address generate_catch_exception() { StubCodeMark mark(this, "StubRoutines", "catch_exception"); const Address esp_after_call(ebp, -4 * wordSize); // same as in generate_call_stub()! const Address thread (ebp, 9 * wordSize); // same as in generate_call_stub()! address start = __ pc(); // get thread directly __ movl(ecx, thread); #ifdef ASSERT // verify that threads correspond { Label L; __ get_thread(ebx); __ cmpl(ebx, ecx); __ jcc(Assembler::equal, L); __ stop("StubRoutines::catch_exception: threads must correspond"); __ bind(L); } #endif // set pending exception __ verify_oop(eax); __ movl(Address(ecx, Thread::pending_exception_offset()), eax ); __ movl(Address(ecx, Thread::exception_file_offset ()), (int)__FILE__); __ movl(Address(ecx, Thread::exception_line_offset ()), __LINE__); // complete return to VM assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before"); __ jmp(StubRoutines::_call_stub_return_address, relocInfo::none); return start; }
void InterpreterRuntime::SignatureHandlerGenerator::box(int from_offset, int to_offset) { __ leal(temp(), Address(from(), from_offset * wordSize)); __ cmpl(Address(from(), from_offset * wordSize), 0); // do not use temp() to avoid AGI Label L; __ jcc(Assembler::notZero, L); __ movl(temp(), 0); __ bind(L); __ movl(Address(to(), to_offset * wordSize), temp()); }
void CompilerStubs::generate_compiler_new_object() { comment_section("Compiler new object (any size)"); comment("Register edx holds the instance size, register ebx holds the prototypical near of the instance class"); Label slow_case; entry("compiler_new_object"); comment("Get _inline_allocation_top"); movl(eax, Address(Constant("_inline_allocation_top"))); comment("Compute new top"); leal(ecx, Address(eax, edx, times_1)); if (GenerateDebugAssembly) { comment("Check ExcessiveGC"); testl(Address(Constant("ExcessiveGC")), Constant(0)); jcc(not_zero, Constant(slow_case)); } comment("Compare against _inline_allocation_end"); cmpl(ecx, Address(Constant("_inline_allocation_end"))); jcc(above, Constant(slow_case)); comment("Allocation succeeded, set _inline_allocation_top"); movl(Address(Constant("_inline_allocation_top")), ecx); comment("Set prototypical near in object; no need for write barrier"); movl(Address(eax), ebx); comment("Compute remaining size"); decrement(edx, oopSize); comment("One-word object?"); Label init_done; jcc(zero, Constant(init_done)); comment("Zero object fields"); xorl(ecx, ecx); Label init_loop; bind(init_loop); movl(Address(eax, edx, times_1), ecx); decrement(edx, oopSize); jcc(not_zero, Constant(init_loop)); bind(init_done); comment("The newly allocated object is in register eax"); ret(); comment("Slow case - call the VM runtime system"); bind(slow_case); leal(eax, Address(Constant("newobject"))); goto_shared_call_vm(T_OBJECT); entry_end(); // compiler_new_object }
address generate_forward_exception() { StubCodeMark mark(this, "StubRoutines", "forward exception"); address start = __ pc(); // Upon entry, the sp points to the return address returning into Java // (interpreted or compiled) code; i.e., the return address becomes the // throwing pc. // // Arguments pushed before the runtime call are still on the stack but // the exception handler will reset the stack pointer -> ignore them. // A potential result in registers can be ignored as well. #ifdef ASSERT // make sure this code is only executed if there is a pending exception { Label L; __ get_thread(ecx); __ cmpl(Address(ecx, Thread::pending_exception_offset()), (int)NULL); __ jcc(Assembler::notEqual, L); __ stop("StubRoutines::forward exception: no pending exception (1)"); __ bind(L); } #endif // compute exception handler into ebx __ movl(eax, Address(esp)); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), eax); __ movl(ebx, eax); // setup eax & edx, remove return address & clear pending exception __ get_thread(ecx); __ popl(edx); __ movl(eax, Address(ecx, Thread::pending_exception_offset())); __ movl(Address(ecx, Thread::pending_exception_offset()), (int)NULL); #ifdef ASSERT // make sure exception is set { Label L; __ testl(eax, eax); __ jcc(Assembler::notEqual, L); __ stop("StubRoutines::forward exception: no pending exception (2)"); __ bind(L); } #endif // continue at exception handler (return address removed) // eax: exception // ebx: exception handler // edx: throwing pc __ verify_oop(eax); __ jmp(ebx); return start; }
void InterpreterMacroAssembler::narrow(Register result) { // Get method->_constMethod->_result_type movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); movptr(rcx, Address(rcx, Method::const_offset())); load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset())); Label done, notBool, notByte, notChar; // common case first cmpl(rcx, T_INT); jcc(Assembler::equal, done); // mask integer result to narrower return type. cmpl(rcx, T_BOOLEAN); jcc(Assembler::notEqual, notBool); andl(result, 0x1); jmp(done); bind(notBool); cmpl(rcx, T_BYTE); jcc(Assembler::notEqual, notByte); LP64_ONLY(movsbl(result, result);)
void CompilerStubs::generate_compiler_idiv_irem() { comment_section("Compiler integer divide and remainder"); comment("Register eax holds the dividend, register ebx holds the divisor"); entry("compiler_idiv_irem"); const int min_int = 0x80000000; Label normal_case, special_case; Label throw_exception; testl(ebx,ebx); jcc(equal, Constant(throw_exception)); // Check for special case cmpl(eax, Constant(min_int)); jcc(not_equal, Constant(normal_case)); xorl(edx, edx); // Prepare edx for possible special case (where remainder = 0) cmpl(ebx, Constant(-1)); jcc(equal, Constant(special_case)); // Handle normal case bind(normal_case); cdql(); idivl(ebx); // Normal and special case exit bind(special_case); ret(); bind(throw_exception); comment("Throw a DivisionByZeroException"); leal(eax, Address(Constant("division_by_zero_exception"))); goto_shared_call_vm(T_VOID); entry_end(); // compiler_idiv_irem }
void InterpreterStubs::generate_interpreter_rethrow_exception() { comment_section("Interpreter rethrow exception"); comment("Register eax holds the exception; Interpreter state is not in registers"); entry("interpreter_rethrow_exception"); comment("Restore bytecode and locals pointers"); movl(esi, Address(ebp, Constant(JavaFrame::bcp_store_offset()))); movl(edi, Address(ebp, Constant(JavaFrame::locals_pointer_offset()))); comment("Mark the bytecode pointer as being inside an exception"); addl(esi, Constant(JavaFrame::exception_frame_flag)); comment("Clear the expression stack"); movl(esp, Address(ebp, Constant(JavaFrame::stack_bottom_pointer_offset()))); comment("Push the exception on the expression stack"); push_obj(eax); comment("Get exception handler bci for exception"); interpreter_call_vm(Constant("exception_handler_bci_for_exception"), T_INT); comment("Check if we got a bci - otherwise unwind the activation"); cmpl(eax, Constant(-1)); jcc(equal, Constant("interpreter_unwind_activation")); #if ENABLE_JAVA_DEBUGGER Label skip; cmpb(Address(Constant("_debugger_active")), Constant(0)); jcc(equal, Constant(skip)); movl(edx, eax); interpreter_call_vm(Constant("handle_caught_exception"), T_VOID); comment("Re-get exception handler bci for exception"); interpreter_call_vm(Constant("exception_handler_bci_for_exception"), T_INT); bind(skip); #endif comment("Convert the bytecode index into a bytecode pointer"); movl(ecx, Address(ebp, Constant(JavaFrame::method_offset()))); leal(esi, Address(ecx, eax, times_1, Constant(Method::base_offset()))); // Dispatch to the exception handler. dispatch_next(); entry_end(); // interpreter_rethrow_exception }
void MethodHandles::verify_ref_kind(MacroAssembler* _masm, int ref_kind, Register member_reg, Register temp) { Label L; BLOCK_COMMENT("verify_ref_kind {"); __ movl(temp, Address(member_reg, NONZERO(java_lang_invoke_MemberName::flags_offset_in_bytes()))); __ shrl(temp, java_lang_invoke_MemberName::MN_REFERENCE_KIND_SHIFT); __ andl(temp, java_lang_invoke_MemberName::MN_REFERENCE_KIND_MASK); __ cmpl(temp, ref_kind); __ jcc(Assembler::equal, L); { char* buf = NEW_C_HEAP_ARRAY(char, 100, mtInternal); jio_snprintf(buf, 100, "verify_ref_kind expected %x", ref_kind); if (ref_kind == JVM_REF_invokeVirtual || ref_kind == JVM_REF_invokeSpecial) // could do this for all ref_kinds, but would explode assembly code size trace_method_handle(_masm, buf); __ STOP(buf); } BLOCK_COMMENT("} verify_ref_kind"); __ bind(L); }
void MacroAssembler::fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register eax, Register ecx, Register edx, Register tmp1, Register tmp2) { Label L_2TAG_PACKET_0_0_2, L_2TAG_PACKET_1_0_2, L_2TAG_PACKET_2_0_2, L_2TAG_PACKET_3_0_2; Label L_2TAG_PACKET_4_0_2, L_2TAG_PACKET_5_0_2, L_2TAG_PACKET_6_0_2, L_2TAG_PACKET_7_0_2; Label L_2TAG_PACKET_8_0_2; Label L_2TAG_PACKET_12_0_2, L_2TAG_PACKET_13_0_2, B1_3, B1_5, start; assert_different_registers(tmp1, tmp2, eax, ecx, edx); jmp(start); address L_tbl = (address)_L_tbl; address log2 = (address)_log2; address coeff = (address)_coeff; bind(start); subq(rsp, 24); movsd(Address(rsp, 0), xmm0); mov64(rax, 0x3ff0000000000000); movdq(xmm2, rax); mov64(rdx, 0x77f0000000000000); movdq(xmm3, rdx); movl(ecx, 32768); movdl(xmm4, rcx); mov64(tmp1, 0xffffe00000000000); movdq(xmm5, tmp1); movdqu(xmm1, xmm0); pextrw(eax, xmm0, 3); por(xmm0, xmm2); movl(ecx, 16352); psrlq(xmm0, 27); lea(tmp2, ExternalAddress(L_tbl)); psrld(xmm0, 2); rcpps(xmm0, xmm0); psllq(xmm1, 12); pshufd(xmm6, xmm5, 228); psrlq(xmm1, 12); subl(eax, 16); cmpl(eax, 32736); jcc(Assembler::aboveEqual, L_2TAG_PACKET_0_0_2); bind(L_2TAG_PACKET_1_0_2); paddd(xmm0, xmm4); por(xmm1, xmm3); movdl(edx, xmm0); psllq(xmm0, 29); pand(xmm5, xmm1); pand(xmm0, xmm6); subsd(xmm1, xmm5); mulpd(xmm5, xmm0); andl(eax, 32752); subl(eax, ecx); cvtsi2sdl(xmm7, eax); mulsd(xmm1, xmm0); movq(xmm6, ExternalAddress(log2)); // 0xfefa3800UL, 0x3fa62e42UL movdqu(xmm3, ExternalAddress(coeff)); // 0x92492492UL, 0x3fc24924UL, 0x00000000UL, 0xbfd00000UL subsd(xmm5, xmm2); andl(edx, 16711680); shrl(edx, 12); movdqu(xmm0, Address(tmp2, edx)); movdqu(xmm4, ExternalAddress(16 + coeff)); // 0x3d6fb175UL, 0xbfc5555eUL, 0x55555555UL, 0x3fd55555UL addsd(xmm1, xmm5); movdqu(xmm2, ExternalAddress(32 + coeff)); // 0x9999999aUL, 0x3fc99999UL, 0x00000000UL, 0xbfe00000UL mulsd(xmm6, xmm7); movddup(xmm5, xmm1); mulsd(xmm7, ExternalAddress(8 + log2)); // 0x93c76730UL, 0x3ceef357UL mulsd(xmm3, xmm1); addsd(xmm0, xmm6); mulpd(xmm4, xmm5); mulpd(xmm5, xmm5); movddup(xmm6, xmm0); addsd(xmm0, xmm1); addpd(xmm4, xmm2); mulpd(xmm3, xmm5); subsd(xmm6, xmm0); mulsd(xmm4, xmm1); pshufd(xmm2, xmm0, 238); addsd(xmm1, xmm6); mulsd(xmm5, xmm5); addsd(xmm7, xmm2); addpd(xmm4, xmm3); addsd(xmm1, xmm7); mulpd(xmm4, xmm5); addsd(xmm1, xmm4); pshufd(xmm5, xmm4, 238); addsd(xmm1, xmm5); addsd(xmm0, xmm1); jmp(B1_5); bind(L_2TAG_PACKET_0_0_2); movq(xmm0, Address(rsp, 0)); movq(xmm1, Address(rsp, 0)); addl(eax, 16); cmpl(eax, 32768); jcc(Assembler::aboveEqual, L_2TAG_PACKET_2_0_2); cmpl(eax, 16); jcc(Assembler::below, L_2TAG_PACKET_3_0_2); bind(L_2TAG_PACKET_4_0_2); addsd(xmm0, xmm0); jmp(B1_5); bind(L_2TAG_PACKET_5_0_2); jcc(Assembler::above, L_2TAG_PACKET_4_0_2); cmpl(edx, 0); jcc(Assembler::above, L_2TAG_PACKET_4_0_2); jmp(L_2TAG_PACKET_6_0_2); bind(L_2TAG_PACKET_3_0_2); xorpd(xmm1, xmm1); addsd(xmm1, xmm0); movdl(edx, xmm1); psrlq(xmm1, 32); movdl(ecx, xmm1); orl(edx, ecx); cmpl(edx, 0); jcc(Assembler::equal, L_2TAG_PACKET_7_0_2); xorpd(xmm1, xmm1); movl(eax, 18416); pinsrw(xmm1, eax, 3); mulsd(xmm0, xmm1); movdqu(xmm1, xmm0); pextrw(eax, xmm0, 3); por(xmm0, xmm2); psrlq(xmm0, 27); movl(ecx, 18416); psrld(xmm0, 2); rcpps(xmm0, xmm0); psllq(xmm1, 12); pshufd(xmm6, xmm5, 228); psrlq(xmm1, 12); jmp(L_2TAG_PACKET_1_0_2); bind(L_2TAG_PACKET_2_0_2); movdl(edx, xmm1); psrlq(xmm1, 32); movdl(ecx, xmm1); addl(ecx, ecx); cmpl(ecx, -2097152); jcc(Assembler::aboveEqual, L_2TAG_PACKET_5_0_2); orl(edx, ecx); cmpl(edx, 0); jcc(Assembler::equal, L_2TAG_PACKET_7_0_2); bind(L_2TAG_PACKET_6_0_2); xorpd(xmm1, xmm1); xorpd(xmm0, xmm0); movl(eax, 32752); pinsrw(xmm1, eax, 3); mulsd(xmm0, xmm1); movl(Address(rsp, 16), 3); jmp(L_2TAG_PACKET_8_0_2); bind(L_2TAG_PACKET_7_0_2); xorpd(xmm1, xmm1); xorpd(xmm0, xmm0); movl(eax, 49136); pinsrw(xmm0, eax, 3); divsd(xmm0, xmm1); movl(Address(rsp, 16), 2); bind(L_2TAG_PACKET_8_0_2); movq(Address(rsp, 8), xmm0); bind(B1_3); movq(xmm0, Address(rsp, 8)); bind(B1_5); addq(rsp, 24); }
