示例#1
0
static int test_select_8(unsigned char a, unsigned char b)
{
    unsigned char selected = constant_time_select_8(CONSTTIME_TRUE_8, a, b);
    if (selected != a) {
        fprintf(stderr, "Test failed for constant_time_select(%u, %u,"
                "%u): expected %u(first value), got %u\n",
                CONSTTIME_TRUE, a, b, a, selected);
        return 1;
    }
    selected = constant_time_select_8(CONSTTIME_FALSE_8, a, b);
    if (selected != b) {
        fprintf(stderr, "Test failed for constant_time_select(%u, %u,"
                "%u): expected %u(second value), got %u\n",
                CONSTTIME_FALSE, a, b, b, selected);
        return 1;
    }
    return 0;
}
示例#2
0
void EVP_tls_cbc_copy_mac(uint8_t *out, size_t md_size, const uint8_t *in,
                          size_t in_len, size_t orig_len) {
  uint8_t rotated_mac1[EVP_MAX_MD_SIZE], rotated_mac2[EVP_MAX_MD_SIZE];
  uint8_t *rotated_mac = rotated_mac1;
  uint8_t *rotated_mac_tmp = rotated_mac2;

  /* mac_end is the index of |in| just after the end of the MAC. */
  size_t mac_end = in_len;
  size_t mac_start = mac_end - md_size;

  assert(orig_len >= in_len);
  assert(in_len >= md_size);
  assert(md_size <= EVP_MAX_MD_SIZE);

  /* scan_start contains the number of bytes that we can ignore because
   * the MAC's position can only vary by 255 bytes. */
  size_t scan_start = 0;
  /* This information is public so it's safe to branch based on it. */
  if (orig_len > md_size + 255 + 1) {
    scan_start = orig_len - (md_size + 255 + 1);
  }

  size_t rotate_offset = 0;
  uint8_t mac_started = 0;
  OPENSSL_memset(rotated_mac, 0, md_size);
  for (size_t i = scan_start, j = 0; i < orig_len; i++, j++) {
    if (j >= md_size) {
      j -= md_size;
    }
    crypto_word_t is_mac_start = constant_time_eq_w(i, mac_start);
    mac_started |= is_mac_start;
    uint8_t mac_ended = constant_time_ge_8(i, mac_end);
    rotated_mac[j] |= in[i] & mac_started & ~mac_ended;
    /* Save the offset that |mac_start| is mapped to. */
    rotate_offset |= j & is_mac_start;
  }

  /* Now rotate the MAC. We rotate in log(md_size) steps, one for each bit
   * position. */
  for (size_t offset = 1; offset < md_size; offset <<= 1, rotate_offset >>= 1) {
    /* Rotate by |offset| iff the corresponding bit is set in
     * |rotate_offset|, placing the result in |rotated_mac_tmp|. */
    const uint8_t skip_rotate = (rotate_offset & 1) - 1;
    for (size_t i = 0, j = offset; i < md_size; i++, j++) {
      if (j >= md_size) {
        j -= md_size;
      }
      rotated_mac_tmp[i] =
          constant_time_select_8(skip_rotate, rotated_mac[i], rotated_mac[j]);
    }

    /* Swap pointers so |rotated_mac| contains the (possibly) rotated value.
     * Note the number of iterations and thus the identity of these pointers is
     * public information. */
    uint8_t *tmp = rotated_mac;
    rotated_mac = rotated_mac_tmp;
    rotated_mac_tmp = tmp;
  }

  OPENSSL_memcpy(out, rotated_mac, md_size);
}
示例#3
0
int EVP_tls_cbc_digest_record(const EVP_MD *md, uint8_t *md_out,
                              size_t *md_out_size, const uint8_t header[13],
                              const uint8_t *data, size_t data_plus_mac_size,
                              size_t data_plus_mac_plus_padding_size,
                              const uint8_t *mac_secret,
                              unsigned mac_secret_length) {
  HASH_CTX md_state;
  void (*md_final_raw)(HASH_CTX *ctx, uint8_t *md_out);
  void (*md_transform)(HASH_CTX *ctx, const uint8_t *block);
  unsigned md_size, md_block_size = 64;
  /* md_length_size is the number of bytes in the length field that terminates
   * the hash. */
  unsigned md_length_size = 8;

