void sload(const char *fn, int *SZ, long SZlen) { uint16_t numberChannels; size_t k=0; size_t numberSamples; double samplerate; double *t; char *str = NULL; #ifdef _WIN32 long int sz[2]; #else size_t sz[2]; #endif biosig_data_type *data; #ifdef __LIBBIOSIG2_H__ size_t rowcol[2]; #endif HDRTYPE *hdr = constructHDR(0,0); if (VERBOSE_LEVEL > 5) fprintf(stdout,"=== start sload ===\n"); /* contains [experiment,series,sweep,trace] numbers for selecting data. */ while ((k < SZlen) && (k < 5)) { #ifdef __LIBBIOSIG2_H__ biosig_set_segment_selection(hdr, k+1, SZ[k]); #else hdr->AS.SegSel[k] = (uint32_t)SZ[k]; #endif k++; } // ********* open file and read header ************ hdr = sopen(fn, "r", hdr); if (serror2(hdr)) { destructHDR(hdr); fprintf(stdout,"Cannot open file <%s>\n", fn); return; } #ifdef __LIBBIOSIG2_H__ numberChannels = biosig_get_number_of_channels(hdr); numberSamples = biosig_get_number_of_samples(hdr); samplerate = biosig_get_samplerate(hdr); biosig_reset_flag(hdr, BIOSIG_FLAG_ROW_BASED_CHANNELS); #else numberChannels = hdr->NS; numberSamples = hdr->NRec * hdr->SPR samplerate = hdr->SampleRate; hdr->FLAG.ROW_BASED_CHANNELS = 0; #endif if (VERBOSE_LEVEL > 5) fprintf(stdout,"open filename <%s>NoOfChans=%i\n", fn, numberChannels); // ********** read data ******************** sread(NULL, 0, numberSamples, hdr); if (serror2(hdr)) { destructHDR(hdr); fprintf(stdout,"Error reading data from file <%s>\n", fn); return; } #ifdef __LIBBIOSIG2_H__ biosig_get_datablock(hdr, &data, &rowcol[0], &rowcol[1]); sz[0] = rowcol[1]; sz[1] = rowcol[0]; #else sz[0] = hdr->data.size[1]; sz[1] = hdr->data.size[0]; data = hdr->data.block; #endif MLPutFunction(stdlink, "List", 3); // write data matrix MLPutRealArray(stdlink, data, sz, NULL, 2); // generate and write time axis t = (double*)malloc(numberSamples * sizeof(double)); for (k=0; k < numberSamples;) { t[k] = (++k)/samplerate; } MLPutRealList(stdlink, t, numberSamples); free(t); // generate and write header information in JSON format asprintf_hdr2json(&str, hdr); MLPutString(stdlink, str); free(str); if (VERBOSE_LEVEL > 5) { for (k=0; k<numberChannels; k++) fprintf(stdout,"%f ",data[k]); fprintf(stdout,"\n\nopen filename <%s>@%p sz=[%i,%i]\n", fn, data, sz[1],sz[0]); } // *********** close file ********************* sclose(hdr); destructHDR(hdr); return; }
stfio::filetype stfio_file_type(HDRTYPE* hdr) { #ifdef __LIBBIOSIG2_H__ switch (biosig_get_filetype(hdr)) { #else switch (hdr->TYPE) { #endif #if (BIOSIG_VERSION > 10500) case ABF2: return stfio::abf; #endif case ABF: return stfio::abf; case ATF: return stfio::atf; case CFS: return stfio::cfs; case HEKA: return stfio::heka; case HDF: return stfio::hdf5; #if (BIOSIG_VERSION > 10403) case AXG: return stfio::axg; case IBW: return stfio::igor; case SMR: return stfio::son; #endif default: return stfio::none; } } #if (defined(WITH_BIOSIG) || defined(WITH_BIOSIG2)) bool stfio::check_biosig_version(int a, int b, int c) { return (BIOSIG_VERSION >= 10000*a + 100*b + c); } #endif stfio::filetype stfio::importBiosigFile(const std::string &fName, Recording &ReturnData, ProgressInfo& progDlg) { std::string errorMsg("Exception while calling std::importBSFile():\n"); std::string yunits; stfio::filetype type; // ===================================================================================================================== // // importBiosig opens file with libbiosig // - performs an automated identification of the file format // - and