void MacroAssembler::fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register eax, Register ecx, Register edx, Register tmp) { Label L_2TAG_PACKET_0_0_2, L_2TAG_PACKET_1_0_2, L_2TAG_PACKET_2_0_2, L_2TAG_PACKET_3_0_2; Label L_2TAG_PACKET_4_0_2, L_2TAG_PACKET_5_0_2, L_2TAG_PACKET_6_0_2, L_2TAG_PACKET_7_0_2; Label L_2TAG_PACKET_8_0_2, L_2TAG_PACKET_9_0_2, L_2TAG_PACKET_10_0_2, L_2TAG_PACKET_11_0_2; Label L_2TAG_PACKET_12_0_2, L_2TAG_PACKET_13_0_2, B1_3, B1_5, start; assert_different_registers(tmp, eax, ecx, edx); jmp(start); address static_const_table = (address)_static_const_table; bind(start); subl(rsp, 120); movl(Address(rsp, 64), tmp); lea(tmp, ExternalAddress(static_const_table)); movdqu(xmm0, Address(rsp, 128)); unpcklpd(xmm0, xmm0); movdqu(xmm1, Address(tmp, 64)); // 0x652b82feUL, 0x40571547UL, 0x652b82feUL, 0x40571547UL movdqu(xmm6, Address(tmp, 48)); // 0x00000000UL, 0x43380000UL, 0x00000000UL, 0x43380000UL movdqu(xmm2, Address(tmp, 80)); // 0xfefa0000UL, 0x3f862e42UL, 0xfefa0000UL, 0x3f862e42UL movdqu(xmm3, Address(tmp, 96)); // 0xbc9e3b3aUL, 0x3d1cf79aUL, 0xbc9e3b3aUL, 0x3d1cf79aUL pextrw(eax, xmm0, 3); andl(eax, 32767); movl(edx, 16527); subl(edx, eax); subl(eax, 15504); orl(edx, eax); cmpl(edx, INT_MIN); jcc(Assembler::aboveEqual, L_2TAG_PACKET_0_0_2); mulpd(xmm1, xmm0); addpd(xmm1, xmm6); movapd(xmm7, xmm1); subpd(xmm1, xmm6); mulpd(xmm2, xmm1); movdqu(xmm4, Address(tmp, 128)); // 0xe3289860UL, 0x3f56c15cUL, 0x555b9e25UL, 0x3fa55555UL mulpd(xmm3, xmm1); movdqu(xmm5, Address(tmp, 144)); // 0xc090cf0fUL, 0x3f811115UL, 0x55548ba1UL, 0x3fc55555UL subpd(xmm0, xmm2); movdl(eax, xmm7); movl(ecx, eax); andl(ecx, 63); shll(ecx, 4); sarl(eax, 6); movl(edx, eax); movdqu(xmm6, Address(tmp, 16)); // 0xffffffc0UL, 0x00000000UL, 0xffffffc0UL, 0x00000000UL pand(xmm7, xmm6); movdqu(xmm6, Address(tmp, 32)); // 0x0000ffc0UL, 0x00000000UL, 0x0000ffc0UL, 0x00000000UL paddq(xmm7, xmm6); psllq(xmm7, 46); subpd(xmm0, xmm3); movdqu(xmm2, Address(tmp, ecx, Address::times_1, 160)); mulpd(xmm4, xmm0); movapd(xmm6, xmm0); movapd(xmm1, xmm0); mulpd(xmm6, xmm6); mulpd(xmm0, xmm6); addpd(xmm5, xmm4); mulsd(xmm0, xmm6); mulpd(xmm6, Address(tmp, 112)); // 0xfffffffeUL, 0x3fdfffffUL, 0xfffffffeUL, 0x3fdfffffUL addsd(xmm1, xmm2); unpckhpd(xmm2, xmm2); mulpd(xmm0, xmm5); addsd(xmm1, xmm0); por(xmm2, xmm7); unpckhpd(xmm0, xmm0); addsd(xmm0, xmm1); addsd(xmm0, xmm6); addl(edx, 894); cmpl(edx, 1916); jcc (Assembler::above, L_2TAG_PACKET_1_0_2); mulsd(xmm0, xmm2); addsd(xmm0, xmm2); jmp(L_2TAG_PACKET_2_0_2); bind(L_2TAG_PACKET_1_0_2); fnstcw(Address(rsp, 24)); movzwl(edx, Address(rsp, 24)); orl(edx, 768); movw(Address(rsp, 28), edx); fldcw(Address(rsp, 28)); movl(edx, eax); sarl(eax, 1); subl(edx, eax); movdqu(xmm6, Address(tmp, 0)); // 0x00000000UL, 0xfff00000UL, 0x00000000UL, 0xfff00000UL pandn(xmm6, xmm2); addl(eax, 1023); movdl(xmm3, eax); psllq(xmm3, 52); por(xmm6, xmm3); addl(edx, 1023); movdl(xmm4, edx); psllq(xmm4, 52); movsd(Address(rsp, 8), xmm0); fld_d(Address(rsp, 8)); movsd(Address(rsp, 16), xmm6); fld_d(Address(rsp, 16)); fmula(1); faddp(1); movsd(Address(rsp, 8), xmm4); fld_d(Address(rsp, 8)); fmulp(1); fstp_d(Address(rsp, 8)); movsd(xmm0,Address(rsp, 8)); fldcw(Address(rsp, 24)); pextrw(ecx, xmm0, 3); andl(ecx, 32752); cmpl(ecx, 32752); jcc(Assembler::greaterEqual, L_2TAG_PACKET_3_0_2); cmpl(ecx, 0); jcc(Assembler::equal, L_2TAG_PACKET_4_0_2); jmp(L_2TAG_PACKET_2_0_2); cmpl(ecx, INT_MIN); jcc(Assembler::less, L_2TAG_PACKET_3_0_2); cmpl(ecx, -1064950997); jcc(Assembler::less, L_2TAG_PACKET_2_0_2); jcc(Assembler::greater, L_2TAG_PACKET_4_0_2); movl(edx, Address(rsp, 128)); cmpl(edx ,-17155601); jcc(Assembler::less, L_2TAG_PACKET_2_0_2); jmp(L_2TAG_PACKET_4_0_2); bind(L_2TAG_PACKET_3_0_2); movl(edx, 14); jmp(L_2TAG_PACKET_5_0_2); bind(L_2TAG_PACKET_4_0_2); movl(edx, 15); bind(L_2TAG_PACKET_5_0_2); movsd(Address(rsp, 0), xmm0); movsd(xmm0, Address(rsp, 128)); fld_d(Address(rsp, 0)); jmp(L_2TAG_PACKET_6_0_2); bind(L_2TAG_PACKET_7_0_2); cmpl(eax, 2146435072); jcc(Assembler::greaterEqual, L_2TAG_PACKET_8_0_2); movl(eax, Address(rsp, 132)); cmpl(eax, INT_MIN); jcc(Assembler::greaterEqual, L_2TAG_PACKET_9_0_2); movsd(xmm0, Address(tmp, 1208)); // 0xffffffffUL, 0x7fefffffUL mulsd(xmm0, xmm0); movl(edx, 14); jmp(L_2TAG_PACKET_5_0_2); bind(L_2TAG_PACKET_9_0_2); movsd(xmm0, Address(tmp, 1216)); mulsd(xmm0, xmm0); movl(edx, 15); jmp(L_2TAG_PACKET_5_0_2); bind(L_2TAG_PACKET_8_0_2); movl(edx, Address(rsp, 128)); cmpl(eax, 2146435072); jcc(Assembler::above, L_2TAG_PACKET_10_0_2); cmpl(edx, 0); jcc(Assembler::notEqual, L_2TAG_PACKET_10_0_2); movl(eax, Address(rsp, 132)); cmpl(eax, 2146435072); jcc(Assembler::notEqual, L_2TAG_PACKET_11_0_2); movsd(xmm0, Address(tmp, 1192)); // 0x00000000UL, 0x7ff00000UL jmp(L_2TAG_PACKET_2_0_2); bind(L_2TAG_PACKET_11_0_2); movsd(xmm0, Address(tmp, 1200)); // 0x00000000UL, 0x00000000UL jmp(L_2TAG_PACKET_2_0_2); bind(L_2TAG_PACKET_10_0_2); movsd(xmm0, Address(rsp, 128)); addsd(xmm0, xmm0); jmp(L_2TAG_PACKET_2_0_2); bind(L_2TAG_PACKET_0_0_2); movl(eax, Address(rsp, 132)); andl(eax, 2147483647); cmpl(eax, 1083179008); jcc(Assembler::aboveEqual, L_2TAG_PACKET_7_0_2); movsd(xmm0, Address(rsp, 128)); addsd(xmm0, Address(tmp, 1184)); // 0x00000000UL, 0x3ff00000UL jmp(L_2TAG_PACKET_2_0_2); bind(L_2TAG_PACKET_2_0_2); movsd(Address(rsp, 48), xmm0); fld_d(Address(rsp, 48)); bind(L_2TAG_PACKET_6_0_2); movl(tmp, Address(rsp, 64)); }
void MacroAssembler::fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register eax, Register ecx, Register edx, Register tmp) { Label L_2TAG_PACKET_0_0_2, L_2TAG_PACKET_1_0_2, L_2TAG_PACKET_2_0_2, L_2TAG_PACKET_3_0_2; Label L_2TAG_PACKET_4_0_2, L_2TAG_PACKET_5_0_2, L_2TAG_PACKET_6_0_2, L_2TAG_PACKET_7_0_2; Label L_2TAG_PACKET_8_0_2, L_2TAG_PACKET_9_0_2, L_2TAG_PACKET_10_0_2, L_2TAG_PACKET_11_0_2; Label L_2TAG_PACKET_12_0_2, B1_3, B1_5, start; assert_different_registers(tmp, eax, ecx, edx); jmp(start); address cv = (address)_cv; address Shifter = (address)_shifter; address mmask = (address)_mmask; address bias = (address)_bias; address Tbl_addr = (address)_Tbl_addr; address ALLONES = (address)_ALLONES; address ebias = (address)_ebias; address XMAX = (address)_XMAX; address XMIN = (address)_XMIN; address INF = (address)_INF; address ZERO = (address)_ZERO; address ONE_val = (address)_ONE_val; bind(start); subq(rsp, 24); movsd(Address(rsp, 8), xmm0); unpcklpd(xmm0, xmm0); movdqu(xmm1, ExternalAddress(cv)); // 0x652b82feUL, 0x40571547UL, 0x652b82feUL, 0x40571547UL movdqu(xmm6, ExternalAddress(Shifter)); // 0x00000000UL, 0x43380000UL, 0x00000000UL, 0x43380000UL movdqu(xmm2, ExternalAddress(16+cv)); // 0xfefa0000UL, 0x3f862e42UL, 0xfefa0000UL, 0x3f862e42UL movdqu(xmm3, ExternalAddress(32+cv)); // 0xbc9e3b3aUL, 0x3d1cf79aUL, 0xbc9e3b3aUL, 0x3d1cf79aUL pextrw(eax, xmm0, 3); andl(eax, 32767); movl(edx, 16527); subl(edx, eax); subl(eax, 15504); orl(edx, eax); cmpl(edx, INT_MIN); jcc(Assembler::aboveEqual, L_2TAG_PACKET_0_0_2); mulpd(xmm1, xmm0); addpd(xmm1, xmm6); movapd(xmm7, xmm1); subpd(xmm1, xmm6); mulpd(xmm2, xmm1); movdqu(xmm4, ExternalAddress(64+cv)); // 0xe3289860UL, 0x3f56c15cUL, 0x555b9e25UL, 0x3fa55555UL mulpd(xmm3, xmm1); movdqu(xmm5, ExternalAddress(80+cv)); // 0xc090cf0fUL, 0x3f811115UL, 0x55548ba1UL, 0x3fc55555UL subpd(xmm0, xmm2); movdl(eax, xmm7); movl(ecx, eax); andl(ecx, 63); shll(ecx, 4); sarl(eax, 6); movl(edx, eax); movdqu(xmm6, ExternalAddress(mmask)); // 0xffffffc0UL, 0x00000000UL, 0xffffffc0UL, 0x00000000UL pand(xmm7, xmm6); movdqu(xmm6, ExternalAddress(bias)); // 0x0000ffc0UL, 0x00000000UL, 0x0000ffc0UL, 0x00000000UL paddq(xmm7, xmm6); psllq(xmm7, 46); subpd(xmm0, xmm3); lea(tmp, ExternalAddress(Tbl_addr)); movdqu(xmm2, Address(ecx,tmp)); mulpd(xmm4, xmm0); movapd(xmm6, xmm0); movapd(xmm1, xmm0); mulpd(xmm6, xmm6); mulpd(xmm0, xmm6); addpd(xmm5, xmm4); mulsd(xmm0, xmm6); mulpd(xmm6, ExternalAddress(48+cv)); // 0xfffffffeUL, 0x3fdfffffUL, 0xfffffffeUL, 0x3fdfffffUL addsd(xmm1, xmm2); unpckhpd(xmm2, xmm2); mulpd(xmm0, xmm5); addsd(xmm1, xmm0); por(xmm2, xmm7); unpckhpd(xmm0, xmm0); addsd(xmm0, xmm1); addsd(xmm0, xmm6); addl(edx, 894); cmpl(edx, 1916); jcc (Assembler::above, L_2TAG_PACKET_1_0_2); mulsd(xmm0, xmm2); addsd(xmm0, xmm2); jmp (B1_5); bind(L_2TAG_PACKET_1_0_2); xorpd(xmm3, xmm3); movdqu(xmm4, ExternalAddress(ALLONES)); // 0xffffffffUL, 0xffffffffUL, 0xffffffffUL, 0xffffffffUL movl(edx, -1022); subl(edx, eax); movdl(xmm5, edx); psllq(xmm4, xmm5); movl(ecx, eax); sarl(eax, 1); pinsrw(xmm3, eax, 3); movdqu(xmm6, ExternalAddress(ebias)); // 0x00000000UL, 0x3ff00000UL, 0x00000000UL, 0x3ff00000UL psllq(xmm3, 4); psubd(xmm2, xmm3); mulsd(xmm0, xmm2); cmpl(edx, 52); jcc(Assembler::greater, L_2TAG_PACKET_2_0_2); pand(xmm4, xmm2); paddd(xmm3, xmm6); subsd(xmm2, xmm4); addsd(xmm0, xmm2); cmpl(ecx, 1023); jcc(Assembler::greaterEqual, L_2TAG_PACKET_3_0_2); pextrw(ecx, xmm0, 3); andl(ecx, 32768); orl(edx, ecx); cmpl(edx, 0); jcc(Assembler::equal, L_2TAG_PACKET_4_0_2); movapd(xmm6, xmm0); addsd(xmm0, xmm4); mulsd(xmm0, xmm3); pextrw(ecx, xmm0, 3); andl(ecx, 32752); cmpl(ecx, 0); jcc(Assembler::equal, L_2TAG_PACKET_5_0_2); jmp(B1_5); bind(L_2TAG_PACKET_5_0_2); mulsd(xmm6, xmm3); mulsd(xmm4, xmm3); movdqu(xmm0, xmm6); pxor(xmm6, xmm4); psrad(xmm6, 31); pshufd(xmm6, xmm6, 85); psllq(xmm0, 1); psrlq(xmm0, 1); pxor(xmm0, xmm6); psrlq(xmm6, 63); paddq(xmm0, xmm6); paddq(xmm0, xmm4); movl(Address(rsp,0), 15); jmp(L_2TAG_PACKET_6_0_2); bind(L_2TAG_PACKET_4_0_2); addsd(xmm0, xmm4); mulsd(xmm0, xmm3); jmp(B1_5); bind(L_2TAG_PACKET_3_0_2); addsd(xmm0, xmm4); mulsd(xmm0, xmm3); pextrw(ecx, xmm0, 3); andl(ecx, 32752); cmpl(ecx, 32752); jcc(Assembler::aboveEqual, L_2TAG_PACKET_7_0_2); jmp(B1_5); bind(L_2TAG_PACKET_2_0_2); paddd(xmm3, xmm6); addpd(xmm0, xmm2); mulsd(xmm0, xmm3); movl(Address(rsp,0), 15); jmp(L_2TAG_PACKET_6_0_2); bind(L_2TAG_PACKET_8_0_2); cmpl(eax, 2146435072); jcc(Assembler::aboveEqual, L_2TAG_PACKET_9_0_2); movl(eax, Address(rsp,12)); cmpl(eax, INT_MIN); jcc(Assembler::aboveEqual, L_2TAG_PACKET_10_0_2); movsd(xmm0, ExternalAddress(XMAX)); // 0xffffffffUL, 0x7fefffffUL mulsd(xmm0, xmm0); bind(L_2TAG_PACKET_7_0_2); movl(Address(rsp,0), 14); jmp(L_2TAG_PACKET_6_0_2); bind(L_2TAG_PACKET_10_0_2); movsd(xmm0, ExternalAddress(XMIN)); // 0x00000000UL, 0x00100000UL mulsd(xmm0, xmm0); movl(Address(rsp,0), 15); jmp(L_2TAG_PACKET_6_0_2); bind(L_2TAG_PACKET_9_0_2); movl(edx, Address(rsp,8)); cmpl(eax, 2146435072); jcc(Assembler::above, L_2TAG_PACKET_11_0_2); cmpl(edx, 0); jcc(Assembler::notEqual, L_2TAG_PACKET_11_0_2); movl(eax, Address(rsp,12)); cmpl(eax, 2146435072); jcc(Assembler::notEqual, L_2TAG_PACKET_12_0_2); movsd(xmm0, ExternalAddress(INF)); // 0x00000000UL, 0x7ff00000UL jmp(B1_5); bind(L_2TAG_PACKET_12_0_2); movsd(xmm0, ExternalAddress(ZERO)); // 0x00000000UL, 0x00000000UL jmp(B1_5); bind(L_2TAG_PACKET_11_0_2); movsd(xmm0, Address(rsp, 8)); addsd(xmm0, xmm0); jmp(B1_5); bind(L_2TAG_PACKET_0_0_2); movl(eax, Address(rsp, 12)); andl(eax, 2147483647); cmpl(eax, 1083179008); jcc(Assembler::aboveEqual, L_2TAG_PACKET_8_0_2); movsd(Address(rsp, 8), xmm0); addsd(xmm0, ExternalAddress(ONE_val)); // 0x00000000UL, 0x3ff00000UL jmp(B1_5); bind(L_2TAG_PACKET_6_0_2); movq(Address(rsp, 16), xmm0); bind(B1_3); movq(xmm0, Address(rsp, 16)); bind(B1_5); addq(rsp, 24); }
void MacroAssembler::fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register eax, Register ecx, Register edx, Register tmp) { Label L_2TAG_PACKET_0_0_2, L_2TAG_PACKET_1_0_2, L_2TAG_PACKET_2_0_2, L_2TAG_PACKET_3_0_2; Label L_2TAG_PACKET_4_0_2, L_2TAG_PACKET_5_0_2, L_2TAG_PACKET_6_0_2, L_2TAG_PACKET_7_0_2; Label L_2TAG_PACKET_8_0_2, L_2TAG_PACKET_9_0_2; Label L_2TAG_PACKET_10_0_2, start; assert_different_registers(tmp, eax, ecx, edx); jmp(start); address static_const_table = (address)_static_const_table_log; bind(start); subl(rsp, 104); movl(Address(rsp, 40), tmp); lea(tmp, ExternalAddress(static_const_table)); xorpd(xmm2, xmm2); movl(eax, 16368); pinsrw(xmm2, eax, 3); xorpd(xmm3, xmm3); movl(edx, 30704); pinsrw(xmm3, edx, 3); movsd(xmm0, Address(rsp, 112)); movapd(xmm1, xmm0); movl(ecx, 32768); movdl(xmm4, ecx); movsd(xmm5, Address(tmp, 2128)); // 0x00000000UL, 0xffffe000UL pextrw(eax, xmm0, 3); por(xmm0, xmm2); psllq(xmm0, 5); movl(ecx, 16352); psrlq(xmm0, 34); rcpss(xmm0, xmm0); psllq(xmm1, 12); pshufd(xmm6, xmm5, 228); psrlq(xmm1, 12); subl(eax, 16); cmpl(eax, 32736); jcc(Assembler::aboveEqual, L_2TAG_PACKET_0_0_2); bind(L_2TAG_PACKET_1_0_2); paddd(xmm0, xmm4); por(xmm1, xmm3); movdl(edx, xmm0); psllq(xmm0, 29); pand(xmm5, xmm1); pand(xmm0, xmm6); subsd(xmm1, xmm5); mulpd(xmm5, xmm0); andl(eax, 32752); subl(eax, ecx); cvtsi2sdl(xmm7, eax); mulsd(xmm1, xmm0); movsd(xmm6, Address(tmp, 2064)); // 0xfefa3800UL, 0x3fa62e42UL movdqu(xmm3, Address(tmp, 2080)); // 0x92492492UL, 0x3fc24924UL, 0x00000000UL, 0xbfd00000UL subsd(xmm5, xmm2); andl(edx, 16711680); shrl(edx, 12); movdqu(xmm0, Address(tmp, edx)); movdqu(xmm4, Address(tmp, 2096)); // 0x3d6fb175UL, 0xbfc5555eUL, 0x55555555UL, 0x3fd55555UL addsd(xmm1, xmm5); movdqu(xmm2, Address(tmp, 2112)); // 0x9999999aUL, 0x3fc99999UL, 0x00000000UL, 0xbfe00000UL mulsd(xmm6, xmm7); pshufd(xmm5, xmm1, 68); mulsd(xmm7, Address(tmp, 2072)); // 0x93c76730UL, 0x3ceef357UL, 0x92492492UL, 0x3fc24924UL mulsd(xmm3, xmm1); addsd(xmm0, xmm6); mulpd(xmm4, xmm5); mulpd(xmm5, xmm5); pshufd(xmm6, xmm0, 228); addsd(xmm0, xmm1); addpd(xmm4, xmm2); mulpd(xmm3, xmm5); subsd(xmm6, xmm0); mulsd(xmm4, xmm1); pshufd(xmm2, xmm0, 238); addsd(xmm1, xmm6); mulsd(xmm5, xmm5); addsd(xmm7, xmm2); addpd(xmm4, xmm3); addsd(xmm1, xmm7); mulpd(xmm4, xmm5); addsd(xmm1, xmm4); pshufd(xmm5, xmm4, 238); addsd(xmm1, xmm5); addsd(xmm0, xmm1); jmp(L_2TAG_PACKET_2_0_2); bind(L_2TAG_PACKET_0_0_2); movsd(xmm0, Address(rsp, 112)); movdqu(xmm1, xmm0); addl(eax, 16); cmpl(eax, 32768); jcc(Assembler::aboveEqual, L_2TAG_PACKET_3_0_2); cmpl(eax, 16); jcc(Assembler::below, L_2TAG_PACKET_4_0_2); bind(L_2TAG_PACKET_5_0_2); addsd(xmm0, xmm0); jmp(L_2TAG_PACKET_2_0_2); bind(L_2TAG_PACKET_6_0_2); jcc(Assembler::above, L_2TAG_PACKET_5_0_2); cmpl(edx, 0); jcc(Assembler::above, L_2TAG_PACKET_5_0_2); jmp(L_2TAG_PACKET_7_0_2); bind(L_2TAG_PACKET_3_0_2); movdl(edx, xmm1); psrlq(xmm1, 32); movdl(ecx, xmm1); addl(ecx, ecx); cmpl(ecx, -2097152); jcc(Assembler::aboveEqual, L_2TAG_PACKET_6_0_2); orl(edx, ecx); cmpl(edx, 0); jcc(Assembler::equal, L_2TAG_PACKET_8_0_2); bind(L_2TAG_PACKET_7_0_2); xorpd(xmm1, xmm1); xorpd(xmm0, xmm0); movl(eax, 32752); pinsrw(xmm1, eax, 3); movl(edx, 3); mulsd(xmm0, xmm1); bind(L_2TAG_PACKET_9_0_2); movsd(Address(rsp, 0), xmm0); movsd(xmm0, Address(rsp, 112)); fld_d(Address(rsp, 0)); jmp(L_2TAG_PACKET_10_0_2); bind(L_2TAG_PACKET_8_0_2); xorpd(xmm1, xmm1); xorpd(xmm0, xmm0); movl(eax, 49136); pinsrw(xmm0, eax, 3); divsd(xmm0, xmm1); movl(edx, 2); jmp(L_2TAG_PACKET_9_0_2); bind(L_2TAG_PACKET_4_0_2); movdl(edx, xmm1); psrlq(xmm1, 32); movdl(ecx, xmm1); orl(edx, ecx); cmpl(edx, 0); jcc(Assembler::equal, L_2TAG_PACKET_8_0_2); xorpd(xmm1, xmm1); movl(eax, 18416); pinsrw(xmm1, eax, 3); mulsd(xmm0, xmm1); movapd(xmm1, xmm0); pextrw(eax, xmm0, 3); por(xmm0, xmm2); psllq(xmm0, 5); movl(ecx, 18416); psrlq(xmm0, 34); rcpss(xmm0, xmm0); psllq(xmm1, 12); pshufd(xmm6, xmm5, 228); psrlq(xmm1, 12); jmp(L_2TAG_PACKET_1_0_2); bind(L_2TAG_PACKET_2_0_2); movsd(Address(rsp, 24), xmm0); fld_d(Address(rsp, 24)); bind(L_2TAG_PACKET_10_0_2); movl(tmp, Address(rsp, 40)); }
