 0;
  for (int area=0; area<REGISTER_FILE_COUNT; area++) {
    int32_t pages = page_align(registerFileEnd[area] - registerFileStart[area], UP) / PAGE_SIZE;
    assert( pages +totalPages <= TBASE_INTERFACE_PAGES );
    tbase_init_register_file(area, totalPages, pages);
    totalPages += pages;
  }

  // ************************************************************************************
  // Create boot structure
  tbaseBootCfg.magic       = TBASE_BOOTCFG_MAGIC;
  tbaseBootCfg.length      = sizeof(bootCfg_t);
  tbaseBootCfg.version     = TBASE_MONITOR_INTERFACE_VERSION;
  
  tbaseBootCfg.dRamBase    = TBASE_NWD_DRAM_BASE;
  tbaseBootCfg.dRamSize    = TBASE_NWD_DRAM_SIZE;
  tbaseBootCfg.secDRamBase = TBASE_SWD_DRAM_BASE;
  tbaseBootCfg.secDRamSize = TBASE_SWD_DRAM_SIZE;
  tbaseBootCfg.secIRamBase = TBASE_SWD_IMEM_BASE;
  tbaseBootCfg.secIRamSize = TBASE_SWD_IMEM_SIZE;
  
  tbaseBootCfg.conf_mair_el3 = read_mair_el3();
  tbaseBootCfg.MSMPteCount = totalPages;
  tbaseBootCfg.MSMBase = (uint64_t)registerFileL2;
  
  tbaseBootCfg.gic_distributor_base = TBASE_GIC_DIST_BASE;
  tbaseBootCfg.gic_cpuinterface_base = TBASE_GIC_CPU_BASE;
  tbaseBootCfg.gic_version = TBASE_GIC_VERSION;
  
  tbaseBootCfg.total_number_spi = TBASE_SPI_COUNT;
  tbaseBootCfg.ssiq_number = TBASE_SSIQ_NRO;
  
  tbaseBootCfg.flags       = TBASE_MONITOR_FLAGS;


        DBG_PRINTF("*** tbase boot cfg ***\n\r");
        DBG_PRINTF("* magic                 : 0x%.X\n\r",tbaseBootCfg.magic);
        DBG_PRINTF("* length                : 0x%.X\n\r",tbaseBootCfg.length);
        DBG_PRINTF("* version               : 0x%.X\n\r",tbaseBootCfg.version);
        DBG_PRINTF("* dRamBase              : 0x%.X\n\r",tbaseBootCfg.dRamBase);
        DBG_PRINTF("* dRamSize              : 0x%.X\n\r",tbaseBootCfg.dRamSize);
        DBG_PRINTF("* secDRamBase           : 0x%.X\n\r",tbaseBootCfg.secDRamBase);
        DBG_PRINTF("* secDRamSize           : 0x%.X\n\r",tbaseBootCfg.secDRamSize);
        DBG_PRINTF("* secIRamBase           : 0x%.X\n\r",tbaseBootCfg.secIRamBase);
        DBG_PRINTF("* secIRamSize           : 0x%.X\n\r",tbaseBootCfg.secIRamSize);
        DBG_PRINTF("* conf_mair_el3         : 0x%.X\n\r",tbaseBootCfg.conf_mair_el3);
        DBG_PRINTF("* MSMPteCount           : 0x%.X\n\r",tbaseBootCfg.MSMPteCount);
        DBG_PRINTF("* MSMBase               : 0x%.X\n\r",tbaseBootCfg.MSMBase);
        DBG_PRINTF("* gic_distributor_base  : 0x%.X\n\r",tbaseBootCfg.gic_distributor_base);
        DBG_PRINTF("* gic_cpuinterface_base : 0x%.X\n\r",tbaseBootCfg.gic_cpuinterface_base);
        DBG_PRINTF("* gic_version           : 0x%.X\n\r",tbaseBootCfg.gic_version);
        DBG_PRINTF("* total_number_spi      : 0x%.X\n\r",tbaseBootCfg.total_number_spi);
        DBG_PRINTF("* ssiq_number           : 0x%.X\n\r",tbaseBootCfg.ssiq_number);
        DBG_PRINTF("* flags                 : 0x%.X\n\r",tbaseBootCfg.flags);