  /* Bound the acceptable input so we can forget about many possible overflows
   * later in this function. This is redundant with the record size limits in
   * TLS. */
  if (data_plus_mac_plus_padding_size >= 1024 * 1024) {
    assert(0);
    return 0;
  }

  switch (EVP_MD_type(md)) {
    case NID_sha1:
      SHA1_Init(&md_state.sha1);
      md_final_raw = tls1_sha1_final_raw;
      md_transform = tls1_sha1_transform;
      md_size = SHA_DIGEST_LENGTH;
      break;

    case NID_sha256:
      SHA256_Init(&md_state.sha256);
      md_final_raw = tls1_sha256_final_raw;
      md_transform = tls1_sha256_transform;
      md_size = SHA256_DIGEST_LENGTH;
      break;

    case NID_sha384:
      SHA384_Init(&md_state.sha512);
      md_final_raw = tls1_sha512_final_raw;
      md_transform = tls1_sha512_transform;
      md_size = SHA384_DIGEST_LENGTH;
      md_block_size = 128;
      md_length_size = 16;
      break;

    default:
      /* EVP_tls_cbc_record_digest_supported should have been called first to
       * check that the hash function is supported. */
      assert(0);
      *md_out_size = 0;
      return 0;
  }

  assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
  assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
  assert(md_size <= EVP_MAX_MD_SIZE);

  static const size_t kHeaderLength = 13;

  /* kVarianceBlocks is the number of blocks of the hash that we have to
   * calculate in constant time because they could be altered by the
   * padding value.
   *
   * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
   * required to be minimal. Therefore we say that the final six blocks
   * can vary based on the padding. */
  static const size_t kVarianceBlocks = 6;

  /* From now on we're dealing with the MAC, which conceptually has 13
   * bytes of `header' before the start of the data. */
  size_t len = data_plus_mac_plus_padding_size + kHeaderLength;
  /* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
   * |header|, assuming that there's no padding. */
  size_t max_mac_bytes = len - md_size - 1;
  /* num_blocks is the maximum number of hash blocks. */
  size_t num_blocks =
      (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
  /* In order to calculate the MAC in constant time we have to handle
   * the final blocks specially because the padding value could cause the
   * end to appear somewhere in the final |kVarianceBlocks| blocks and we
   * can't leak where. However, |num_starting_blocks| worth of data can
   * be hashed right away because no padding value can affect whether
   * they are plaintext. */
  size_t num_starting_blocks = 0;
  /* k is the starting byte offset into the conceptual header||data where
   * we start processing. */
  size_t k = 0;
  /* mac_end_offset is the index just past the end of the data to be
   * MACed. */
  size_t mac_end_offset = data_plus_mac_size + kHeaderLength - md_size;
  /* c is the index of the 0x80 byte in the final hash block that
   * contains application data. */
  size_t c = mac_end_offset % md_block_size;
  /* index_a is the hash block number that contains the 0x80 terminating
   * value. */
  size_t index_a = mac_end_offset / md_block_size;
  /* index_b is the hash block number that contains the 64-bit hash
   * length, in bits. */
  size_t index_b = (mac_end_offset + md_length_size) / md_block_size;

  if (num_blocks > kVarianceBlocks) {
    num_starting_blocks = num_blocks - kVarianceBlocks;
    k = md_block_size * num_starting_blocks;
  }

  /* bits is the hash-length in bits. It includes the additional hash
   * block for the masked HMAC key. */
  size_t bits = 8 * mac_end_offset; /* at most 18 bits to represent */