decides whether the data is imported through importBiosig (currently CFS, HEKA, ABF1, GDF, and others) // - or handed back to other import*File functions (currently ABF2, AXG, HDF5) // // There are two implementations, level-1 and level-2 interface of libbiosig. // level 1 is used when -DWITH_BIOSIG, -lbiosig // level 2 is used when -DWITH_BIOSIG2, -lbiosig2 // // level 1 is better tested, but it does not provide ABI compatibility between MinGW and VisualStudio // level 2 interface has been developed to provide ABI compatibility, but it is less tested // and the API might still undergo major changes. // ===================================================================================================================== #ifdef __LIBBIOSIG2_H__ HDRTYPE* hdr = sopen( fName.c_str(), "r", NULL ); if (hdr==NULL) { ReturnData.resize(0); return stfio::none; } type = stfio_file_type(hdr); if (biosig_check_error(hdr)) { ReturnData.resize(0); destructHDR(hdr); return type; } enum FileFormat biosig_filetype=biosig_get_filetype(hdr); if (biosig_filetype==ATF || biosig_filetype==ABF2 || biosig_filetype==HDF ) { // ATF, ABF2 and HDF5 support should be handled by importATF, and importABF, and importHDF5 not importBiosig ReturnData.resize(0); destructHDR(hdr); return type; } // earlier versions of biosig support only the file type identification, but did not properly read the files if ( (BIOSIG_VERSION < 10603) && (biosig_filetype==AXG) ) { ReturnData.resize(0); destructHDR(hdr); return type; } // ensure the event table is in chronological order sort_eventtable(hdr); // allocate local memory for intermediate results; const int strSize=100; char str[strSize]; /* count sections and generate list of indices indicating start and end of sweeps */ double fs = biosig_get_eventtable_samplerate(hdr); size_t numberOfEvents = biosig_get_number_of_events(hdr); size_t nsections = biosig_get_number_of_segments(hdr); size_t *SegIndexList = (size_t*)malloc((nsections+1)*sizeof(size_t)); SegIndexList[0] = 0; SegIndexList[nsections] = biosig_get_number_of_samples(hdr); std::string annotationTableDesc = std::string(); for (size_t k=0, n=0; k < numberOfEvents; k++) { uint32_t pos; uint16_t typ; #if BIOSIG_VERSION < 10605 char *desc; #else const char *desc; #endif /* uint32_t dur; uint16_t chn; gdftype timestamp; */ biosig_get_nth_event(hdr, k, &typ, &pos, NULL, NULL, NULL, &desc); if (typ == 0x7ffe) { SegIndexList[++n] = pos; } else if (typ < 256) { sprintf(str,"%f s:\t%s\n", pos/fs, desc); annotationTableDesc += std::string( str ); } } int numberOfChannels = biosig_get_number_of_channels(hdr); /************************************************************************* rescale data to mV and pA *************************************************************************/ for (int ch=0; ch < numberOfChannels; ++ch) { CHANNEL_TYPE *hc = biosig_get_channel(hdr, ch); switch (biosig_channel_get_physdimcode(hc) & 0xffe0) { case 4256: // Volt //biosig_channel_scale_to_unit(hc, "mV"); biosig_channel_change_scale_to_physdimcode(hc, 4274); break; case 4160: // Ampere //biosig_channel_scale_to_unit(hc, "pA"); biosig_channel_change_scale_to_physdimcode(hc, 4181); break; } } /************************************************************************* read bulk data *************************************************************************/ biosig_data_type *data = biosig_get_data(hdr, 0); size_t SPR = biosig_get_number_of_samples(hdr); #ifdef _STFDEBUG std::cout << "Number of