// These stubs are used by the compiler only. // Argument registers, which must be preserved: // rcx - receiver (always first argument) // rdx - second argument (if any) // Other registers that might be usable: // rax - inline cache register (is interface for itable stub) // rbx - method (used when calling out to interpreter) // Available now, but may become callee-save at some point: // rsi, rdi // Note that rax and rdx are also used for return values. // VtableStub* VtableStubs::create_vtable_stub(int vtable_index) { const int i486_code_length = VtableStub::pd_code_size_limit(true); VtableStub* s = new(i486_code_length) VtableStub(true, vtable_index); // Can be NULL if there is no free space in the code cache. if (s == NULL) { return NULL; } ResourceMark rm; CodeBuffer cb(s->entry_point(), i486_code_length); MacroAssembler* masm = new MacroAssembler(&cb); #ifndef PRODUCT if (CountCompiledCalls) { __ incrementl(ExternalAddress((address) SharedRuntime::nof_megamorphic_calls_addr())); } #endif /* PRODUCT */ // get receiver (need to skip return address on top of stack) assert(VtableStub::receiver_location() == rcx->as_VMReg(), "receiver expected in rcx"); // get receiver klass address npe_addr = __ pc(); __ movptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes())); #ifndef PRODUCT if (DebugVtables) { Label L; // check offset vs vtable length __ cmpl(Address(rax, InstanceKlass::vtable_length_offset()*wordSize), vtable_index*vtableEntry::size()); __ jcc(Assembler::greater, L); __ movl(rbx, vtable_index); __ call_VM(noreg, CAST_FROM_FN_PTR(address, bad_compiled_vtable_index), rcx, rbx); __ bind(L); } #endif // PRODUCT const Register method = rbx; // load Method* and target address __ lookup_virtual_method(rax, vtable_index, method); if (DebugVtables) { Label L; __ cmpptr(method, (int32_t)NULL_WORD); __ jcc(Assembler::equal, L); __ cmpptr(Address(method, Method::from_compiled_offset()), (int32_t)NULL_WORD); __ jcc(Assembler::notZero, L); __ stop("Vtable entry is NULL"); __ bind(L); } // rax,: receiver klass // method (rbx): Method* // rcx: receiver address ame_addr = __ pc(); __ jmp( Address(method, Method::from_compiled_offset())); masm->flush(); if (PrintMiscellaneous && (WizardMode || Verbose)) { tty->print_cr("vtable #%d at "PTR_FORMAT"[%d] left over: %d", vtable_index, s->entry_point(), (int)(s->code_end() - s->entry_point()), (int)(s->code_end() - __ pc())); } guarantee(__ pc() <= s->code_end(), "overflowed buffer"); // shut the door on sizing bugs int slop = 3; // 32-bit offset is this much larger than an 8-bit one assert(vtable_index > 10 || __ pc() + slop <= s->code_end(), "room for 32-bit offset"); s->set_exception_points(npe_addr, ame_addr); return s; }
address JNI_FastGetField::generate_fast_get_int_field0(BasicType type) { const char *name; switch (type) { case T_BOOLEAN: name = "jni_fast_GetBooleanField"; break; case T_BYTE: name = "jni_fast_GetByteField"; break; case T_CHAR: name = "jni_fast_GetCharField"; break; case T_SHORT: name = "jni_fast_GetShortField"; break; case T_INT: name = "jni_fast_GetIntField"; break; case T_LONG: name = "jni_fast_GetLongField"; break; default: ShouldNotReachHere(); } ResourceMark rm; BufferBlob* b = BufferBlob::create(name, BUFFER_SIZE); address fast_entry = b->instructions_begin(); CodeBuffer* cbuf = new CodeBuffer(fast_entry, b->instructions_size()); MacroAssembler* masm = new MacroAssembler(cbuf); Label slow; address counter_addr = SafepointSynchronize::safepoint_counter_addr(); Address ca(counter_addr, relocInfo::none); __ movl (rcounter, ca); __ movq (robj, rarg1); __ testb (rcounter, 1); __ jcc (Assembler::notZero, slow); if (os::is_MP()) { __ xorq (robj, rcounter); __ xorq (robj, rcounter); // obj, since // robj ^ rcounter ^ rcounter == robj // robj is data dependent on rcounter. } __ movq (robj, Address(robj)); // *obj __ movq (roffset, rarg2); __ shrq (roffset, 2); // offset assert(count < LIST_CAPACITY, "LIST_CAPACITY too small"); speculative_load_pclist[count] = __ pc(); switch (type) { case T_BOOLEAN: __ movzbl (rax, Address(robj, roffset, Address::times_1)); break; case T_BYTE: __ movsbl (rax, Address(robj, roffset, Address::times_1)); break; case T_CHAR: __ movzwl (rax, Address(robj, roffset, Address::times_1)); break; case T_SHORT: __ movswl (rax, Address(robj, roffset, Address::times_1)); break; case T_INT: __ movl (rax, Address(robj, roffset, Address::times_1)); break; case T_LONG: __ movq (rax, Address(robj, roffset, Address::times_1)); break; default: ShouldNotReachHere(); } __ movq (rcounter_addr, (int64_t)counter_addr); ca = Address(rcounter_addr); if (os::is_MP()) { __ xorq (rcounter_addr, rax); __ xorq (rcounter_addr, rax); // ca is data dependent on rax. } __ cmpl (rcounter, ca); __ jcc (Assembler::notEqual, slow); __ ret (0); slowcase_entry_pclist[count++] = __ pc(); __ bind (slow); address slow_case_addr; switch (type) { case T_BOOLEAN: slow_case_addr = jni_GetBooleanField_addr(); break; case T_BYTE: slow_case_addr = jni_GetByteField_addr(); break; case T_CHAR: slow_case_addr = jni_GetCharField_addr(); break; case T_SHORT: slow_case_addr = jni_GetShortField_addr(); break; case T_INT: slow_case_addr = jni_GetIntField_addr(); break; case T_LONG: slow_case_addr = jni_GetLongField_addr(); } // tail call __ jmp (slow_case_addr, relocInfo::none); __ flush (); return fast_entry; }
//------------------------------------------------------------------------------------------------------------------------ // Continuation point for throwing of implicit exceptions that are not handled in // the current activation. Fabricates an exception oop and initiates normal // exception dispatching in this frame. Since we need to preserve callee-saved values // (currently only for C2, but done for C1 as well) we need a callee-saved oop map and // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs. // If the compiler needs all registers to be preserved between the fault // point and the exception handler then it must assume responsibility for that in // AbstractCompiler::continuation_for_implicit_null_exception or // continuation_for_implicit_division_by_zero_exception. All other implicit // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are // either at call sites or otherwise assume that stack unwinding will be initiated, // so caller saved registers were assumed volatile in the compiler. // // Note: the routine set_pc_not_at_call_for_caller in SharedRuntime.cpp requires // that this code be generated into a RuntimeStub. address StubGenerator::generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc) { int insts_size = 256; int locs_size = 32; CodeBuffer* code = new CodeBuffer(insts_size, locs_size, 0, 0, 0, false, NULL, NULL, NULL, false, NULL, name, false); OopMapSet* oop_maps = new OopMapSet(); MacroAssembler* masm = new MacroAssembler(code); address start = __ pc(); // This is an inlined and slightly modified version of call_VM // which has the ability to fetch the return PC out of // thread-local storage and also sets up last_Java_sp slightly // differently than the real call_VM Register java_thread = ebx; __ get_thread(java_thread); if (restore_saved_exception_pc) { __ movl(eax, Address(java_thread, in_bytes(JavaThread::saved_exception_pc_offset()))); __ pushl(eax); } #ifndef COMPILER2 __ enter(); // required for proper stackwalking of RuntimeStub frame #endif COMPILER2 __ subl(esp, framesize * wordSize); // prolog #ifdef COMPILER2 if( OptoRuntimeCalleeSavedFloats ) { if( UseSSE == 1 ) { __ movss(Address(esp,xmm6_off*wordSize),xmm6); __ movss(Address(esp,xmm7_off*wordSize),xmm7); } else if( UseSSE == 2 ) { __ movsd(Address(esp,xmm6_off*wordSize),xmm6); __ movsd(Address(esp,xmm7_off*wordSize),xmm7); } } #endif /* COMPILER2 */ __ movl(Address(esp, ebp_off * wordSize), ebp); __ movl(Address(esp, edi_off * wordSize), edi); __ movl(Address(esp, esi_off * wordSize), esi); // push java thread (becomes first argument of C function) __ movl(Address(esp, thread_off * wordSize), java_thread); // Set up last_Java_sp and last_Java_fp __ set_last_Java_frame(java_thread, esp, ebp, NULL); // Call runtime __ call(runtime_entry, relocInfo::runtime_call_type); // Generate oop map OopMap* map = new OopMap(framesize, 0); #ifdef COMPILER2 // SharedInfo is apparently not initialized if -Xint is specified if (UseCompiler) { map->set_callee_saved(SharedInfo::stack2reg(ebp_off), framesize, 0, OptoReg::Name(EBP_num)); map->set_callee_saved(SharedInfo::stack2reg(edi_off), framesize, 0, OptoReg::Name(EDI_num)); map->set_callee_saved(SharedInfo::stack2reg(esi_off), framesize, 0, OptoReg::Name(ESI_num)); if( OptoRuntimeCalleeSavedFloats ) { map->set_callee_saved(SharedInfo::stack2reg(xmm6_off ), framesize, 0, OptoReg::Name(XMM6a_num)); map->set_callee_saved(SharedInfo::stack2reg(xmm6_off+1), framesize, 0, OptoReg::Name(XMM6b_num)); map->set_callee_saved(SharedInfo::stack2reg(xmm7_off ), framesize, 0, OptoReg::Name(XMM7a_num)); map->set_callee_saved(SharedInfo::stack2reg(xmm7_off+1), framesize, 0, OptoReg::Name(XMM7b_num)); } } #endif #ifdef COMPILER1 map->set_callee_saved(OptoReg::Name(SharedInfo::stack0+ebp_off), framesize, 0, OptoReg::Name(ebp->encoding())); map->set_callee_saved(OptoReg::Name(SharedInfo::stack0+esi_off), framesize, 0, OptoReg::Name(esi->encoding())); map->set_callee_saved(OptoReg::Name(SharedInfo::stack0+edi_off), framesize, 0, OptoReg::Name(edi->encoding())); #endif oop_maps->add_gc_map(__ pc() - start, true, map); // restore the thread (cannot use the pushed argument since arguments // may be overwritten by C code generated by an optimizing compiler); // however can use the register value directly if it is callee saved. __ get_thread(java_thread); __ reset_last_Java_frame(java_thread, false); // Restore callee save registers. This must be done after resetting the Java frame #ifdef COMPILER2 if( OptoRuntimeCalleeSavedFloats ) { if( UseSSE == 1 ) { __ movss(xmm6,Address(esp,xmm6_off*wordSize)); __ movss(xmm7,Address(esp,xmm7_off*wordSize)); } else if( UseSSE == 2 ) { __ movsd(xmm6,Address(esp,xmm6_off*wordSize)); __ movsd(xmm7,Address(esp,xmm7_off*wordSize)); } } #endif /* COMPILER2 */ __ movl(ebp,Address(esp, ebp_off * wordSize)); __ movl(edi,Address(esp, edi_off * wordSize)); __ movl(esi,Address(esp, esi_off * wordSize)); // discard arguments __ addl(esp, framesize * wordSize); // epilog #ifndef COMPILER2 __ leave(); // required for proper stackwalking of RuntimeStub frame #endif COMPILER2 // check for pending exceptions #ifdef ASSERT Label L; __ cmpl(Address(java_thread, Thread::pending_exception_offset()), (int)NULL); __ jcc(Assembler::notEqual, L); __ should_not_reach_here(); __ bind(L); #endif ASSERT __ jmp(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type); // Note: it seems the frame size reported to the RuntimeStub has // to be incremented by 1 to account for the return PC. It // definitely must be one more than the amount by which SP was // decremented. int extra_words = 1; #ifdef COMPILER1 ++extra_words; // Not strictly necessary since C1 ignores frame size and uses link #endif COMPILER1 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, code, framesize + extra_words, oop_maps, false); return stub->entry_point(); }
void CompilerStubs::generate_compiler_new_obj_array() { comment_section("Compiler stub: new object array"); comment("- ebx holds the prototypical near of the array class"); entry("compiler_new_obj_array"); comment("Get array length"); // add BytesPerWord for return address movl(edx, Address(esp, Constant(BytesPerWord + JavaFrame::arg_offset_from_sp(0)))); Label slow_case; comment("Check if the array length is too large or negative"); cmpl(edx, Constant(maximum_safe_array_length)); jcc(above, Constant(slow_case)); comment("Get _inline_allocation_top"); movl(eax, Address(Constant("_inline_allocation_top"))); if (GenerateDebugAssembly) { comment("Check ExcessiveGC"); testl(Address(Constant("ExcessiveGC")), Constant(0)); jcc(not_zero, Constant(slow_case)); } comment("Compute new top"); leal(ecx, Address(eax, edx, times_4, Constant(Array::base_offset()))); comment("Check for overflow"); cmpl(ecx, eax); jcc(below, Constant(slow_case)); comment("Compare against _inline_allocation_end"); cmpl(ecx, Address(Constant("_inline_allocation_end"))); jcc(above, Constant(slow_case)); comment("Allocation succeeded, set _inline_allocation_top"); movl(Address(Constant("_inline_allocation_top")), ecx); comment("Set prototypical near in object; no need for write barrier"); movl(Address(eax), ebx); comment("Set the length"); movl(Address(eax, Constant(Array::length_offset())), edx); comment("Compute remaining size"); testl(edx, edx); comment("Empty array?"); Label init_done; jcc(equal, Constant(init_done)); comment("Zero array elements"); xorl(ecx, ecx); Label init_loop; bind(init_loop); movl(Address(eax, edx, times_4, Constant(Array::base_offset() - oopSize)), ecx); decrement(edx, 1); jcc(not_zero, Constant(init_loop)); bind(init_done); comment("The newly allocated array is in register eax"); ret(); comment("Slow case - call the VM runtime system"); bind(slow_case); leal(eax, Address(Constant("anewarray"))); goto_shared_call_vm(T_ARRAY); entry_end(); // compiler_new_obj_array }