  // ************************************************************************************
  // tbaseBootCfg and l2 entries may be accesses uncached, so must flush those.
  flush_dcache_range((unsigned long)&tbaseBootCfg, sizeof(bootCfg_t));
  flush_dcache_range((unsigned long)&registerFileL2, sizeof(registerFileL2));
  
  // ************************************************************************************
  // Set registers for tbase initialization entry
  cpu_context_t *s_entry_context = &tbase_ctx->cpu_ctx;
  gp_regs_t *s_entry_gpregs = get_gpregs_ctx(s_entry_context);
  write_ctx_reg(s_entry_gpregs, CTX_GPREG_X1, 0);
  write_ctx_reg(s_entry_gpregs, CTX_GPREG_X1, (int64_t)&tbaseBootCfg);

  
  // SPSR for SMC handling (FIQ mode)
  tbaseEntrySpsr = TBASE_ENTRY_SPSR;
  
  DBG_PRINTF("tbase init SPSR 0x%x\n\r", read_ctx_reg(get_el3state_ctx(&tbase_ctx->cpu_ctx), 
             CTX_SPSR_EL3) );
  DBG_PRINTF("tbase SMC SPSR %x\nr\r", tbaseEntrySpsr );

  // ************************************************************************************
  // Start tbase

  tbase_synchronous_sp_entry(tbase_ctx);
  tbase_ctx->state = TBASE_STATE_ON;
  
#if TBASE_PM_ENABLE
  // Register power managemnt hooks with PSCI
  psci_register_spd_pm_hook(&tbase_pm);
#endif

  cm_el1_sysregs_context_restore(NON_SECURE);
  cm_set_next_eret_context(NON_SECURE);

  return 1;
}
示例#23
0
/*******************************************************************************
 * This function is responsible for handling all SMCs in the Trusted OS/App
 * range from the non-secure state as defined in the SMC Calling Convention
 * Document. It is also responsible for communicating with the Secure payload
 * to delegate work and return results back to the non-secure state. Lastly it
 * will also return any information that the secure payload needs to do the
 * work assigned to it.
 ******************************************************************************/
uint64_t tlkd_smc_handler(uint32_t smc_fid,
			 uint64_t x1,
			 uint64_t x2,
			 uint64_t x3,
			 uint64_t x4,
			 void *cookie,
			 void *handle,
			 uint64_t flags)
{
	cpu_context_t *ns_cpu_context;
	gp_regs_t *gp_regs;
	uint32_t ns;
	uint64_t par;

	/* Passing a NULL context is a critical programming error */
	assert(handle);

	/* These SMCs are only supported by CPU0 */
	if ((read_mpidr() & MPIDR_CPU_MASK) != 0)
		SMC_RET1(handle, SMC_UNK);

	/* Determine which security state this SMC originated from */
	ns = is_caller_non_secure(flags);

	switch (smc_fid) {

	/*
	 * This function ID is used by SP to indicate that it was
	 * preempted by a non-secure world IRQ.
	 */
	case TLK_PREEMPTED:

		if (ns)
			SMC_RET1(handle, SMC_UNK);

		assert(handle == cm_get_context(SECURE));
		cm_el1_sysregs_context_save(SECURE);

		/* Get a reference to the non-secure context */
		ns_cpu_context = cm_get_context(NON_SECURE);
		assert(ns_cpu_context);

		/*
		 * Restore non-secure state. There is no need to save the
		 * secure system register context since the SP was supposed
		 * to preserve it during S-EL1 interrupt handling.
		 */
		cm_el1_sysregs_context_restore(NON_SECURE);
		cm_set_next_eret_context(NON_SECURE);

