void ShapeCompPanel::UpdateBtnColor() { wxColor col_begin(m_pc->col_begin.r, m_pc->col_begin.g, m_pc->col_begin.b, m_pc->col_begin.a); m_begin_col_btn->SetBackgroundColour(col_begin); wxColor col_end(m_pc->col_end.r, m_pc->col_end.g, m_pc->col_end.b, m_pc->col_end.a); m_end_col_btn->SetBackgroundColour(col_end); }
T const operator()( A_Matrix const & A, //the scattering matrix A working Offset_Itor off_begin, //introduced beam tilt Current_Itor current_begin, //target current T const pi_lambda_t = 7.879 ) const { typedef typename Current_Itor::value_type value_type; auto I = feng::construct_a<value_type>().make_new_i_with_offset( A, pi_lambda_t, off_begin ); T residual = 0; std::size_t const mid = I.row() >> 1; //the central column feng::for_each( I.col_begin(mid), I.col_end(mid), current_begin, [&residual](value_type const v1, value_type const v2) { auto const diff = v1 - v2; residual += diff*diff; } ); return residual; }
const complex_matrix_type make_ug( const matrix_type& G, const matrix_type& A, const matrix_type& D ) const { assert( G.col() == 3 ); assert( A.col() == 3 ); assert( D.col() == 1 ); assert( A.row() == D.row() ); auto const M = make_matrix(); auto const S = G * ( M.inverse() ); matrix_type s( 1, S.row() ); for ( size_type i = 0; i < S.row(); ++ i ) { s[0][i] = value_type( 0.5 ) * std::sqrt( std::inner_product( S.row_begin( i ), S.row_end( i ), S.row_begin( i ), value_type( 0 ) ) ); } auto const piomega = 3.141592553590 * feng::inner_product( array_type( M[0][0], M[1][0], M[2][0] ), feng::cross_product( array_type( M[0][1], M[1][1], M[2][1] ), array_type( M[0][2], M[1][2], M[2][2] ) ) ); auto const atomcellfacte = make_gaussian_electron( s, v0 ); const complex_matrix_type dwss = D * feng::pow( s, value_type( 2 ) ); const complex_matrix_type piag = A * G.transpose(); auto fact = feng::exp( - dwss - piag * complex_type( 0, 6.2831853071796 ) ); std::transform( fact.begin(), fact.end(), atomcellfacte.begin(), fact.begin(), [piomega]( const complex_type f, const value_type a ) { return f * a / piomega; } ); complex_matrix_type Ug( fact.col(), 1 ); for ( size_type i = 0; i < fact.col(); ++i ) { Ug[i][0] = std::accumulate( fact.col_begin( i ), fact.col_end( i ), complex_type() ); //if ( std::abs(Ug[i][0].real()) < 1.0e-8 ) Ug[i][0].real(0); //if ( std::abs(Ug[i][0].imag()) < 1.0e-8 ) Ug[i][0].imag(0); } return Ug; }
const_reverse_col_type col_crbegin( const size_type index = 0 ) const { return const_reverse_col_type( col_end( index ) ); }
reverse_col_type col_rbegin( const size_type index = 0 ) { return reverse_col_type( col_end( index ) ); }