void MethodHandles::generate_method_handle_dispatch(MacroAssembler* _masm, vmIntrinsics::ID iid, Register receiver_reg, Register member_reg, bool for_compiler_entry) { assert(is_signature_polymorphic(iid), "expected invoke iid"); Register rbx_method = rbx; // eventual target of this invocation // temps used in this code are not used in *either* compiled or interpreted calling sequences #ifdef _LP64 Register temp1 = rscratch1; Register temp2 = rscratch2; Register temp3 = rax; if (for_compiler_entry) { assert(receiver_reg == (iid == vmIntrinsics::_linkToStatic ? noreg : j_rarg0), "only valid assignment"); assert_different_registers(temp1, j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5); assert_different_registers(temp2, j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5); assert_different_registers(temp3, j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5); } #else Register temp1 = (for_compiler_entry ? rsi : rdx); Register temp2 = rdi; Register temp3 = rax; if (for_compiler_entry) { assert(receiver_reg == (iid == vmIntrinsics::_linkToStatic ? noreg : rcx), "only valid assignment"); assert_different_registers(temp1, rcx, rdx); assert_different_registers(temp2, rcx, rdx); assert_different_registers(temp3, rcx, rdx); } #endif else { assert_different_registers(temp1, temp2, temp3, saved_last_sp_register()); // don't trash lastSP } assert_different_registers(temp1, temp2, temp3, receiver_reg); assert_different_registers(temp1, temp2, temp3, member_reg); if (iid == vmIntrinsics::_invokeBasic) { // indirect through MH.form.vmentry.vmtarget jump_to_lambda_form(_masm, receiver_reg, rbx_method, temp1, for_compiler_entry); } else { // The method is a member invoker used by direct method handles. if (VerifyMethodHandles) { // make sure the trailing argument really is a MemberName (caller responsibility) verify_klass(_masm, member_reg, SystemDictionary::WK_KLASS_ENUM_NAME(java_lang_invoke_MemberName), "MemberName required for invokeVirtual etc."); } Address member_clazz( member_reg, NONZERO(java_lang_invoke_MemberName::clazz_offset_in_bytes())); Address member_vmindex( member_reg, NONZERO(java_lang_invoke_MemberName::vmindex_offset_in_bytes())); Address member_vmtarget( member_reg, NONZERO(java_lang_invoke_MemberName::vmtarget_offset_in_bytes())); Register temp1_recv_klass = temp1; if (iid != vmIntrinsics::_linkToStatic) { __ verify_oop(receiver_reg); if (iid == vmIntrinsics::_linkToSpecial) { // Don't actually load the klass; just null-check the receiver. __ null_check(receiver_reg); } else { // load receiver klass itself __ null_check(receiver_reg, oopDesc::klass_offset_in_bytes()); __ load_klass(temp1_recv_klass, receiver_reg); __ verify_klass_ptr(temp1_recv_klass); } BLOCK_COMMENT("check_receiver {"); // The receiver for the MemberName must be in receiver_reg. // Check the receiver against the MemberName.clazz if (VerifyMethodHandles && iid == vmIntrinsics::_linkToSpecial) { // Did not load it above... __ load_klass(temp1_recv_klass, receiver_reg); __ verify_klass_ptr(temp1_recv_klass); } if (VerifyMethodHandles && iid != vmIntrinsics::_linkToInterface) { Label L_ok; Register temp2_defc = temp2; __ load_heap_oop(temp2_defc, member_clazz); load_klass_from_Class(_masm, temp2_defc); __ verify_klass_ptr(temp2_defc); __ check_klass_subtype(temp1_recv_klass, temp2_defc, temp3, L_ok); // If we get here, the type check failed! __ STOP("receiver class disagrees with MemberName.clazz"); __ bind(L_ok); } BLOCK_COMMENT("} check_receiver"); } if (iid == vmIntrinsics::_linkToSpecial || iid == vmIntrinsics::_linkToStatic) { DEBUG_ONLY(temp1_recv_klass = noreg); // these guys didn't load the recv_klass } // Live registers at this point: // member_reg - MemberName that was the trailing argument // temp1_recv_klass - klass of stacked receiver, if needed // rsi/r13 - interpreter linkage (if interpreted) // rcx, rdx, rsi, rdi, r8, r8 - compiler arguments (if compiled) Label L_incompatible_class_change_error; switch (iid) { case vmIntrinsics::_linkToSpecial: if (VerifyMethodHandles) { verify_ref_kind(_masm, JVM_REF_invokeSpecial, member_reg, temp3); } __ movptr(rbx_method, member_vmtarget); break; case vmIntrinsics::_linkToStatic: if (VerifyMethodHandles) { verify_ref_kind(_masm, JVM_REF_invokeStatic, member_reg, temp3); } __ movptr(rbx_method, member_vmtarget); break; case vmIntrinsics::_linkToVirtual: { // same as TemplateTable::invokevirtual, // minus the CP setup and profiling: if (VerifyMethodHandles) { verify_ref_kind(_masm, JVM_REF_invokeVirtual, member_reg, temp3); } // pick out the vtable index from the MemberName, and then we can discard it: Register temp2_index = temp2; __ movptr(temp2_index, member_vmindex); if (VerifyMethodHandles) { Label L_index_ok; __ cmpl(temp2_index, 0); __ jcc(Assembler::greaterEqual, L_index_ok); __ STOP("no virtual index"); __ BIND(L_index_ok); } // Note: The verifier invariants allow us to ignore MemberName.clazz and vmtarget // at this point. And VerifyMethodHandles has already checked clazz, if needed. // get target Method* & entry point __ lookup_virtual_method(temp1_recv_klass, temp2_index, rbx_method); break; } case vmIntrinsics::_linkToInterface: { // same as TemplateTable::invokeinterface // (minus the CP setup and profiling, with different argument motion) if (VerifyMethodHandles) { verify_ref_kind(_masm, JVM_REF_invokeInterface, member_reg, temp3); } Register temp3_intf = temp3; __ load_heap_oop(temp3_intf, member_clazz); load_klass_from_Class(_masm, temp3_intf); __ verify_klass_ptr(temp3_intf); Register rbx_index = rbx_method; __ movptr(rbx_index, member_vmindex); if (VerifyMethodHandles) { Label L; __ cmpl(rbx_index, 0); __ jcc(Assembler::greaterEqual, L); __ STOP("invalid vtable index for MH.invokeInterface"); __ bind(L); } // given intf, index, and recv klass, dispatch to the implementation method __ lookup_interface_method(temp1_recv_klass, temp3_intf, // note: next two args must be the same: rbx_index, rbx_method, temp2, L_incompatible_class_change_error); break; } default: fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid))); break; } // Live at this point: // rbx_method // rsi/r13 (if interpreted) // After figuring out which concrete method to call, jump into it. // Note that this works in the interpreter with no data motion. // But the compiled version will require that rcx_recv be shifted out. __ verify_method_ptr(rbx_method); jump_from_method_handle(_masm, rbx_method, temp1, for_compiler_entry); if (iid == vmIntrinsics::_linkToInterface) { __ bind(L_incompatible_class_change_error); __ jump(RuntimeAddress(StubRoutines::throw_IncompatibleClassChangeError_entry())); } } }
//------------------------------------------------------------------------------ // MethodHandles::generate_method_handle_stub // // Generate an "entry" field for a method handle. // This determines how the method handle will respond to calls. void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) { // Here is the register state during an interpreted call, // as set up by generate_method_handle_interpreter_entry(): // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused) // - rcx: receiver method handle // - rax: method handle type (only used by the check_mtype entry point) // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted) // - rdx: garbage temp, can blow away const Register rcx_recv = rcx; const Register rax_argslot = rax; const Register rbx_temp = rbx; const Register rdx_temp = rdx; // This guy is set up by prepare_to_jump_from_interpreted (from interpreted calls) // and gen_c2i_adapter (from compiled calls): const Register saved_last_sp = LP64_ONLY(r13) NOT_LP64(rsi); // Argument registers for _raise_exception. // 32-bit: Pass first two oop/int args in registers ECX and EDX. const Register rarg0_code = LP64_ONLY(j_rarg0) NOT_LP64(rcx); const Register rarg1_actual = LP64_ONLY(j_rarg1) NOT_LP64(rdx); const Register rarg2_required = LP64_ONLY(j_rarg2) NOT_LP64(rdi); assert_different_registers(rarg0_code, rarg1_actual, rarg2_required, saved_last_sp); guarantee(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets"); // some handy addresses Address rbx_method_fie( rbx, methodOopDesc::from_interpreted_offset() ); Address rbx_method_fce( rbx, methodOopDesc::from_compiled_offset() ); Address rcx_mh_vmtarget( rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() ); Address rcx_dmh_vmindex( rcx_recv, java_lang_invoke_DirectMethodHandle::vmindex_offset_in_bytes() ); Address rcx_bmh_vmargslot( rcx_recv, java_lang_invoke_BoundMethodHandle::vmargslot_offset_in_bytes() ); Address rcx_bmh_argument( rcx_recv, java_lang_invoke_BoundMethodHandle::argument_offset_in_bytes() ); Address rcx_amh_vmargslot( rcx_recv, java_lang_invoke_AdapterMethodHandle::vmargslot_offset_in_bytes() ); Address rcx_amh_argument( rcx_recv, java_lang_invoke_AdapterMethodHandle::argument_offset_in_bytes() ); Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() ); Address vmarg; // __ argument_address(vmargslot) const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes(); if (have_entry(ek)) { __ nop(); // empty stubs make SG sick return; } address interp_entry = __ pc(); trace_method_handle(_masm, entry_name(ek)); BLOCK_COMMENT(entry_name(ek)); switch ((int) ek) { case _raise_exception: { // Not a real MH entry, but rather shared code for raising an // exception. Since we use the compiled entry, arguments are // expected in compiler argument registers. assert(raise_exception_method(), "must be set"); assert(raise_exception_method()->from_compiled_entry(), "method must be linked"); const Register rdi_pc = rax; __ pop(rdi_pc); // caller PC __ mov(rsp, saved_last_sp); // cut the stack back to where the caller started Register rbx_method = rbx_temp; Label L_no_method; // FIXME: fill in _raise_exception_method with a suitable java.lang.invoke method __ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method)); __ testptr(rbx_method, rbx_method); __ jccb(Assembler::zero, L_no_method); const int jobject_oop_offset = 0; __ movptr(rbx_method, Address(rbx_method, jobject_oop_offset)); // dereference the jobject __ testptr(rbx_method, rbx_method); __ jccb(Assembler::zero, L_no_method); __ verify_oop(rbx_method); NOT_LP64(__ push(rarg2_required)); __ push(rdi_pc); // restore caller PC __ jmp(rbx_method_fce); // jump to compiled entry // Do something that is at least causes a valid throw from the interpreter. __ bind(L_no_method); __ push(rarg2_required); __ push(rarg1_actual); __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry())); } break; case _invokestatic_mh: case _invokespecial_mh: { Register rbx_method = rbx_temp; __ load_heap_oop(rbx_method, rcx_mh_vmtarget); // target is a methodOop __ verify_oop(rbx_method); // same as TemplateTable::invokestatic or invokespecial, // minus the CP setup and profiling: if (ek == _invokespecial_mh) { // Must load & check the first argument before entering the target method. __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp); __ movptr(rcx_recv, __ argument_address(rax_argslot, -1)); __ null_check(rcx_recv); __ verify_oop(rcx_recv); } __ jmp(rbx_method_fie); } break; case _invokevirtual_mh: { // same as TemplateTable::invokevirtual, // minus the CP setup and profiling: // pick out the vtable index and receiver offset from the MH, // and then we can discard it: __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp); Register rbx_index = rbx_temp; __ movl(rbx_index, rcx_dmh_vmindex); // Note: The verifier allows us to ignore rcx_mh_vmtarget. __ movptr(rcx_recv, __ argument_address(rax_argslot, -1)); __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes()); // get receiver klass Register rax_klass = rax_argslot; __ load_klass(rax_klass, rcx_recv); __ verify_oop(rax_klass); // get target methodOop & entry point const int base = instanceKlass::vtable_start_offset() * wordSize; assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); Address vtable_entry_addr(rax_klass, rbx_index, Address::times_ptr, base + vtableEntry::method_offset_in_bytes()); Register rbx_method = rbx_temp; __ movptr(rbx_method, vtable_entry_addr); __ verify_oop(rbx_method); __ jmp(rbx_method_fie); } break; case _invokeinterface_mh: { // same as TemplateTable::invokeinterface, // minus the CP setup and profiling: // pick out the interface and itable index from the MH. __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp); Register rdx_intf = rdx_temp; Register rbx_index = rbx_temp; __ load_heap_oop(rdx_intf, rcx_mh_vmtarget); __ movl(rbx_index, rcx_dmh_vmindex); __ movptr(rcx_recv, __ argument_address(rax_argslot, -1)); __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes()); // get receiver klass Register rax_klass = rax_argslot; __ load_klass(rax_klass, rcx_recv); __ verify_oop(rax_klass); Register rdi_temp = rdi; Register rbx_method = rbx_index; // get interface klass Label no_such_interface; __ verify_oop(rdx_intf); __ lookup_interface_method(rax_klass, rdx_intf, // note: next two args must be the same: rbx_index, rbx_method, rdi_temp, no_such_interface); __ verify_oop(rbx_method); __ jmp(rbx_method_fie); __ hlt(); __ bind(no_such_interface); // Throw an exception. // For historical reasons, it will be IncompatibleClassChangeError. __ mov(rbx_temp, rcx_recv); // rarg2_required might be RCX assert_different_registers(rarg2_required, rbx_temp); __ movptr(rarg2_required, Address(rdx_intf, java_mirror_offset)); // required interface __ mov( rarg1_actual, rbx_temp); // bad receiver __ movl( rarg0_code, (int) Bytecodes::_invokeinterface); // who is complaining? __ jump(ExternalAddress(from_interpreted_entry(_raise_exception))); } break; case _bound_ref_mh: case _bound_int_mh: case _bound_long_mh: case _bound_ref_direct_mh: case _bound_int_direct_mh: case _bound_long_direct_mh: { bool direct_to_method = (ek >= _bound_ref_direct_mh); BasicType arg_type = T_ILLEGAL; int arg_mask = _INSERT_NO_MASK; int arg_slots = -1; get_ek_bound_mh_info(ek, arg_type, arg_mask, arg_slots); // make room for the new argument: __ movl(rax_argslot, rcx_bmh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot)); insert_arg_slots(_masm, arg_slots * stack_move_unit(), arg_mask, rax_argslot, rbx_temp, rdx_temp); // store bound argument into the new stack slot: __ load_heap_oop(rbx_temp, rcx_bmh_argument); if (arg_type == T_OBJECT) { __ movptr(Address(rax_argslot, 0), rbx_temp); } else { Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type)); const int arg_size = type2aelembytes(arg_type); __ load_sized_value(rdx_temp, prim_value_addr, arg_size, is_signed_subword_type(arg_type), rbx_temp); __ store_sized_value(Address(rax_argslot, 0), rdx_temp, arg_size, rbx_temp); } if (direct_to_method) { Register rbx_method = rbx_temp; __ load_heap_oop(rbx_method, rcx_mh_vmtarget); __ verify_oop(rbx_method); __ jmp(rbx_method_fie); } else { __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ verify_oop(rcx_recv); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } } break; case _adapter_retype_only: case _adapter_retype_raw: // immediately jump to the next MH layer: __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ verify_oop(rcx_recv); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); // This is OK when all parameter types widen. // It is also OK when a return type narrows. break; case _adapter_check_cast: { // temps: Register rbx_klass = rbx_temp; // interesting AMH data // check a reference argument before jumping to the next layer of MH: __ movl(rax_argslot, rcx_amh_vmargslot); vmarg = __ argument_address(rax_argslot); // What class are we casting to? __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object! __ load_heap_oop(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes())); Label done; __ movptr(rdx_temp, vmarg); __ testptr(rdx_temp, rdx_temp); __ jcc(Assembler::zero, done); // no cast if null __ load_klass(rdx_temp, rdx_temp); // live at this point: // - rbx_klass: klass required by the target method // - rdx_temp: argument klass to test // - rcx_recv: adapter method handle __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done); // If we get here, the type check failed! // Call the wrong_method_type stub, passing the failing argument type in rax. Register rax_mtype = rax_argslot; __ movl(rax_argslot, rcx_amh_vmargslot); // reload argslot field __ movptr(rdx_temp, vmarg); assert_different_registers(rarg2_required, rdx_temp); __ load_heap_oop(rarg2_required, rcx_amh_argument); // required class __ mov( rarg1_actual, rdx_temp); // bad object __ movl( rarg0_code, (int) Bytecodes::_checkcast); // who is complaining? __ jump(ExternalAddress(from_interpreted_entry(_raise_exception))); __ bind(done); // get the new MH: __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_prim_to_prim: case _adapter_ref_to_prim: // handled completely by optimized cases __ stop("init_AdapterMethodHandle should not issue this"); break; case _adapter_opt_i2i: // optimized subcase of adapt_prim_to_prim //case _adapter_opt_f2i: // optimized subcase of adapt_prim_to_prim case _adapter_opt_l2i: // optimized subcase of adapt_prim_to_prim case _adapter_opt_unboxi: // optimized subcase of adapt_ref_to_prim { // perform an in-place conversion to int or an int subword __ movl(rax_argslot, rcx_amh_vmargslot); vmarg = __ argument_address(rax_argslot); switch (ek) { case _adapter_opt_i2i: __ movl(rdx_temp, vmarg); break; case _adapter_opt_l2i: { // just delete the extra slot; on a little-endian machine we keep the first __ lea(rax_argslot, __ argument_address(rax_argslot, 1)); remove_arg_slots(_masm, -stack_move_unit(), rax_argslot, rbx_temp, rdx_temp); vmarg = Address(rax_argslot, -Interpreter::stackElementSize); __ movl(rdx_temp, vmarg); } break; case _adapter_opt_unboxi: { // Load the value up from the heap. __ movptr(rdx_temp, vmarg); int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT); #ifdef ASSERT for (int bt = T_BOOLEAN; bt < T_INT; bt++) { if (is_subword_type(BasicType(bt))) assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), ""); } #endif __ null_check(rdx_temp, value_offset); __ movl(rdx_temp, Address(rdx_temp, value_offset)); // We load this as a word. Because we are little-endian, // the low bits will be correct, but the high bits may need cleaning. // The vminfo will guide us to clean those bits. } break; default: ShouldNotReachHere(); } // Do the requested conversion and store the value. Register rbx_vminfo = rbx_temp; __ movl(rbx_vminfo, rcx_amh_conversion); assert(CONV_VMINFO_SHIFT == 0, "preshifted"); // get the new MH: __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); // (now we are done with the old MH) // original 32-bit vmdata word must be of this form: // | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 | __ xchgptr(rcx, rbx_vminfo); // free rcx for shifts __ shll(rdx_temp /*, rcx*/); Label zero_extend, done; __ testl(rcx, CONV_VMINFO_SIGN_FLAG); __ jccb(Assembler::zero, zero_extend); // this path is taken for int->byte, int->short __ sarl(rdx_temp /*, rcx*/); __ jmpb(done); __ bind(zero_extend); // this is taken for int->char __ shrl(rdx_temp /*, rcx*/); __ bind(done); __ movl(vmarg, rdx_temp); // Store the value. __ xchgptr(rcx, rbx_vminfo); // restore rcx_recv __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_opt_i2l: // optimized subcase of adapt_prim_to_prim case _adapter_opt_unboxl: // optimized subcase of adapt_ref_to_prim { // perform an in-place int-to-long or ref-to-long conversion __ movl(rax_argslot, rcx_amh_vmargslot); // on a little-endian machine we keep the first slot and add another after __ lea(rax_argslot, __ argument_address(rax_argslot, 1)); insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK, rax_argslot, rbx_temp, rdx_temp); Address vmarg1(rax_argslot, -Interpreter::stackElementSize); Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize); switch (ek) { case _adapter_opt_i2l: { #ifdef _LP64 __ movslq(rdx_temp, vmarg1); // Load sign-extended __ movq(vmarg1, rdx_temp); // Store into first slot #else __ movl(rdx_temp, vmarg1); __ sarl(rdx_temp, BitsPerInt - 1); // __ extend_sign() __ movl(vmarg2, rdx_temp); // store second word #endif } break; case _adapter_opt_unboxl: { // Load the value up from the heap. __ movptr(rdx_temp, vmarg1); int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG); assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), ""); __ null_check(rdx_temp, value_offset); #ifdef _LP64 __ movq(rbx_temp, Address(rdx_temp, value_offset)); __ movq(vmarg1, rbx_temp); #else __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt)); __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt)); __ movl(vmarg1, rbx_temp); __ movl(vmarg2, rdx_temp); #endif } break; default: ShouldNotReachHere(); } __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_opt_f2d: // optimized subcase of adapt_prim_to_prim case _adapter_opt_d2f: // optimized subcase of adapt_prim_to_prim { // perform an in-place floating primitive conversion __ movl(rax_argslot, rcx_amh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot, 1)); if (ek == _adapter_opt_f2d) { insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK, rax_argslot, rbx_temp, rdx_temp); } Address vmarg(rax_argslot, -Interpreter::stackElementSize); #ifdef _LP64 if (ek == _adapter_opt_f2d) { __ movflt(xmm0, vmarg); __ cvtss2sd(xmm0, xmm0); __ movdbl(vmarg, xmm0); } else { __ movdbl(xmm0, vmarg); __ cvtsd2ss(xmm0, xmm0); __ movflt(vmarg, xmm0); } #else //_LP64 if (ek == _adapter_opt_f2d) { __ fld_s(vmarg); // load float to ST0 __ fstp_s(vmarg); // store single } else { __ fld_d(vmarg); // load double to ST0 __ fstp_s(vmarg); // store single } #endif //_LP64 if (ek == _adapter_opt_d2f) { remove_arg_slots(_masm, -stack_move_unit(), rax_argslot, rbx_temp, rdx_temp); } __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_prim_to_ref: __ unimplemented(entry_name(ek)); // %%% FIXME: NYI break; case _adapter_swap_args: case _adapter_rot_args: // handled completely by optimized cases __ stop("init_AdapterMethodHandle should not issue this"); break; case _adapter_opt_swap_1: case _adapter_opt_swap_2: case _adapter_opt_rot_1_up: case _adapter_opt_rot_1_down: case _adapter_opt_rot_2_up: case _adapter_opt_rot_2_down: { int swap_bytes = 0, rotate = 0; get_ek_adapter_opt_swap_rot_info(ek, swap_bytes, rotate); // 'argslot' is the position of the first argument to swap __ movl(rax_argslot, rcx_amh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot)); // 'vminfo' is the second Register rbx_destslot = rbx_temp; __ movl(rbx_destslot, rcx_amh_conversion); assert(CONV_VMINFO_SHIFT == 0, "preshifted"); __ andl(rbx_destslot, CONV_VMINFO_MASK); __ lea(rbx_destslot, __ argument_address(rbx_destslot)); DEBUG_ONLY(verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame")); if (!rotate) { for (int i = 0; i < swap_bytes; i += wordSize) { __ movptr(rdx_temp, Address(rax_argslot , i)); __ push(rdx_temp); __ movptr(rdx_temp, Address(rbx_destslot, i)); __ movptr(Address(rax_argslot, i), rdx_temp); __ pop(rdx_temp); __ movptr(Address(rbx_destslot, i), rdx_temp); } } else { // push the first chunk, which is going to get overwritten for (int i = swap_bytes; (i -= wordSize) >= 0; ) { __ movptr(rdx_temp, Address(rax_argslot, i)); __ push(rdx_temp); } if (rotate > 0) { // rotate upward __ subptr(rax_argslot, swap_bytes); #ifdef ASSERT { // Verify that argslot > destslot, by at least swap_bytes. Label L_ok; __ cmpptr(rax_argslot, rbx_destslot); __ jccb(Assembler::aboveEqual, L_ok); __ stop("source must be above destination (upward rotation)"); __ bind(L_ok); } #endif // work argslot down to destslot, copying contiguous data upwards // pseudo-code: // rax = src_addr - swap_bytes // rbx = dest_addr // while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--; Label loop; __ bind(loop); __ movptr(rdx_temp, Address(rax_argslot, 0)); __ movptr(Address(rax_argslot, swap_bytes), rdx_temp); __ addptr(rax_argslot, -wordSize); __ cmpptr(rax_argslot, rbx_destslot); __ jccb(Assembler::aboveEqual, loop); } else { __ addptr(rax_argslot, swap_bytes); #ifdef ASSERT { // Verify that argslot < destslot, by at least swap_bytes. Label L_ok; __ cmpptr(rax_argslot, rbx_destslot); __ jccb(Assembler::belowEqual, L_ok); __ stop("source must be below destination (downward rotation)"); __ bind(L_ok); } #endif // work argslot up to destslot, copying contiguous data downwards // pseudo-code: // rax = src_addr + swap_bytes // rbx = dest_addr // while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++; Label loop; __ bind(loop); __ movptr(rdx_temp, Address(rax_argslot, 0)); __ movptr(Address(rax_argslot, -swap_bytes), rdx_temp); __ addptr(rax_argslot, wordSize); __ cmpptr(rax_argslot, rbx_destslot); __ jccb(Assembler::belowEqual, loop); } // pop the original first chunk into the destination slot, now free for (int i = 0; i < swap_bytes; i += wordSize) { __ pop(rdx_temp); __ movptr(Address(rbx_destslot, i), rdx_temp); } } __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_dup_args: { // 'argslot' is the position of the first argument to duplicate __ movl(rax_argslot, rcx_amh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot)); // 'stack_move' is negative number of words to duplicate Register rdx_stack_move = rdx_temp; __ movl2ptr(rdx_stack_move, rcx_amh_conversion); __ sarptr(rdx_stack_move, CONV_STACK_MOVE_SHIFT); int argslot0_num = 0; Address argslot0 = __ argument_address(RegisterOrConstant(argslot0_num)); assert(argslot0.base() == rsp, ""); int pre_arg_size = argslot0.disp(); assert(pre_arg_size % wordSize == 0, ""); assert(pre_arg_size > 0, "must include PC"); // remember the old rsp+1 (argslot[0]) Register rbx_oldarg = rbx_temp; __ lea(rbx_oldarg, argslot0); // move rsp down to make room for dups __ lea(rsp, Address(rsp, rdx_stack_move, Address::times_ptr)); // compute the new rsp+1 (argslot[0]) Register rdx_newarg = rdx_temp; __ lea(rdx_newarg, argslot0); __ push(rdi); // need a temp // (preceding push must be done after arg addresses are taken!) // pull down the pre_arg_size data (PC) for (int i = -pre_arg_size; i < 0; i += wordSize) { __ movptr(rdi, Address(rbx_oldarg, i)); __ movptr(Address(rdx_newarg, i), rdi); } // copy from rax_argslot[0...] down to new_rsp[1...] // pseudo-code: // rbx = old_rsp+1 // rdx = new_rsp+1 // rax = argslot // while (rdx < rbx) *rdx++ = *rax++ Label loop; __ bind(loop); __ movptr(rdi, Address(rax_argslot, 0)); __ movptr(Address(rdx_newarg, 0), rdi); __ addptr(rax_argslot, wordSize); __ addptr(rdx_newarg, wordSize); __ cmpptr(rdx_newarg, rbx_oldarg); __ jccb(Assembler::less, loop); __ pop(rdi); // restore temp __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_drop_args: { // 'argslot' is the position of the first argument to nuke __ movl(rax_argslot, rcx_amh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot)); __ push(rdi); // need a temp // (must do previous push after argslot address is taken) // 'stack_move' is number of words to drop Register rdi_stack_move = rdi; __ movl2ptr(rdi_stack_move, rcx_amh_conversion); __ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT); remove_arg_slots(_masm, rdi_stack_move, rax_argslot, rbx_temp, rdx_temp); __ pop(rdi); // restore temp __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_collect_args: __ unimplemented(entry_name(ek)); // %%% FIXME: NYI break; case _adapter_spread_args: // handled completely by optimized cases __ stop("init_AdapterMethodHandle should not issue this"); break; case _adapter_opt_spread_0: case _adapter_opt_spread_1: case _adapter_opt_spread_more: { // spread an array out into a group of arguments int length_constant = get_ek_adapter_opt_spread_info(ek); // find the address of the array argument __ movl(rax_argslot, rcx_amh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot)); // grab some temps { __ push(rsi); __ push(rdi); } // (preceding pushes must be done after argslot address is taken!) #define UNPUSH_RSI_RDI \ { __ pop(rdi); __ pop(rsi); } // arx_argslot points both to the array and to the first output arg vmarg = Address(rax_argslot, 0); // Get the array value. Register rsi_array = rsi; Register rdx_array_klass = rdx_temp; BasicType elem_type = T_OBJECT; int length_offset = arrayOopDesc::length_offset_in_bytes(); int elem0_offset = arrayOopDesc::base_offset_in_bytes(elem_type); __ movptr(rsi_array, vmarg); Label skip_array_check; if (length_constant == 0) { __ testptr(rsi_array, rsi_array); __ jcc(Assembler::zero, skip_array_check); } __ null_check(rsi_array, oopDesc::klass_offset_in_bytes()); __ load_klass(rdx_array_klass, rsi_array); // Check the array type. Register rbx_klass = rbx_temp; __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object! __ load_heap_oop(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes())); Label ok_array_klass, bad_array_klass, bad_array_length; __ check_klass_subtype(rdx_array_klass, rbx_klass, rdi, ok_array_klass); // If we get here, the type check failed! __ jmp(bad_array_klass); __ bind(ok_array_klass); // Check length. if (length_constant >= 0) { __ cmpl(Address(rsi_array, length_offset), length_constant); } else { Register rbx_vminfo = rbx_temp; __ movl(rbx_vminfo, rcx_amh_conversion); assert(CONV_VMINFO_SHIFT == 0, "preshifted"); __ andl(rbx_vminfo, CONV_VMINFO_MASK); __ cmpl(rbx_vminfo, Address(rsi_array, length_offset)); } __ jcc(Assembler::notEqual, bad_array_length); Register rdx_argslot_limit = rdx_temp; // Array length checks out. Now insert any required stack slots. if (length_constant == -1) { // Form a pointer to the end of the affected region. __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize)); // 'stack_move' is negative number of words to insert Register rdi_stack_move = rdi; __ movl2ptr(rdi_stack_move, rcx_amh_conversion); __ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT); Register rsi_temp = rsi_array; // spill this insert_arg_slots(_masm, rdi_stack_move, -1, rax_argslot, rbx_temp, rsi_temp); // reload the array (since rsi was killed) __ movptr(rsi_array, vmarg); } else if (length_constant > 1) { int arg_mask = 0; int new_slots = (length_constant - 1); for (int i = 0; i < new_slots; i++) { arg_mask <<= 1; arg_mask |= _INSERT_REF_MASK; } insert_arg_slots(_masm, new_slots * stack_move_unit(), arg_mask, rax_argslot, rbx_temp, rdx_temp); } else if (length_constant == 1) { // no stack resizing required } else if (length_constant == 0) { remove_arg_slots(_masm, -stack_move_unit(), rax_argslot, rbx_temp, rdx_temp); } // Copy from the array to the new slots. // Note: Stack change code preserves integrity of rax_argslot pointer. // So even after slot insertions, rax_argslot still points to first argument. if (length_constant == -1) { // [rax_argslot, rdx_argslot_limit) is the area we are inserting into. Register rsi_source = rsi_array; __ lea(rsi_source, Address(rsi_array, elem0_offset)); Label loop; __ bind(loop); __ movptr(rbx_temp, Address(rsi_source, 0)); __ movptr(Address(rax_argslot, 0), rbx_temp); __ addptr(rsi_source, type2aelembytes(elem_type)); __ addptr(rax_argslot, Interpreter::stackElementSize); __ cmpptr(rax_argslot, rdx_argslot_limit); __ jccb(Assembler::less, loop); } else if (length_constant == 0) { __ bind(skip_array_check); // nothing to copy } else { int elem_offset = elem0_offset; int slot_offset = 0; for (int index = 0; index < length_constant; index++) { __ movptr(rbx_temp, Address(rsi_array, elem_offset)); __ movptr(Address(rax_argslot, slot_offset), rbx_temp); elem_offset += type2aelembytes(elem_type); slot_offset += Interpreter::stackElementSize; } } // Arguments are spread. Move to next method handle. UNPUSH_RSI_RDI; __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); __ bind(bad_array_klass); UNPUSH_RSI_RDI; assert(!vmarg.uses(rarg2_required), "must be different registers"); __ movptr(rarg2_required, Address(rdx_array_klass, java_mirror_offset)); // required type __ movptr(rarg1_actual, vmarg); // bad array __ movl( rarg0_code, (int) Bytecodes::_aaload); // who is complaining? __ jump(ExternalAddress(from_interpreted_entry(_raise_exception))); __ bind(bad_array_length); UNPUSH_RSI_RDI; assert(!vmarg.uses(rarg2_required), "must be different registers"); __ mov (rarg2_required, rcx_recv); // AMH requiring a certain length __ movptr(rarg1_actual, vmarg); // bad array __ movl( rarg0_code, (int) Bytecodes::_arraylength); // who is complaining? __ jump(ExternalAddress(from_interpreted_entry(_raise_exception))); #undef UNPUSH_RSI_RDI } break; case _adapter_flyby: case _adapter_ricochet: __ unimplemented(entry_name(ek)); // %%% FIXME: NYI break; default: ShouldNotReachHere(); } __ hlt(); address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry); __ unimplemented(entry_name(ek)); // %%% FIXME: NYI init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie)); }
address JNI_FastGetField::generate_fast_get_int_field0(BasicType type) { const char *name = NULL; switch (type) { case T_BOOLEAN: name = "jni_fast_GetBooleanField"; break; case T_BYTE: name = "jni_fast_GetByteField"; break; case T_CHAR: name = "jni_fast_GetCharField"; break; case T_SHORT: name = "jni_fast_GetShortField"; break; case T_INT: name = "jni_fast_GetIntField"; break; case T_LONG: name = "jni_fast_GetLongField"; break; default: ShouldNotReachHere(); } ResourceMark rm; BufferBlob* blob = BufferBlob::create(name, BUFFER_SIZE); CodeBuffer cbuf(blob); MacroAssembler* masm = new MacroAssembler(&cbuf); address fast_entry = __ pc(); Label slow; ExternalAddress counter(SafepointSynchronize::safepoint_counter_addr()); __ mov32 (rcounter, counter); __ mov (robj, c_rarg1); __ testb (rcounter, 1); __ jcc (Assembler::notZero, slow); if (os::is_MP()) { __ xorptr(robj, rcounter); __ xorptr(robj, rcounter); // obj, since // robj ^ rcounter ^ rcounter == robj // robj is data dependent on rcounter. } __ clear_jweak_tag(robj); __ movptr(robj, Address(robj, 0)); // *obj __ mov (roffset, c_rarg2); __ shrptr(roffset, 2); // offset assert(count < LIST_CAPACITY, "LIST_CAPACITY too small"); speculative_load_pclist[count] = __ pc(); switch (type) { case T_BOOLEAN: __ movzbl (rax, Address(robj, roffset, Address::times_1)); break; case T_BYTE: __ movsbl (rax, Address(robj, roffset, Address::times_1)); break; case T_CHAR: __ movzwl (rax, Address(robj, roffset, Address::times_1)); break; case T_SHORT: __ movswl (rax, Address(robj, roffset, Address::times_1)); break; case T_INT: __ movl (rax, Address(robj, roffset, Address::times_1)); break; case T_LONG: __ movq (rax, Address(robj, roffset, Address::times_1)); break; default: ShouldNotReachHere(); } if (os::is_MP()) { __ lea(rcounter_addr, counter); // ca is data dependent on rax. __ xorptr(rcounter_addr, rax); __ xorptr(rcounter_addr, rax); __ cmpl (rcounter, Address(rcounter_addr, 0)); } else { __ cmp32 (rcounter, counter); } __ jcc (Assembler::notEqual, slow); __ ret (0); slowcase_entry_pclist[count++] = __ pc(); __ bind (slow); address slow_case_addr = NULL; switch (type) { case T_BOOLEAN: slow_case_addr = jni_GetBooleanField_addr(); break; case T_BYTE: slow_case_addr = jni_GetByteField_addr(); break; case T_CHAR: slow_case_addr = jni_GetCharField_addr(); break; case T_SHORT: slow_case_addr = jni_GetShortField_addr(); break; case T_INT: slow_case_addr = jni_GetIntField_addr(); break; case T_LONG: slow_case_addr = jni_GetLongField_addr(); } // tail call __ jump (ExternalAddress(slow_case_addr)); __ flush (); return fast_entry; }
address generate_getPsrInfo() { // Flags to test CPU type. const uint32_t HS_EFL_AC = 0x40000; const uint32_t HS_EFL_ID = 0x200000; // Values for when we don't have a CPUID instruction. const int CPU_FAMILY_SHIFT = 8; const uint32_t CPU_FAMILY_386 = (3 << CPU_FAMILY_SHIFT); const uint32_t CPU_FAMILY_486 = (4 << CPU_FAMILY_SHIFT); Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4; Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, done; StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub"); # define __ _masm-> address start = __ pc(); // // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info); // // LP64: rcx and rdx are first and second argument registers on windows __ push(rbp); #ifdef _LP64 __ mov(rbp, c_rarg0); // cpuid_info address #else __ movptr(rbp, Address(rsp, 8)); // cpuid_info address #endif __ push(rbx); __ push(rsi); __ pushf(); // preserve rbx, and flags __ pop(rax); __ push(rax); __ mov(rcx, rax); // // if we are unable to change the AC flag, we have a 386 // __ xorl(rax, HS_EFL_AC); __ push(rax); __ popf(); __ pushf(); __ pop(rax); __ cmpptr(rax, rcx); __ jccb(Assembler::notEqual, detect_486); __ movl(rax, CPU_FAMILY_386); __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax); __ jmp(done); // // If we are unable to change the ID flag, we have a 486 which does // not support the "cpuid" instruction. // __ bind(detect_486); __ mov(rax, rcx); __ xorl(rax, HS_EFL_ID); __ push(rax); __ popf(); __ pushf(); __ pop(rax); __ cmpptr(rcx, rax); __ jccb(Assembler::notEqual, detect_586); __ bind(cpu486); __ movl(rax, CPU_FAMILY_486); __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax); __ jmp(done); // // At this point, we have a chip which supports the "cpuid" instruction // __ bind(detect_586); __ xorl(rax, rax); __ cpuid(); __ orl(rax, rax); __ jcc(Assembler::equal, cpu486); // if cpuid doesn't support an input // value of at least 1, we give up and // assume a 486 __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); __ movl(Address(rsi, 8), rcx); __ movl(Address(rsi,12), rdx); __ cmpl(rax, 0xa); // Is cpuid(0xB) supported? __ jccb(Assembler::belowEqual, std_cpuid4); // // cpuid(0xB) Processor Topology // __ movl(rax, 0xb); __ xorl(rcx, rcx); // Threads level __ cpuid(); __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); __ movl(Address(rsi, 8), rcx); __ movl(Address(rsi,12), rdx); __ movl(rax, 0xb); __ movl(rcx, 1); // Cores level __ cpuid(); __ push(rax); __ andl(rax, 0x1f); // Determine if valid topology level __ orl(rax, rbx); // eax[4:0] | ebx[0:15] == 0 indicates invalid level __ andl(rax, 0xffff); __ pop(rax); __ jccb(Assembler::equal, std_cpuid4); __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); __ movl(Address(rsi, 8), rcx); __ movl(Address(rsi,12), rdx); __ movl(rax, 0xb); __ movl(rcx, 2); // Packages level __ cpuid(); __ push(rax); __ andl(rax, 0x1f); // Determine if valid topology level __ orl(rax, rbx); // eax[4:0] | ebx[0:15] == 0 indicates invalid level __ andl(rax, 0xffff); __ pop(rax); __ jccb(Assembler::equal, std_cpuid4); __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); __ movl(Address(rsi, 8), rcx); __ movl(Address(rsi,12), rdx); // // cpuid(0x4) Deterministic cache params // __ bind(std_cpuid4); __ movl(rax, 4); __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported? __ jccb(Assembler::greater, std_cpuid1); __ xorl(rcx, rcx); // L1 cache __ cpuid(); __ push(rax); __ andl(rax, 0x1f); // Determine if valid cache parameters used __ orl(rax, rax); // eax[4:0] == 0 indicates invalid cache __ pop(rax); __ jccb(Assembler::equal, std_cpuid1); __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); __ movl(Address(rsi, 8), rcx); __ movl(Address(rsi,12), rdx); // // Standard cpuid(0x1) // __ bind(std_cpuid1); __ movl(rax, 1); __ cpuid(); __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); __ movl(Address(rsi, 8), rcx); __ movl(Address(rsi,12), rdx); // // Check if OS has enabled XGETBV instruction to access XCR0 // (OSXSAVE feature flag) and CPU supports AVX // __ andl(rcx, 0x18000000); __ cmpl(rcx, 0x18000000); __ jccb(Assembler::notEqual, sef_cpuid); // // XCR0, XFEATURE_ENABLED_MASK register // __ xorl(rcx, rcx); // zero for XCR0 register __ xgetbv(); __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rdx); // // cpuid(0x7) Structured Extended Features // __ bind(sef_cpuid); __ movl(rax, 7); __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported? __ jccb(Assembler::greater, ext_cpuid); __ xorl(rcx, rcx); __ cpuid(); __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); // // Extended cpuid(0x80000000) // __ bind(ext_cpuid); __ movl(rax, 0x80000000); __ cpuid(); __ cmpl(rax, 0x80000000); // Is cpuid(0x80000001) supported? __ jcc(Assembler::belowEqual, done); __ cmpl(rax, 0x80000004); // Is cpuid(0x80000005) supported? __ jccb(Assembler::belowEqual, ext_cpuid1); __ cmpl(rax, 0x80000006); // Is cpuid(0x80000007) supported? __ jccb(Assembler::belowEqual, ext_cpuid5); __ cmpl(rax, 0x80000007); // Is cpuid(0x80000008) supported? __ jccb(Assembler::belowEqual, ext_cpuid7); // // Extended cpuid(0x80000008) // __ movl(rax, 0x80000008); __ cpuid(); __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); __ movl(Address(rsi, 8), rcx); __ movl(Address(rsi,12), rdx); // // Extended cpuid(0x80000007) // __ bind(ext_cpuid7); __ movl(rax, 0x80000007); __ cpuid(); __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); __ movl(Address(rsi, 8), rcx); __ movl(Address(rsi,12), rdx); // // Extended cpuid(0x80000005) // __ bind(ext_cpuid5); __ movl(rax, 0x80000005); __ cpuid(); __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); __ movl(Address(rsi, 8), rcx); __ movl(Address(rsi,12), rdx); // // Extended cpuid(0x80000001) // __ bind(ext_cpuid1); __ movl(rax, 0x80000001); __ cpuid(); __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); __ movl(Address(rsi, 8), rcx); __ movl(Address(rsi,12), rdx); // // return // __ bind(done); __ popf(); __ pop(rsi); __ pop(rbx); __ pop(rbp); __ ret(0); # undef __ return start; };
address generate_verify_oop() { StubCodeMark mark(this, "StubRoutines", "verify_oop"); address start = __ pc(); // Incoming arguments on stack after saving eax: // // [tos ]: saved edx // [tos + 1]: saved EFLAGS // [tos + 2]: return address // [tos + 3]: char* error message // [tos + 4]: oop object to verify // [tos + 5]: saved eax - saved by caller and bashed Label exit, error; __ pushfd(); __ incl(Address((int)StubRoutines::verify_oop_count_addr(), relocInfo::none)); __ pushl(edx); // save edx // make sure object is 'reasonable' __ movl(eax, Address(esp, 4 * wordSize)); // get object __ testl(eax, eax); __ jcc(Assembler::zero, exit); // if obj is NULL it is ok // Check if the oop is in the right area of memory const int oop_mask = Universe::verify_oop_mask(); const int oop_bits = Universe::verify_oop_bits(); __ movl(edx, eax); __ andl(edx, oop_mask); __ cmpl(edx, oop_bits); __ jcc(Assembler::notZero, error); // make sure klass is 'reasonable' __ movl(eax, Address(eax, oopDesc::klass_offset_in_bytes())); // get klass __ testl(eax, eax); __ jcc(Assembler::zero, error); // if klass is NULL it is broken // Check if the klass is in the right area of memory const int klass_mask = Universe::verify_klass_mask(); const int klass_bits = Universe::verify_klass_bits(); __ movl(edx, eax); __ andl(edx, klass_mask); __ cmpl(edx, klass_bits); __ jcc(Assembler::notZero, error); // make sure klass' klass is 'reasonable' __ movl(eax, Address(eax, oopDesc::klass_offset_in_bytes())); // get klass' klass __ testl(eax, eax); __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken __ movl(edx, eax); __ andl(edx, klass_mask); __ cmpl(edx, klass_bits); __ jcc(Assembler::notZero, error); // if klass not in right area // of memory it is broken too. // return if everything seems ok __ bind(exit); __ movl(eax, Address(esp, 5 * wordSize)); // get saved eax back __ popl(edx); // restore edx __ popfd(); // restore EFLAGS __ ret(3 * wordSize); // pop arguments // handle errors __ bind(error); __ movl(eax, Address(esp, 5 * wordSize)); // get saved eax back __ popl(edx); // get saved edx back __ popfd(); // get saved EFLAGS off stack -- will be ignored __ pushad(); // push registers (eip = return address & msg are already pushed) __ call(CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type); __ popad(); __ ret(3 * wordSize); // pop arguments return start; }