		SMC_RET1(ns_cpu_context, x1);

	/*
	 * Request from non secure world to resume the preempted
	 * Standard SMC call.
	 */
	case TLK_RESUME_FID:

		/* RESUME should be invoked only by normal world */
		if (!ns)
			SMC_RET1(handle, SMC_UNK);

		/*
		 * This is a resume request from the non-secure client.
		 * save the non-secure state and send the request to
		 * the secure payload.
		 */
		assert(handle == cm_get_context(NON_SECURE));

		/* Check if we are already preempted before resume */
		if (!get_std_smc_active_flag(tlk_ctx.state))
			SMC_RET1(handle, SMC_UNK);

		cm_el1_sysregs_context_save(NON_SECURE);

		/*
		 * We are done stashing the non-secure context. Ask the
		 * secure payload to do the work now.
		 */

		/* We just need to return to the preempted point in
		 * SP and the execution will resume as normal.
		 */
		cm_el1_sysregs_context_restore(SECURE);
		cm_set_next_eret_context(SECURE);
		SMC_RET0(handle);

	/*
	 * This is a request from the non-secure context to:
	 *
	 * a. register shared memory with the SP for storing it's
	 *    activity logs.
	 * b. register shared memory with the SP for passing args
	 *    required for maintaining sessions with the Trusted
	 *    Applications.
	 * c. open/close sessions
	 * d. issue commands to the Trusted Apps
	 */
	case TLK_REGISTER_LOGBUF:
	case TLK_REGISTER_REQBUF:
	case TLK_OPEN_TA_SESSION:
	case TLK_CLOSE_TA_SESSION:
	case TLK_TA_LAUNCH_OP:
	case TLK_TA_SEND_EVENT:

		if (!ns)
			SMC_RET1(handle, SMC_UNK);

		/*
		 * This is a fresh request from the non-secure client.
		 * The parameters are in x1 and x2. Figure out which
		 * registers need to be preserved, save the non-secure
		 * state and send the request to the secure payload.
		 */
		assert(handle == cm_get_context(NON_SECURE));

		/* Check if we are already preempted */
		if (get_std_smc_active_flag(tlk_ctx.state))
			SMC_RET1(handle, SMC_UNK);

		cm_el1_sysregs_context_save(NON_SECURE);

		/*
		 * Verify if there is a valid context to use.
		 */
		assert(&tlk_ctx.cpu_ctx == cm_get_context(SECURE));

		/*
		 * Mark the SP state as active.
		 */
		set_std_smc_active_flag(tlk_ctx.state);

		/*
		 * We are done stashing the non-secure context. Ask the
		 * secure payload to do the work now.
		 */
		cm_el1_sysregs_context_restore(SECURE);
		cm_set_next_eret_context(SECURE);

		/*
		 * TLK is a 32-bit Trusted OS and so expects the SMC
		 * arguments via r0-r7. TLK expects the monitor frame
		 * registers to be 64-bits long. Hence, we pass x0 in
		 * r0-r1, x1 in r2-r3, x3 in r4-r5 and x4 in r6-r7.
		 *
		 * As smc_fid is a uint32 value, r1 contains 0.
		 */
		gp_regs = get_gpregs_ctx(&tlk_ctx.cpu_ctx);
		write_ctx_reg(gp_regs, CTX_GPREG_X4, (uint32_t)x2);
		write_ctx_reg(gp_regs, CTX_GPREG_X5, (uint32_t)(x2 >> 32));
		write_ctx_reg(gp_regs, CTX_GPREG_X6, (uint32_t)x3);
		write_ctx_reg(gp_regs, CTX_GPREG_X7, (uint32_t)(x3 >> 32));
		SMC_RET4(&tlk_ctx.cpu_ctx, smc_fid, 0, (uint32_t)x1,
			(uint32_t)(x1 >> 32));