events: " << numberOfEvents << std::endl; /*int res = */ hdr2ascii(hdr, stdout, 4); #endif for (int NS=0; NS < numberOfChannels; ) { CHANNEL_TYPE *hc = biosig_get_channel(hdr, NS); Channel TempChannel(nsections); TempChannel.SetChannelName(biosig_channel_get_label(hc)); TempChannel.SetYUnits(biosig_channel_get_physdim(hc)); for (size_t ns=1; ns<=nsections; ns++) { size_t SPS = SegIndexList[ns]-SegIndexList[ns-1]; // length of segment, samples per segment int progbar = int(100.0*(1.0*ns/nsections + NS)/numberOfChannels); std::ostringstream progStr; progStr << "Reading channel #" << NS + 1 << " of " << numberOfChannels << ", Section #" << ns << " of " << nsections; progDlg.Update(progbar, progStr.str()); /* unused // char sweepname[20]; sprintf(sweepname,"sweep %i",(int)ns); */ Section TempSection( SPS, // TODO: hdr->nsamplingpoints[nc][ns] "" // TODO: hdr->sectionname[nc][ns] ); std::copy(&(data[NS*SPR + SegIndexList[ns-1]]), &(data[NS*SPR + SegIndexList[ns]]), TempSection.get_w().begin() ); try { TempChannel.InsertSection(TempSection, ns-1); } catch (...) { ReturnData.resize(0); destructHDR(hdr); return type; } } try { if ((int)ReturnData.size() < numberOfChannels) { ReturnData.resize(numberOfChannels); } ReturnData.InsertChannel(TempChannel, NS++); } catch (...) { ReturnData.resize(0); destructHDR(hdr); return type; } } free(SegIndexList); ReturnData.SetComment ( biosig_get_recording_id(hdr) ); sprintf(str,"v%i.%i.%i (compiled on %s %s)",BIOSIG_VERSION_MAJOR,BIOSIG_VERSION_MINOR,BIOSIG_PATCHLEVEL,__DATE__,__TIME__); std::string Desc = std::string("importBiosig with libbiosig ")+std::string(str) + " "; const char* tmpstr; if ((tmpstr=biosig_get_technician(hdr))) Desc += std::string ("\nTechnician:\t") + std::string (tmpstr) + " "; Desc += std::string( "\nCreated with: "); if ((tmpstr=biosig_get_manufacturer_name(hdr))) Desc += std::string( tmpstr ) + " "; if ((tmpstr=biosig_get_manufacturer_model(hdr))) Desc += std::string( tmpstr ) + " "; if ((tmpstr=biosig_get_manufacturer_version(hdr))) Desc += std::string( tmpstr ) + " "; if ((tmpstr=biosig_get_manufacturer_serial_number(hdr))) Desc += std::string( tmpstr ) + " "; Desc += std::string ("\nUser specified Annotations:\n")+annotationTableDesc; ReturnData.SetFileDescription(Desc); #if (BIOSIG_VERSION > 10509) tmpstr = biosig_get_application_specific_information(hdr); if (tmpstr != NULL) /* MSVC2008 can not properly handle std::string( (char*)NULL ) */ ReturnData.SetGlobalSectionDescription(tmpstr); #endif ReturnData.SetXScale(1000.0/biosig_get_samplerate(hdr)); ReturnData.SetXUnits("ms"); ReturnData.SetScaling("biosig scaling factor"); /************************************************************************* Date and time conversion *************************************************************************/ struct tm T; biosig_get_startdatetime(hdr, &T); ReturnData.SetDateTime(T); destructHDR(hdr); #else // #ifndef __LIBBIOSIG2_H__ HDRTYPE* hdr = sopen( fName.c_str(), "r", NULL ); if (hdr==NULL) { ReturnData.resize(0); return stfio::none; } type = stfio_file_type(hdr); #if !defined(BIOSIG_VERSION) || (BIOSIG_VERSION < 10501) if (hdr->TYPE==ABF) { /* biosig v1.5.0 and earlier does not always return with a proper error message for ABF files. This causes problems with the ABF fallback mechanism */ #else if ( hdr->TYPE==ABF2 ) { // ABF2 support should be handled by importABF not importBiosig ReturnData.resize(0); destructHDR(hdr); return type; } if (hdr->TYPE==ABF && hdr->AS.B4C_ERRNUM) { /* this triggers the fall back mechanims w/o reporting an error message */ #endif ReturnData.resize(0); destructHDR(hdr); // free allocated memory return type; } #if defined(BIOSIG_VERSION) && (BIOSIG_VERSION > 10400) if (hdr->AS.B4C_ERRNUM) { #else if (B4C_ERRNUM) { #endif ReturnData.resize(0); destructHDR(hdr); // free allocated memory return type; } if ( hdr->TYPE==ATF || hdr->TYPE==HDF) { // ATF, HDF5 support should be handled by importATF and importHDF5 not importBiosig ReturnData.resize(0); destructHDR(hdr); return type; } // earlier versions of biosig support only the file type identification, but did not read AXG files #if defined(BIOSIG_VERSION) && (BIOSIG_VERSION > 10403) if ( (BIOSIG_VERSION < 10600) && (hdr->TYPE==AXG) ) { // biosig's AXG import crashes on Windows at this time ReturnData.resize(0); destructHDR(hdr); return type; } #endif // ensure the event table is in chronological order sort_eventtable(hdr); // allocate local memory for intermediate results; const int strSize=100; char str[strSize]; /* count sections and generate list of indices indicating start and end of sweeps */ size_t numberOfEvents = hdr->EVENT.N; size_t LenIndexList = 256; if (LenIndexList > numberOfEvents) LenIndexList = numberOfEvents + 2; size_t *SegIndexList = (size_t*)malloc(LenIndexList*sizeof(size_t)); uint32_t nsections = 0; SegIndexList[nsections] = 0; size_t MaxSectionLength = 0; for (size_t k=0; k <= numberOfEvents; k++) { if (LenIndexList <= nsections+2) { // allocate more memory as needed LenIndexList *=2; SegIndexList = (size_t*)realloc(SegIndexList, LenIndexList*sizeof(size_t)); } /* count number of sections and stores it in nsections; EVENT.TYP==0x7ffe indicate number of breaks between sweeps SegIndexList includes index to first sample and index to last sample, thus, the effective length of SegIndexList is the number of 0x7ffe plus two. */ if (0) ; else if (k >= hdr->EVENT.N) SegIndexList[++nsections] = hdr->NRec*hdr->SPR; else if (hdr->EVENT.TYP[k]==0x7ffe) SegIndexList[++nsections] = hdr->EVENT.POS[k]; else continue; size_t SPS = SegIndexList[nsections]-SegIndexList[nsections-1]; // length of segment, samples per segment if (MaxSectionLength < SPS) MaxSectionLength = SPS; } int numberOfChannels = 0; for (int k=0; k < hdr->NS; k++) if (hdr->CHANNEL[k].OnOff==1) numberOfChannels++; /************************************************************************* rescale data to mV and pA *************************************************************************/ for (int ch=0; ch < hdr->NS; ++ch) { CHANNEL_TYPE *hc = hdr->CHANNEL+ch; if (hc->OnOff != 1) continue; double scale = PhysDimScale(hc->PhysDimCode); switch (hc->PhysDimCode & 0xffe0) { case 4256: // Volt hc->PhysDimCode = 4274; // = PhysDimCode("mV"); scale *=1e3; // V->mV hc->PhysMax *= scale; hc->PhysMin *= scale; hc->Cal *= scale; hc->Off *= scale; break; case 4160: // Ampere hc->PhysDimCode = 4181; // = PhysDimCode("pA"); scale *=1e12; // A->pA hc->PhysMax *= scale; hc->PhysMin *= scale; hc->Cal *= scale; hc->Off *= scale; break; } } /************************************************************************* read bulk data *************************************************************************/ hdr->FLAG.ROW_BASED_CHANNELS = 0; /* size_t blks = */ sread(NULL, 0, hdr->NRec, hdr); biosig_data_type *data = hdr->data.block; size_t SPR = hdr->NRec*hdr->SPR; #ifdef _STFDEBUG std::cout << "Number of events: " << numberOfEvents << std::endl; /*int