void NativeGenerator::generate_native_string_entries() { comment_section("Native entry points for string functions"); { //--------------------java.lang.String.indexof0--------------------------- rom_linkable_entry("native_string_indexof0_entry"); wtk_profile_quick_call(/* param_size*/ 2); comment("Pop the return address"); popl(edi); comment("Push zero for fromIndex"); pushl(Constant(0)); comment("Push back the return address"); pushl(edi); jmp(Constant("native_string_indexof_entry")); rom_linkable_entry_end(); // native_string_indexof0_entry //--------------------java.lang.String.indexof--------------------------- rom_linkable_entry("native_string_indexof_entry"); Label cont, loop, test, failure, success; wtk_profile_quick_call(/* param_size*/ 3); comment("Pop the return address"); popl(edi); comment("Pop the argument: fromIndex"); pop_int(eax, eax); comment("Pop the argument: ch"); pop_int(ebx, ebx); comment("Pop the receiver"); pop_obj(ecx, ecx); cmpl(ebx, Constant(0xFFFF)); jcc(greater, Constant(failure)); cmpl(eax, Constant(0)); jcc(greater_equal, Constant(cont)); movl(eax, Constant(0)); bind(cont); movl(esi, Address(ecx, Constant(String::count_offset()))); comment("if (fromIndex >= count) { return -1; }"); cmpl(eax, esi); jcc(greater_equal, Constant(failure)); movl(edx, Address(ecx, Constant(String::offset_offset()))); addl(eax, edx); // i = offset + fromIndex addl(edx, esi); // int max = offset + count; movl(esi, Address(ecx, Constant(String::value_offset()))); // v = value. jmp(Constant(test)); bind(loop); cmpw(Address(esi, eax, times_2, Constant(Array::base_offset())), ebx); jcc(equal, Constant(success)); incl(eax); bind(test); cmpl(eax, edx); jcc(less, Constant(loop)); comment("Return -1 by pushing the value and jumping to the return address"); bind(failure); push_int(-1); jmp(edi); comment("Return i - offset by pushing the value and jumping to the return address"); bind(success); movl(esi, Address(ecx, Constant(String::offset_offset()))); // i = offset + fromIndex subl(eax, esi); push_int(eax); jmp(edi); rom_linkable_entry_end(); // native_string_indexof_entry } //----------------------java.lang.String.charAt--------------------------- { rom_linkable_entry("native_string_charAt_entry"); if (AddExternCUnderscore) { emit_instruction("jmp _interpreter_method_entry"); } else { emit_instruction("jmp interpreter_method_entry"); } rom_linkable_entry_end(); } //----------------------java.lang.String(java.lang.StringBuffer)------------- { rom_linkable_entry("native_string_init_entry"); if (AddExternCUnderscore) { emit_instruction("jmp _interpreter_method_entry"); } else { emit_instruction("jmp interpreter_method_entry"); } rom_linkable_entry_end(); } //----------------------java.lang.String.equals(java.lang.Object)------------ { rom_linkable_entry("native_string_equals_entry"); if (AddExternCUnderscore) { emit_instruction("jmp _interpreter_method_entry"); } else { emit_instruction("jmp interpreter_method_entry"); } rom_linkable_entry_end(); } //----------------------java.lang.String.indexOf(java.lang.String)----------- { rom_linkable_entry("native_string_indexof0_string_entry"); if (AddExternCUnderscore) { emit_instruction("jmp _interpreter_method_entry"); } else { emit_instruction("jmp interpreter_method_entry"); } rom_linkable_entry_end(); } //----------------------java.lang.String.indexOf(java.lang.String)----------- { rom_linkable_entry("native_string_indexof_string_entry"); if (AddExternCUnderscore) { emit_instruction("jmp _interpreter_method_entry"); } else { emit_instruction("jmp interpreter_method_entry"); } rom_linkable_entry_end(); } //----------------------java.lang.String.compareTo--------------------------- { // java.lang.String.compareTo // Method int compareTo(java.lang.String) rom_linkable_entry("native_string_compareTo_entry"); wtk_profile_quick_call(/* param_size*/ 2); comment("preserve method"); pushl(ebx); // 8 is return address plus pushed method int str1_offset = JavaFrame::arg_offset_from_sp(0) + 8, str0_offset = JavaFrame::arg_offset_from_sp(1) + 8; comment("load arguments to registers"); movl(ecx, Address(esp, Constant(str1_offset))); movl(eax, Address(esp, Constant(str0_offset))); // eax: str0: this String // ebx: str1: String to compare against Label bailout; comment("Null check"); testl(ecx, ecx); jcc(zero, Constant(bailout)); comment("get str0.value[]"); movl(esi, Address(eax, Constant(String::value_offset()))); comment("get str0.offset"); movl(ebx, Address(eax, Constant(String::offset_offset()))); comment("compute start of character data"); leal(esi, Address(esi, ebx, times_2, Constant(Array::base_offset()))); comment("get str0.count"); movl(eax, Address(eax, Constant(String::count_offset()))); comment("get str1.value[]"); movl(edi, Address(ecx, Constant(String::value_offset()))); comment("get str1.offset"); movl(ebx, Address(ecx, Constant(String::offset_offset()))); comment("compute start of character data"); leal(edi, Address(edi, ebx, times_2, Constant(Array::base_offset()))); comment("get str1.count"); movl(ebx, Address(ecx, Constant(String::count_offset()))); // esi = str0 start of character data // edi = str1 start of character data // eax = str0 length // ebx = str1 length Label str1_longest; subl(eax, ebx); jcc(greater_equal, Constant(str1_longest)); // str1 is longer than str0 addl(ebx, eax); bind(str1_longest); // esi = str0 start of character data // edi = str1 start of character data // eax = str0.count - str1.count // ebx = min(str0.count, str1.count) // save str0.count - str1.count, we might need it later pushl(eax); xorl(ecx, ecx); Label loop, check_lengths, done; bind(loop); cmpl(ecx, ebx); jcc(above_equal, Constant(check_lengths)); movzxw(eax, Address(esi, ecx, times_2)); movzxw(edx, Address(edi, ecx, times_2)); subl(eax, edx); jcc(not_equal, Constant(done)); incl(ecx); jmp(Constant(loop)); bind(check_lengths); movl(eax, Address(esp)); bind(done); popl(ebx); // remove saved length difference // Push result on stack and return to caller popl(ebx); // remove method popl(edi); // pop return address addl(esp, Constant(2 * BytesPerStackElement)); // remove arguments push_int(eax); // push result jmp(edi); // return comment("Bail out to the general compareTo implementation"); bind(bailout); comment("pop method"); popl(ebx); if (AddExternCUnderscore) { emit_instruction("jmp _interpreter_method_entry"); } else { emit_instruction("jmp interpreter_method_entry"); } rom_linkable_entry_end(); // native_string_compareTo_entry } //----------------------java.lang.String.endsWith---------------- { // java.lang.String.endsWith // Method boolean endsWith(java.lang.String) rom_linkable_entry("native_string_endsWith_entry"); wtk_profile_quick_call(/* param_size*/ 2); Label bailout; // 4 is return address int suffix_offset = JavaFrame::arg_offset_from_sp(0) + 4, this_offset = JavaFrame::arg_offset_from_sp(1) + 4; comment("load arguments to registers"); movl(eax, Address(esp, Constant(suffix_offset))); cmpl(eax, Constant(0)); jcc(equal, Constant(bailout)); movl(ecx, Address(esp, Constant(this_offset))); comment("Pop the return address"); popl(edi); movl(edx, Address(ecx, Constant(String::count_offset()))); subl(edx, Address(eax, Constant(String::count_offset()))); comment("Push (this.count - suffix.count) for toffset"); pushl(edx); comment("Push back the return address"); pushl(edi); jmp(Constant("native_string_startsWith_entry")); comment("Bail out to the general startsWith implementation"); bind(bailout); if (AddExternCUnderscore) { emit_instruction("jmp _interpreter_method_entry"); } else { emit_instruction("jmp interpreter_method_entry"); } rom_linkable_entry_end(); // native_string_endsWith_entry } //----------------------java.lang.String.startsWith---------------- { // java.lang.String.startsWith // Method boolean startsWith(java.lang.String) rom_linkable_entry("native_string_startsWith0_entry"); wtk_profile_quick_call(/* param_size*/ 2); Label bailout; // 4 is return address int prefix_offset = JavaFrame::arg_offset_from_sp(0) + 4; comment("Check if prefix is null"); cmpl(Address(esp, Constant(prefix_offset)), Constant(0)); jcc(equal, Constant(bailout)); comment("Pop the return address"); popl(edi); comment("Push zero for toffset"); pushl(Constant(0)); comment("Push back the return address"); pushl(edi); jmp(Constant("native_string_startsWith_entry")); comment("Bail out to the general startsWith implementation"); bind(bailout); if (AddExternCUnderscore) { emit_instruction("jmp _interpreter_method_entry"); } else { emit_instruction("jmp interpreter_method_entry"); } rom_linkable_entry_end(); // native_string_startsWith0_entry } { // ----------- java.lang.String.startsWith ------------------------------ // Method boolean startsWith(java.lang.String,int) rom_linkable_entry("native_string_startsWith_entry"); wtk_profile_quick_call(/* param_size*/ 3); Label bailout, return_false; // 4 is return address int prefix_offset = JavaFrame::arg_offset_from_sp(1) + 4; comment("Check if prefix is null"); cmpl(Address(esp, Constant(prefix_offset)), Constant(0)); jcc(equal, Constant(bailout)); comment("Pop the return address"); popl(edi); comment("Pop the argument: toffset"); pop_int(edx, edx); comment("Pop the argument: prefix"); pop_obj(eax, eax); comment("Pop the receiver"); pop_obj(ecx, ecx); comment("Preserve the return address"); pushl(edi); // ecx: this String // eax: prefix cmpl(edx, Constant(0)); jcc(less, Constant(return_false)); comment("if (toffset > this.count - prefix.count) return false;"); movl(ebx, Address(ecx, Constant(String::count_offset()))); subl(ebx, Address(eax, Constant(String::count_offset()))); cmpl(edx, ebx); jcc(greater, Constant(return_false)); comment("get this.value[]"); movl(esi, Address(ecx, Constant(String::value_offset()))); comment("get this.offset"); movl(ebx, Address(ecx, Constant(String::offset_offset()))); comment("add toffset"); addl(ebx, edx); comment("compute start of character data"); leal(esi, Address(esi, ebx, times_2, Constant(Array::base_offset()))); comment("get prefix.value[]"); movl(edi, Address(eax, Constant(String::value_offset()))); comment("get prefix.offset"); movl(ebx, Address(eax, Constant(String::offset_offset()))); comment("compute start of character data"); leal(edi, Address(edi, ebx, times_2, Constant(Array::base_offset()))); comment("get prefix.count"); movl(ecx, Address(eax, Constant(String::count_offset()))); comment("get the number of bytes to compare"); shll(ecx, Constant(1)); comment("memcmp(edi, esi, ecx);"); pushl(ecx); pushl(esi); pushl(edi); if (GenerateInlineAsm) { // VC++ treats memcmp() as an intrinsic function and would cause // reference to memcmp in Interpreter_i386.c to fail to compile. call(Constant("memcmp_from_interpreter")); } else { call(Constant("memcmp")); } addl(esp, Constant(12)); cmpl(eax, Constant(0)); jcc(not_equal, Constant(return_false)); // Push 1 on stack and return to caller popl(edi); // pop return address push_int(1); // push result jmp(edi); // return bind(return_false); // Push 0 on stack and return to caller popl(edi); // pop return address push_int(0); // push result jmp(edi); // return comment("Bail out to the general startsWith implementation"); bind(bailout); if (AddExternCUnderscore) { emit_instruction("jmp _interpreter_method_entry"); } else { emit_instruction("jmp interpreter_method_entry"); } rom_linkable_entry_end(); // native_string_startsWith_entry } }
address generate_call_stub(address& return_address) { StubCodeMark mark(this, "StubRoutines", "call_stub"); address start = __ pc(); // stub code parameters / addresses assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code"); bool sse_save = false; const Address esp_after_call(ebp, -4 * wordSize); // same as in generate_catch_exception()! const Address mxcsr_save (ebp, -4 * wordSize); const Address result (ebp, 3 * wordSize); const Address result_type (ebp, 4 * wordSize); const Address method (ebp, 5 * wordSize); const Address entry_point (ebp, 6 * wordSize); const Address parameters (ebp, 7 * wordSize); const Address parameter_size(ebp, 8 * wordSize); const Address thread (ebp, 9 * wordSize); // same as in generate_catch_exception()! #ifdef COMPILER2 sse_save = VM_Version::supports_sse(); #endif // stub code __ enter(); // save edi, esi, & ebx, according to C calling conventions __ pushl(edi); __ pushl(esi); __ pushl(ebx); __ subl(esp, wordSize); // space for %mxcsr save // save and initialize %mxcsr if (sse_save) { __ stmxcsr(mxcsr_save); __ ldmxcsr(Address((int) StubRoutines::addr_mxcsr_std(), relocInfo::none)); } #ifdef ASSERT // make sure we have no pending exceptions { Label L; __ movl(ecx, thread); __ cmpl(Address(ecx, Thread::pending_exception_offset()), (int)NULL); __ jcc(Assembler::equal, L); __ stop("StubRoutines::call_stub: entered with pending exception"); __ bind(L); } #endif // pass parameters if any Label parameters_done; __ movl(ecx, parameter_size); // parameter counter __ testl(ecx, ecx); __ jcc(Assembler::zero, parameters_done); // parameter passing loop Label loop; __ movl(edx, parameters); // parameter pointer __ movl(esi, ecx); // parameter counter is in esi now __ movl(ecx, Address(edx)); // get first parameter in case it is a receiver __ bind(loop); __ movl(eax, Address(edx)); // get parameter __ addl(edx, wordSize); // advance to next parameter __ decl(esi); // decrement counter __ pushl(eax); // pass parameter __ jcc(Assembler::notZero, loop); // call Java function __ bind(parameters_done); __ movl(ebx, method); // get methodOop __ movl(esi, entry_point); // get entry_point __ call(esi, relocInfo::none); return_address = __ pc(); // store result depending on type // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT) __ movl(edi, result); Label is_long, is_float, is_double, exit; __ movl(esi, result_type); __ cmpl(esi, T_LONG); __ jcc(Assembler::equal, is_long); __ cmpl(esi, T_FLOAT); __ jcc(Assembler::equal, is_float); __ cmpl(esi, T_DOUBLE); __ jcc(Assembler::equal, is_double); // handle T_INT case __ movl(Address(edi), eax); __ bind(exit); // pop parameters __ movl(ecx, parameter_size); __ leal(esp, Address(esp, ecx, Address::times_4)); // check if parameters have been popped correctly #ifdef ASSERT Label esp_wrong; __ leal(edi, esp_after_call); __ cmpl(esp, edi); __ jcc(Assembler::notEqual, esp_wrong); #endif // restore %mxcsr if (sse_save) { __ ldmxcsr(mxcsr_save); } // restore edi & esi __ addl(esp, wordSize); // remove %mxcsr save area __ popl(ebx); __ popl(esi); __ popl(edi); // return __ popl(ebp); __ ret(0); // handle return types different from T_INT __ bind(is_long); __ movl(Address(edi, 0 * wordSize), eax); __ movl(Address(edi, 1 * wordSize), edx); __ jmp(exit); __ bind(is_float); __ fstp_s(Address(edi)); __ jmp(exit); __ bind(is_double); __ fstp_d(Address(edi)); __ jmp(exit); #ifdef ASSERT // stack pointer misadjusted __ bind(esp_wrong); __ stop("esp wrong after Java call"); #endif return start; }