	/*
	 * Translate NS/EL1-S virtual addresses.
	 *
	 * x1 = virtual address
	 * x3 = type (NS/S)
	 *
	 * Returns PA:lo in r0, PA:hi in r1.
	 */
	case TLK_VA_TRANSLATE:

		/* Should be invoked only by secure world */
		if (ns)
			SMC_RET1(handle, SMC_UNK);

		/* NS virtual addresses are 64-bit long */
		if (x3 & TLK_TRANSLATE_NS_VADDR)
			x1 = (uint32_t)x1 | (x2 << 32);

		if (!x1)
			SMC_RET1(handle, SMC_UNK);

		/*
		 * TODO: Sanity check x1. This would require platform
		 * support.
		 */

		/* virtual address and type: ns/s */
		par = tlkd_va_translate(x1, x3);

		/* return physical address in r0-r1 */
		SMC_RET4(handle, (uint32_t)par, (uint32_t)(par >> 32), 0, 0);

	/*
	 * This is a request from the SP to mark completion of
	 * a standard function ID.
	 */
	case TLK_REQUEST_DONE:
		if (ns)
			SMC_RET1(handle, SMC_UNK);

		/*
		 * Mark the SP state as inactive.
		 */
		clr_std_smc_active_flag(tlk_ctx.state);

		/* Get a reference to the non-secure context */
		ns_cpu_context = cm_get_context(NON_SECURE);
		assert(ns_cpu_context);

		/*
		 * This is a request completion SMC and we must switch to
		 * the non-secure world to pass the result.
		 */
		cm_el1_sysregs_context_save(SECURE);

		/*
		 * We are done stashing the secure context. Switch to the
		 * non-secure context and return the result.
		 */
		cm_el1_sysregs_context_restore(NON_SECURE);
		cm_set_next_eret_context(NON_SECURE);
		SMC_RET1(ns_cpu_context, x1);

	/*
	 * This function ID is used only by the SP to indicate it has
	 * finished initialising itself after a cold boot
	 */
	case TLK_ENTRY_DONE:
		if (ns)
			SMC_RET1(handle, SMC_UNK);

		/*
		 * SP has been successfully initialized. Register power
		 * managemnt hooks with PSCI
		 */
		psci_register_spd_pm_hook(&tlkd_pm_ops);

		/*
		 * TLK reports completion. The SPD must have initiated
		 * the original request through a synchronous entry
		 * into the SP. Jump back to the original C runtime
		 * context.
		 */
		tlkd_synchronous_sp_exit(&tlk_ctx, x1);

	/*
	 * Return the number of service function IDs implemented to
	 * provide service to non-secure
	 */
	case TOS_CALL_COUNT:
		SMC_RET1(handle, TLK_NUM_FID);

	/*
	 * Return TLK's UID to the caller
	 */
	case TOS_UID:
		SMC_UUID_RET(handle, tlk_uuid);

	/*
	 * Return the version of current implementation
	 */
	case TOS_CALL_VERSION:
		SMC_RET2(handle, TLK_VERSION_MAJOR, TLK_VERSION_MINOR);

	default:
		break;
	}

	SMC_RET1(handle, SMC_UNK);
}
示例#24
0
/*******************************************************************************
 * This function is responsible for handling all SMCs in the Trusted OS/App
 * range from the non-secure state as defined in the SMC Calling Convention
 * Document. It is also responsible for communicating with the XILSP to
 * delegate work and return results back to the non-secure state. Lastly it
 * will also return any information that the XILSP needs to do the work
 * assigned to it.
 ******************************************************************************/
uint64_t xilspd_smc_handler(uint32_t smc_fid,
			 uint64_t x1,
			 uint64_t x2,
			 uint64_t x3,
			 uint64_t x4,
			 void *cookie,
			 void *handle,
			 uint64_t flags)
{
	cpu_context_t *ns_cpu_context;
	uint32_t linear_id = plat_my_core_pos(), ns;
	xilsp_context_t *xilsp_ctx = &xilspd_sp_context[linear_id];