res = */ hdr2ascii(hdr, stdout, 4); #endif int NS = 0; // number of non-empty channels for (size_t nc=0; nc < hdr->NS; ++nc) { if (hdr->CHANNEL[nc].OnOff == 0) continue; Channel TempChannel(nsections); TempChannel.SetChannelName(hdr->CHANNEL[nc].Label); #if defined(BIOSIG_VERSION) && (BIOSIG_VERSION > 10301) TempChannel.SetYUnits(PhysDim3(hdr->CHANNEL[nc].PhysDimCode)); #else PhysDim(hdr->CHANNEL[nc].PhysDimCode,str); TempChannel.SetYUnits(str); #endif for (size_t ns=1; ns<=nsections; ns++) { size_t SPS = SegIndexList[ns]-SegIndexList[ns-1]; // length of segment, samples per segment int progbar = 100.0*(1.0*ns/nsections + NS)/numberOfChannels; std::ostringstream progStr; progStr << "Reading channel #" << NS + 1 << " of " << numberOfChannels << ", Section #" << ns << " of " << nsections; progDlg.Update(progbar, progStr.str()); /* unused // char sweepname[20]; sprintf(sweepname,"sweep %i",(int)ns); */ Section TempSection( SPS, // TODO: hdr->nsamplingpoints[nc][ns] "" // TODO: hdr->sectionname[nc][ns] ); std::copy(&(data[NS*SPR + SegIndexList[ns-1]]), &(data[NS*SPR + SegIndexList[ns]]), TempSection.get_w().begin() ); try { TempChannel.InsertSection(TempSection, ns-1); } catch (...) { ReturnData.resize(0); destructHDR(hdr); return type; } } try { if ((int)ReturnData.size() < numberOfChannels) { ReturnData.resize(numberOfChannels); } ReturnData.InsertChannel(TempChannel, NS++); } catch (...) { ReturnData.resize(0); destructHDR(hdr); return type; } } free(SegIndexList); ReturnData.SetComment ( hdr->ID.Recording ); sprintf(str,"v%i.%i.%i (compiled on %s %s)",BIOSIG_VERSION_MAJOR,BIOSIG_VERSION_MINOR,BIOSIG_PATCHLEVEL,__DATE__,__TIME__); std::string Desc = std::string("importBiosig with libbiosig ")+std::string(str); if (hdr->ID.Technician) Desc += std::string ("\nTechnician:\t") + std::string (hdr->ID.Technician); Desc += std::string( "\nCreated with: "); if (hdr->ID.Manufacturer.Name) Desc += std::string( hdr->ID.Manufacturer.Name ); if (hdr->ID.Manufacturer.Model) Desc += std::string( hdr->ID.Manufacturer.Model ); if (hdr->ID.Manufacturer.Version) Desc += std::string( hdr->ID.Manufacturer.Version ); if (hdr->ID.Manufacturer.SerialNumber) Desc += std::string( hdr->ID.Manufacturer.SerialNumber ); Desc += std::string ("\nUser specified Annotations:\n"); for (size_t k=0; k < numberOfEvents; k++) { if (hdr->EVENT.TYP[k] < 256) { sprintf(str,"%f s\t",hdr->EVENT.POS[k]/hdr->EVENT.SampleRate); Desc += std::string( str ); if (hdr->EVENT.CodeDesc != NULL) Desc += std::string( hdr->EVENT.CodeDesc[hdr->EVENT.TYP[k]] ); Desc += "\n"; } } ReturnData.SetFileDescription(Desc); // hdr->AS.bci2000 is an alias to hdr->AS.fpulse, which available only in libbiosig v1.6.0 or later if (hdr->AS.bci2000) ReturnData.SetGlobalSectionDescription(std::string(hdr->AS.bci2000)); ReturnData.SetXScale(1000.0/hdr->SampleRate); ReturnData.SetXUnits("ms"); ReturnData.SetScaling("biosig scaling factor"); /************************************************************************* Date and time conversion *************************************************************************/ struct tm T; #if (BIOSIG_VERSION_MAJOR > 0) gdf_time2tm_time_r(hdr->T0, &T); #else struct tm* Tp; Tp = gdf_time2tm_time(hdr->T0); T = *Tp; #endif ReturnData.SetDateTime(T); destructHDR(hdr); #endif return stfio::biosig; } // ===================================================================================================================== // // Save file with libbiosig into GDF format // // There basically two implementations, one with libbiosig before v1.6.0 and // and one for libbiosig v1.6.0 and later // // ===================================================================================================================== bool stfio::exportBiosigFile(const std::string& fName, const Recording& Data, stfio::ProgressInfo& progDlg) { /* converts the internal data structure to libbiosig's internal structure and saves the file as gdf file. The data in converted into the raw data format, and not into the common data matrix. */ #ifdef __LIBBIOSIG2_H__ size_t numberOfChannels = Data.size(); HDRTYPE* hdr = constructHDR(numberOfChannels, 0); /* Initialize all header parameters */ biosig_set_filetype(hdr, GDF); biosig_set_startdatetime(hdr, Data.GetDateTime()); const char *xunits = Data.GetXUnits().c_str(); uint16_t pdc = PhysDimCode(xunits); if ((pdc & 0xffe0) != PhysDimCode("s")) { fprintf(stderr,"Stimfit exportBiosigFile: xunits [%s] has not proper units, assume [ms]\n",Data.GetXUnits().c_str()); pdc = PhysDimCode("ms"); } double fs = 1.0/(PhysDimScale(pdc) * Data.GetXScale()); biosig_set_samplerate(hdr, fs); #if (BIOSIG_VERSION < 10700) biosig_set_flags(hdr, 0, 0, 0); #else biosig_reset_flag(hdr, BIOSIG_FLAG_COMPRESSION | BIOSIG_FLAG_UCAL | BIOSIG_FLAG_OVERFLOWDETECTION | BIOSIG_FLAG_ROW_BASED_CHANNELS ); #endif size_t k, m, numberOfEvents=0; size_t NRec=0; // corresponds to hdr->NRec size_t SPR=1; // corresponds to hdr->SPR size_t chSPR=0; // corresponds to hc->SPR /* Initialize all channel parameters */ #ifndef DONOTUSE_DYNAMIC_ALLOCATION_FOR_CHANSPR size_t *chanSPR = (size_t*)malloc(numberOfChannels*sizeof(size_t)); #endif for (k = 0; k < numberOfChannels; ++k) { CHANNEL_TYPE *hc = biosig_get_channel(hdr, k); biosig_channel_set_datatype_to_double(hc); biosig_channel_set_scaling(hc, 1e9, -1e9, 1e9, -1e9); biosig_channel_set_label(hc, Data[k].GetChannelName().c_str()); biosig_channel_set_physdim(hc, Data[k].GetYUnits().c_str()); biosig_channel_set_filter(hc, NAN, NAN, NAN); biosig_channel_set_timing_offset(hc, 0.0); biosig_channel_set_impedance(hc, NAN); chSPR = SPR; // each segment gets one marker, roughly numberOfEvents += Data[k].size(); size_t m,len = 0; for (len=0, m = 0; m < Data[k].size(); ++m) { unsigned div = lround(Data[k][m].GetXScale()/Data.GetXScale()); chSPR = lcm(chSPR,div); // sampling interval of m-th segment in k-th channel len += div*Data[k][m].size(); } SPR = lcm(SPR, chSPR); /* hc->SPR (i.e. chSPR) is 'abused' to store final hdr->SPR/hc->SPR, this is corrected in the loop below its a hack to avoid the need for another malloc(). */ #ifdef DONOTUSE_DYNAMIC_ALLOCATION_FOR_CHANSPR biosig_channel_set_samples_per_record(hc, chSPR); #else chanSPR[k]=chSPR; #endif if (k==0) { NRec = len; } else if ((size_t)NRec != len) { destructHDR(hdr); throw std::runtime_error("File can't be exported:\n" "No data or traces have different sizes" ); return false; } } biosig_set_number_of_samples(hdr, NRec, SPR); size_t bpb = 0; for (k = 0; k < numberOfChannels; ++k) { CHANNEL_TYPE *hc = biosig_get_channel(hdr, k); // the 'abuse' of hc->SPR described above is corrected #ifdef DONOTUSE_DYNAMIC_ALLOCATION_FOR_CHANSPR size_t spr = biosig_channel_get_samples_per_record(hc); spr = SPR / spr; biosig_channel_set_samples_per_record(hc, spr); #else size_t spr = SPR/chanSPR[k]; chanSPR[k] = spr; #endif bpb += spr * 8; /* its always double */ } /*** build Event table for storing segment information pre-allocate