void NativeGenerator::generate_native_system_entries() { comment_section("Native entry points for system functions"); rom_linkable_entry("native_jvm_unchecked_byte_arraycopy_entry"); jmp(Constant("native_system_arraycopy_entry")); rom_linkable_entry_end(); rom_linkable_entry("native_jvm_unchecked_char_arraycopy_entry"); jmp(Constant("native_system_arraycopy_entry")); rom_linkable_entry_end(); rom_linkable_entry("native_jvm_unchecked_int_arraycopy_entry"); jmp(Constant("native_system_arraycopy_entry")); rom_linkable_entry_end(); rom_linkable_entry("native_jvm_unchecked_long_arraycopy_entry"); jmp(Constant("native_system_arraycopy_entry")); rom_linkable_entry_end(); rom_linkable_entry("native_jvm_unchecked_obj_arraycopy_entry"); jmp(Constant("native_system_arraycopy_entry")); rom_linkable_entry_end(); rom_linkable_entry("native_system_arraycopy_entry"); wtk_profile_quick_call(/* param_size*/ 5); Label bailout, cont, try_2_byte, try_4_byte, try_8_byte, do_4_byte; // public static native void arraycopy(Object src, int src_position, // Object dst, int dst_position, // int length); comment("preserve method"); pushl(ebx); // 8 is for the preserved method and the return address int length_offset = JavaFrame::arg_offset_from_sp(0) + 8, dst_pos_offset = JavaFrame::arg_offset_from_sp(1) + 8, dst_offset = JavaFrame::arg_offset_from_sp(2) + 8, src_pos_offset = JavaFrame::arg_offset_from_sp(3) + 8, src_offset = JavaFrame::arg_offset_from_sp(4) + 8; comment("load arguments to registers"); movl(ecx, Address(esp, Constant(length_offset))); movl(edi, Address(esp, Constant(dst_pos_offset))); movl(edx, Address(esp, Constant(dst_offset))); movl(esi, Address(esp, Constant(src_pos_offset))); movl(eax, Address(esp, Constant(src_offset))); // eax = src // ebx = tmp register // edx = dst // ecx = length // esi = src_pos // edi = dst_pos comment("if (src == NULL) goto bailout;"); testl( eax, eax ); jcc(zero, Constant(bailout)); comment("if (dst == NULL) goto bailout;"); testl( edx, edx ); jcc(zero, Constant(bailout)); comment("if (length < 0 || src_pos < 0 || dst_pos < 0) goto bailout;"); movl(ebx, ecx); orl(ebx, esi); orl(ebx, edi); jcc(negative, Constant(bailout)); comment("if ((unsigned int) dst.length < (unsigned int) dst_pos + (unsigned int) length) goto bailout;"); movl(ebx, ecx); addl(ebx, edi); cmpl(Address(edx, Constant(Array::length_offset())), ebx); jcc(below, Constant(bailout)); comment("if ((unsigned int) src.length < (unsigned int) src_pos + (unsigned int) length) goto bailout;"); movl(ebx, ecx); addl(ebx, esi); cmpl(Address(eax, Constant(Array::length_offset())), ebx); jcc(below, Constant(bailout)); comment("Same near test"); comment("if (src.near != dst.near) goto bailout;"); movl(ebx, Address(eax, Constant(Oop::klass_offset()))); cmpl(ebx, Address(edx, Constant(Oop::klass_offset()))); jcc(not_equal, Constant(bailout)); comment("load the instance_size"); movl(ebx, Address(ebx, Constant(JavaNear::klass_offset()))); movsxw(ebx, Address(ebx, Constant(FarClass::instance_size_offset()))); comment("if (instance_size != size_type_array_1()) goto try_2_byte"); cmpl(ebx, Constant(InstanceSize::size_type_array_1)); jcc(not_equal, Constant(try_2_byte)); leal(esi, Address(eax, esi, times_1, Constant(Array::base_offset()))); leal(edi, Address(edx, edi, times_1, Constant(Array::base_offset()))); jmp(Constant(cont)); bind(try_2_byte); comment("if (instance_size != size_type_array_2()) goto try_4_byte"); cmpl(ebx, Constant(InstanceSize::size_type_array_2)); jcc(not_equal, Constant(try_4_byte)); leal(esi, Address(eax, esi, times_2, Constant(Array::base_offset()))); leal(edi, Address(edx, edi, times_2, Constant(Array::base_offset()))); shll(ecx, Constant(1)); jmp(Constant(cont)); bind(try_4_byte); comment("if (instance_size == size_type_array_4()) goto do_4_byte"); cmpl(ebx, Constant(InstanceSize::size_type_array_4)); jcc(equal, Constant(do_4_byte) ); comment("if (instance_size != size_obj_array()) goto bailout"); cmpl(ebx, Constant(InstanceSize::size_obj_array)); jcc(not_equal, Constant(bailout)); comment("if (dst < old_generation_end) goto bailout"); cmpl( edx, Address( Constant( "_old_generation_end" ) ) ); jcc( below, Constant(bailout)); bind(do_4_byte); leal(esi, Address(eax, esi, times_4, Constant(Array::base_offset()))); leal(edi, Address(edx, edi, times_4, Constant(Array::base_offset()))); shll(ecx, Constant(2)); bind(cont); comment("memmove(edi, esi, ecx);"); pushl(ecx); pushl(esi); pushl(edi); call(Constant("memmove")); addl(esp, Constant(16)); ret(Constant(5 * BytesPerStackElement)); comment("Bail out to the general arraycopy implementation"); bind(bailout); comment("pop method"); popl(ebx); if (AddExternCUnderscore) { emit_instruction("jmp _interpreter_method_entry"); } else { emit_instruction("jmp interpreter_method_entry"); } rom_linkable_entry_end(); // native_system_arraycopy_entry }
int cmph(const void *a, const void *b) { return cmpl(b,a); }
address JNI_FastGetField::generate_fast_get_float_field0(BasicType type) { const char *name; switch (type) { case T_FLOAT: name = "jni_fast_GetFloatField"; break; case T_DOUBLE: name = "jni_fast_GetDoubleField"; break; default: ShouldNotReachHere(); } ResourceMark rm; BufferBlob* b = BufferBlob::create(name, BUFFER_SIZE); address fast_entry = b->instructions_begin(); CodeBuffer cbuf(fast_entry, b->instructions_size()); MacroAssembler* masm = new MacroAssembler(&cbuf); Label slow; ExternalAddress counter(SafepointSynchronize::safepoint_counter_addr()); __ mov32 (rcounter, counter); __ mov (robj, c_rarg1); __ testb (rcounter, 1); __ jcc (Assembler::notZero, slow); if (os::is_MP()) { __ xorptr(robj, rcounter); __ xorptr(robj, rcounter); // obj, since // robj ^ rcounter ^ rcounter == robj // robj is data dependent on rcounter. } __ movptr(robj, Address(robj, 0)); // *obj __ mov (roffset, c_rarg2); __ shrptr(roffset, 2); // offset assert(count < LIST_CAPACITY, "LIST_CAPACITY too small"); speculative_load_pclist[count] = __ pc(); switch (type) { case T_FLOAT: __ movflt (xmm0, Address(robj, roffset, Address::times_1)); break; case T_DOUBLE: __ movdbl (xmm0, Address(robj, roffset, Address::times_1)); break; default: ShouldNotReachHere(); } if (os::is_MP()) { __ lea(rcounter_addr, counter); __ movdq (rax, xmm0); // counter address is data dependent on xmm0. __ xorptr(rcounter_addr, rax); __ xorptr(rcounter_addr, rax); __ cmpl (rcounter, Address(rcounter_addr, 0)); } else { __ cmp32 (rcounter, counter); } __ jcc (Assembler::notEqual, slow); __ ret (0); slowcase_entry_pclist[count++] = __ pc(); __ bind (slow); address slow_case_addr; switch (type) { case T_FLOAT: slow_case_addr = jni_GetFloatField_addr(); break; case T_DOUBLE: slow_case_addr = jni_GetDoubleField_addr(); } // tail call __ jump (ExternalAddress(slow_case_addr)); __ flush (); return fast_entry; }
void OptoRuntime::generate_exception_blob() { // Capture info about frame layout enum layout { thread_off, // last_java_sp // The frame sender code expects that rbp will be in the "natural" place and // will override any oopMap setting for it. We must therefore force the layout // so that it agrees with the frame sender code. rbp_off, return_off, // slot for return address framesize }; // allocate space for the code ResourceMark rm; // setup code generation tools CodeBuffer buffer("exception_blob", 512, 512); MacroAssembler* masm = new MacroAssembler(&buffer); OopMapSet *oop_maps = new OopMapSet(); address start = __ pc(); __ push(rdx); __ subptr(rsp, return_off * wordSize); // Prolog! // rbp, location is implicitly known __ movptr(Address(rsp,rbp_off *wordSize), rbp); // Store exception in Thread object. We cannot pass any arguments to the // handle_exception call, since we do not want to make any assumption // about the size of the frame where the exception happened in. __ get_thread(rcx); __ movptr(Address(rcx, JavaThread::exception_oop_offset()), rax); __ movptr(Address(rcx, JavaThread::exception_pc_offset()), rdx); // This call does all the hard work. It checks if an exception handler // exists in the method. // If so, it returns the handler address. // If not, it prepares for stack-unwinding, restoring the callee-save // registers of the frame being removed. // __ movptr(Address(rsp, thread_off * wordSize), rcx); // Thread is first argument __ set_last_Java_frame(rcx, noreg, noreg, NULL); __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C))); // No registers to map, rbp is known implicitly oop_maps->add_gc_map( __ pc() - start, new OopMap( framesize, 0 )); __ get_thread(rcx); __ reset_last_Java_frame(rcx, false, false); // Restore callee-saved registers __ movptr(rbp, Address(rsp, rbp_off * wordSize)); __ addptr(rsp, return_off * wordSize); // Epilog! __ pop(rdx); // Exception pc // rax: exception handler for given <exception oop/exception pc> // Restore SP from BP if the exception PC is a MethodHandle call. __ cmpl(Address(rcx, JavaThread::is_method_handle_exception_offset()), 0); __ cmovptr(Assembler::notEqual, rsp, rbp); // We have a handler in rax, (could be deopt blob) // rdx - throwing pc, deopt blob will need it. __ push(rax); // Get the exception __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset())); // Get the exception pc in case we are deoptimized __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset())); #ifdef ASSERT __ movptr(Address(rcx, JavaThread::exception_handler_pc_offset()), NULL_WORD); __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD); #endif // Clear the exception oop so GC no longer processes it as a root. __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD); __ pop(rcx); // rax: exception oop // rcx: exception handler // rdx: exception pc __ jmp (rcx); // ------------- // make sure all code is generated masm->flush(); _exception_blob = ExceptionBlob::create(&buffer, oop_maps, framesize); }
// used by compiler only; may use only caller saved registers eax, ebx, ecx. // edx holds first int arg, esi, edi, ebp are callee-save & must be preserved. // Leave reciever in ecx; required behavior when +OptoArgsInRegisters // is modifed to put first oop in ecx. // // NOTE: If this code is used by the C1, the receiver_location is always 0. VtableStub* VtableStubs::create_vtable_stub(int vtable_index, int receiver_location) { const int i486_code_length = VtableStub::pd_code_size_limit(true); VtableStub* s = new(i486_code_length) VtableStub(true, vtable_index, receiver_location); ResourceMark rm; MacroAssembler* masm = new MacroAssembler(new CodeBuffer(s->entry_point(), i486_code_length)); #ifndef PRODUCT #ifdef COMPILER2 if (CountCompiledCalls) __ incl(Address((int)OptoRuntime::nof_megamorphic_calls_addr(), relocInfo::none)); #endif #endif // get receiver (need to skip return address on top of stack) #ifdef COMPILER1 assert(receiver_location == 0, "receiver is always in ecx - no location info needed"); #else if( receiver_location < SharedInfo::stack0 ) { assert(receiver_location == ECX_num, "receiver expected in ecx"); } else { __ movl(ecx, Address(esp, SharedInfo::reg2stack(OptoReg::Name(receiver_location)) * wordSize+wordSize/*skip return address*/)); } #endif // get receiver klass address npe_addr = __ pc(); __ movl(eax, Address(ecx, oopDesc::klass_offset_in_bytes())); // compute entry offset (in words) int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size(); #ifndef PRODUCT if (DebugVtables) { Label L; // check offset vs vtable length __ cmpl(Address(eax, instanceKlass::vtable_length_offset()*wordSize), vtable_index*vtableEntry::size()); __ jcc(Assembler::greater, L); __ movl(ebx, vtable_index); __ call_VM(noreg, CAST_FROM_FN_PTR(address, bad_compiled_vtable_index), ecx, ebx); __ bind(L); } #endif // PRODUCT // load methodOop and target address #ifdef COMPILER1 __ movl(ebx, Address(eax, entry_offset*wordSize + vtableEntry::method_offset_in_bytes())); address ame_addr = __ pc(); __ movl(edx, Address(ebx, methodOopDesc::from_compiled_code_entry_point_offset())); if (DebugVtables) { Label L; __ testl(edx, edx); __ jcc(Assembler::notZero, L); __ stop("Vtable entry is NULL"); __ bind(L); } // eax: receiver klass // ebx: methodOop // ecx: receiver // edx: entry point __ jmp(edx); #else __ movl(eax, Address(eax, entry_offset*wordSize + vtableEntry::method_offset_in_bytes())); address ame_addr = __ pc(); __ movl(ebx, Address(eax, methodOopDesc::from_compiled_code_entry_point_offset())); if (DebugVtables) { Label L; __ testl(ebx, ebx); __ jcc(Assembler::notZero, L); __ stop("Vtable entry is NULL"); __ bind(L); } // jump to target (either compiled code or c2iadapter) // eax: methodOop (in case we call c2iadapter) __ jmp(ebx); #endif // COMPILER1 masm->flush(); s->set_exception_points(npe_addr, ame_addr); return s; }