	/* Determine which security state this SMC originated from */
	ns = is_caller_non_secure(flags);

	switch (smc_fid) {

	/*
	 * This function ID is used only by the SP to indicate it has
	 * finished initialising itself after a cold boot
	 */
	case XILSP_ENTRY_DONE:
		if (ns)
			SMC_RET1(handle, SMC_UNK);
		/*
		 * Stash the SP entry points information. This is done
		 * only once on the primary cpu
		 */
		assert(xilsp_vectors == NULL);
		xilsp_vectors = (xilsp_vectors_t *) x1;

		if (xilsp_vectors)
			set_xilsp_pstate(xilsp_ctx->state, XILSP_PSTATE_ON);
		/*
		 * SP reports completion. The SPD must have initiated
		 * the original request through a synchronous entry
		 * into the SP. Jump back to the original C runtime
		 * context.
		 */
		xilspd_synchronous_sp_exit(xilsp_ctx, x1);
		break;
	case XILSP_ARITH:
		if (ns) {
			/*
			 * This is a fresh request from the non-secure client.
			 * Figure out which registers need to be preserved, save
			 * the non-secure state and send the request to the
			 * secure payload.
			 */
			assert(handle == cm_get_context(NON_SECURE));

			cm_el1_sysregs_context_save(NON_SECURE);

			/*
			 * We are done stashing the non-secure context. Ask the
			 * secure payload to do the work now.
			 */

			/*
			 * Verify if there is a valid context to use, copy the
			 * operation type and parameters to the secure context
			 * and jump to the fast smc entry point in the secure
			 * payload. Entry into S-EL1 will take place upon exit
			 * from this function.
			 */
			assert(&xilsp_ctx->cpu_ctx == cm_get_context(SECURE));

			/* Set appropriate entry for SMC.
			 * We expect the XILSP to manage the PSTATE.I and
			 * PSTATE.F flags as appropriate.
			 */
			cm_set_elr_el3(SECURE, (uint64_t)
					&xilsp_vectors->fast_smc_entry);
			cm_el1_sysregs_context_restore(SECURE);
			cm_set_next_eret_context(SECURE);
			write_ctx_reg(get_gpregs_ctx(&xilsp_ctx->cpu_ctx),
					CTX_GPREG_X4,
					read_ctx_reg(get_gpregs_ctx(handle),
					CTX_GPREG_X4));
			write_ctx_reg(get_gpregs_ctx(&xilsp_ctx->cpu_ctx),
					CTX_GPREG_X5,
					read_ctx_reg(get_gpregs_ctx(handle),
					CTX_GPREG_X5));
			write_ctx_reg(get_gpregs_ctx(&xilsp_ctx->cpu_ctx),
					CTX_GPREG_X6,
					read_ctx_reg(get_gpregs_ctx(handle),
					CTX_GPREG_X6));
			/* Propagate hypervisor client ID */
			write_ctx_reg(get_gpregs_ctx(&xilsp_ctx->cpu_ctx),
					CTX_GPREG_X7,
					read_ctx_reg(get_gpregs_ctx(handle),
					CTX_GPREG_X7));
			SMC_RET4(&xilsp_ctx->cpu_ctx, smc_fid, x1, x2, x3);
		} else {
			/*
			 * This is the result from the secure client of an
			 * earlier request. The results are in x1-x4. Copy it
			 * into the non-secure context, save the secure state
			 * and return to the non-secure state.
			 */
			assert(handle == cm_get_context(SECURE));
			cm_el1_sysregs_context_save(SECURE);

			/* Get a reference to the non-secure context */
			ns_cpu_context = cm_get_context(NON_SECURE);
			assert(ns_cpu_context);

			/* Restore non-secure state */
			cm_el1_sysregs_context_restore(NON_SECURE);
			cm_set_next_eret_context(NON_SECURE);
			SMC_RET4(ns_cpu_context, x1, x2, x3, x4);
		}
		break;

	default:
		break;
	}

	SMC_RET1(handle, SMC_UNK);
}