  /* Compute the initial HMAC block. */
  bits += 8 * md_block_size;
  /* hmac_pad is the masked HMAC key. */
  uint8_t hmac_pad[MAX_HASH_BLOCK_SIZE];
  OPENSSL_memset(hmac_pad, 0, md_block_size);
  assert(mac_secret_length <= sizeof(hmac_pad));
  OPENSSL_memcpy(hmac_pad, mac_secret, mac_secret_length);
  for (size_t i = 0; i < md_block_size; i++) {
    hmac_pad[i] ^= 0x36;
  }

  md_transform(&md_state, hmac_pad);

  /* The length check means |bits| fits in four bytes. */
  uint8_t length_bytes[MAX_HASH_BIT_COUNT_BYTES];
  OPENSSL_memset(length_bytes, 0, md_length_size - 4);
  length_bytes[md_length_size - 4] = (uint8_t)(bits >> 24);
  length_bytes[md_length_size - 3] = (uint8_t)(bits >> 16);
  length_bytes[md_length_size - 2] = (uint8_t)(bits >> 8);
  length_bytes[md_length_size - 1] = (uint8_t)bits;

  if (k > 0) {
    /* k is a multiple of md_block_size. */
    uint8_t first_block[MAX_HASH_BLOCK_SIZE];
    OPENSSL_memcpy(first_block, header, 13);
    OPENSSL_memcpy(first_block + 13, data, md_block_size - 13);
    md_transform(&md_state, first_block);
    for (size_t i = 1; i < k / md_block_size; i++) {
      md_transform(&md_state, data + md_block_size * i - 13);
    }
  }

  uint8_t mac_out[EVP_MAX_MD_SIZE];
  OPENSSL_memset(mac_out, 0, sizeof(mac_out));

  /* We now process the final hash blocks. For each block, we construct
   * it in constant time. If the |i==index_a| then we'll include the 0x80
   * bytes and zero pad etc. For each block we selectively copy it, in
   * constant time, to |mac_out|. */
  for (size_t i = num_starting_blocks;
       i <= num_starting_blocks + kVarianceBlocks; i++) {
    uint8_t block[MAX_HASH_BLOCK_SIZE];
    uint8_t is_block_a = constant_time_eq_8(i, index_a);
    uint8_t is_block_b = constant_time_eq_8(i, index_b);
    for (size_t j = 0; j < md_block_size; j++) {
      uint8_t b = 0;
      if (k < kHeaderLength) {
        b = header[k];
      } else if (k < data_plus_mac_plus_padding_size + kHeaderLength) {
        b = data[k - kHeaderLength];
      }
      k++;

      uint8_t is_past_c = is_block_a & constant_time_ge_8(j, c);
      uint8_t is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1);
      /* If this is the block containing the end of the
       * application data, and we are at the offset for the
       * 0x80 value, then overwrite b with 0x80. */
      b = constant_time_select_8(is_past_c, 0x80, b);
      /* If this the the block containing the end of the
       * application data and we're past the 0x80 value then
       * just write zero. */
      b = b & ~is_past_cp1;
      /* If this is index_b (the final block), but not
       * index_a (the end of the data), then the 64-bit
       * length didn't fit into index_a and we're having to
       * add an extra block of zeros. */
      b &= ~is_block_b | is_block_a;

      /* The final bytes of one of the blocks contains the
       * length. */
      if (j >= md_block_size - md_length_size) {
        /* If this is index_b, write a length byte. */
        b = constant_time_select_8(
            is_block_b, length_bytes[j - (md_block_size - md_length_size)], b);
      }
      block[j] = b;
    }

    md_transform(&md_state, block);
    md_final_raw(&md_state, block);
    /* If this is index_b, copy the hash value to |mac_out|. */
    for (size_t j = 0; j < md_size; j++) {
      mac_out[j] |= block[j] & is_block_b;
    }
  }

  EVP_MD_CTX md_ctx;
  EVP_MD_CTX_init(&md_ctx);
  if (!EVP_DigestInit_ex(&md_ctx, md, NULL /* engine */)) {
    EVP_MD_CTX_cleanup(&md_ctx);
    return 0;
  }

  /* Complete the HMAC in the standard manner. */
  for (size_t i = 0; i < md_block_size; i++) {
    hmac_pad[i] ^= 0x6a;
  }

  EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
  EVP_DigestUpdate(&md_ctx, mac_out, md_size);
  unsigned md_out_size_u;
  EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
  *md_out_size = md_out_size_u;
  EVP_MD_CTX_cleanup(&md_ctx);

  return 1;
}
示例#4
0
int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen,
                                   const unsigned char *from, int flen,
                                   int num)
{
    int i;
    /* |em| is the encoded message, zero-padded to exactly |num| bytes */
    unsigned char *em = NULL;
    unsigned int good, found_zero_byte, mask;
    int zero_index = 0, msg_index, mlen = -1;

    if (tlen < 0 || flen < 0)
        return -1;

    /*
     * PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography Standard",
     * section 7.2.2.
     */

    if (flen > num || num < 11) {
        RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2,
               RSA_R_PKCS_DECODING_ERROR);
        return -1;
    }

    em = OPENSSL_malloc(num);
    if (em == NULL) {
        RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, ERR_R_MALLOC_FAILURE);
        return -1;
    }
    /*
     * Caller is encouraged to pass zero-padded message created with
     * BN_bn2binpad. Trouble is that since we can't read out of |from|'s
     * bounds, it's impossible to have an invariant memory access pattern
     * in case |from| was not zero-padded in advance.
     */
    for (from += flen, em += num, i = 0; i < num; i++) {
        mask = ~constant_time_is_zero(flen);
        flen -= 1 & mask;
        from -= 1 & mask;
        *--em = *from & mask;
    }
    from = em;

    good = constant_time_is_zero(from[0]);
    good &= constant_time_eq(from[1], 2);

    /* scan over padding data */
    found_zero_byte = 0;
    for (i = 2; i < num; i++) {
        unsigned int equals0 = constant_time_is_zero(from[i]);

        zero_index = constant_time_select_int(~found_zero_byte & equals0,
                                              i, zero_index);
        found_zero_byte |= equals0;
    }

    /*
     * PS must be at least 8 bytes long, and it starts two bytes into |from|.
     * If we never found a 0-byte, then |zero_index| is 0 and the check
     * also fails.
     */
    good &= constant_time_ge(zero_index, 2 + 8);

    /*
     * Skip the zero byte. This is incorrect if we never found a zero-byte
     * but in this case we also do not copy the message out.
     */
    msg_index = zero_index + 1;
    mlen = num - msg_index;

    /*
     * For good measure, do this check in constant time as well.
     */
    good &= constant_time_ge(tlen, mlen);

    /*
     * Even though we can't fake result's length, we can pretend copying
     * |tlen| bytes where |mlen| bytes would be real. Last |tlen| of |num|
     * bytes are viewed as circular buffer with start at |tlen|-|mlen'|,
     * where |mlen'| is "saturated" |mlen| value. Deducing information
     * about failure or |mlen| would take attacker's ability to observe
     * memory access pattern with byte granularity *as it occurs*. It
     * should be noted that failure is indistinguishable from normal
     * operation if |tlen| is fixed by protocol.
     */
    tlen = constant_time_select_int(constant_time_lt(num, tlen), num, tlen);
    msg_index = constant_time_select_int(good, msg_index, num - tlen);
    mlen = num - msg_index;
    for (from += msg_index, mask = good, i = 0; i < tlen; i++) {
        unsigned int equals = constant_time_eq(i, mlen);

        from -= tlen & equals;  /* if (i == mlen) rewind   */
        mask &= mask ^ equals;  /* if (i == mlen) mask = 0 */
        to[i] = constant_time_select_8(mask, from[i], to[i]);
    }

    OPENSSL_cleanse(em, num);
    OPENSSL_free(em);
    RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, RSA_R_PKCS_DECODING_ERROR);
    err_clear_last_constant_time(1 & good);

    return constant_time_select_int(good, mlen, -1);
}