memory for even table ***/ numberOfEvents *= 2; // about two events per segment biosig_set_number_of_events(hdr, numberOfEvents); /* check whether all segments have same size */ { char flag = (numberOfChannels > 0); size_t m, POS, pos; for (k=0; k < numberOfChannels; ++k) { pos = Data[k].size(); if (k==0) POS = pos; else flag &= (POS == pos); } for (m=0; flag && (m < Data[(size_t)0].size()); ++m) { for (k=0; k < biosig_get_number_of_channels(hdr); ++k) { pos = Data[k][m].size() * lround(Data[k][m].GetXScale()/Data.GetXScale()); if (k==0) POS = pos; else flag &= (POS == pos); } } if (!flag) { destructHDR(hdr); throw std::runtime_error( "File can't be exported:\n" "Traces have different sizes or no channels found" ); return false; } } size_t N=0; k=0; size_t pos = 0; for (m=0; m < (Data[k].size()); ++m) { if (pos > 0) { uint16_t typ=0x7ffe; uint32_t pos32=pos; uint16_t chn=0; uint32_t dur=0; // set break marker biosig_set_nth_event(hdr, N++, &typ, &pos32, &chn, &dur, NULL, NULL); /* // set annotation const char *Desc = Data[k][m].GetSectionDescription().c_str(); if (Desc != NULL && strlen(Desc)>0) biosig_set_nth_event(hdr, N++, NULL, &pos32, &chn, &dur, NULL, Desc); // TODO */ } pos += Data[k][m].size() * lround(Data[k][m].GetXScale()/Data.GetXScale()); } biosig_set_number_of_events(hdr, N); biosig_set_eventtable_samplerate(hdr, fs); sort_eventtable(hdr); /* convert data into GDF rawdata from */ uint8_t *rawdata = (uint8_t*)malloc(bpb * NRec); size_t bi=0; for (k=0; k < numberOfChannels; ++k) { CHANNEL_TYPE *hc = biosig_get_channel(hdr, k); #ifdef DONOTUSE_DYNAMIC_ALLOCATION_FOR_CHANSPR size_t chSPR = biosig_channel_get_samples_per_record(hc); #else size_t chSPR = chanSPR[k]; #endif size_t m,n,len=0; for (m=0; m < Data[k].size(); ++m) { size_t div = lround(Data[k][m].GetXScale()/Data.GetXScale()); size_t div2 = SPR/div; // TODO: avoid using hdr->SPR // fprintf(stdout,"k,m,div,div2: %i,%i,%i,%i\n",(int)k,(int)m,(int)div,(int)div2); // for (n=0; n < Data[k][m].size(); ++n) { uint64_t val; double d = Data[k][m][n]; #if !defined(__MINGW32__) && !defined(_MSC_VER) && !defined(__APPLE__) val = htole64(*(uint64_t*)&d); #else val = *(uint64_t*)&d; #endif size_t p, spr = (len + n*div) / SPR; for (p=0; p < div2; p++) *(uint64_t*)(rawdata + bi + bpb * spr + p*8) = val; } len += div*Data[k][m].size(); } bi += chSPR*8; } #ifndef DONOTUSE_DYNAMIC_ALLOCATION_FOR_CHANSPR if (chanSPR) free(chanSPR); #endif /****************************** write to file *******************************/ std::string errorMsg("Exception while calling std::exportBiosigFile():\n"); hdr = sopen( fName.c_str(), "w", hdr ); if (serror2(hdr)) { errorMsg += biosig_get_errormsg(hdr); destructHDR(hdr); throw std::runtime_error(errorMsg.c_str()); return false; } ifwrite(rawdata, bpb, NRec, hdr); sclose(hdr); destructHDR(hdr); free(rawdata); #else // #ifndef __LIBBIOSIG2_H__ HDRTYPE* hdr = constructHDR(Data.size(), 0); assert(hdr->NS == Data.size()); /* Initialize all header parameters */ hdr->TYPE = GDF; #if (BIOSIG_VERSION >= 10508) /* transition in biosig to rename HDR->VERSION to HDR->Version to avoid name space conflict with macro VERSION */ hdr->Version = 3.0; // select latest supported version of GDF format #else hdr->VERSION = 3.0; // select latest supported version of GDF format #endif struct tm t = Data.GetDateTime(); hdr->T0 = tm_time2gdf_time(&t); const char *xunits = Data.GetXUnits().c_str(); #if (BIOSIG_VERSION_MAJOR > 0) uint16_t pdc = PhysDimCode(xunits); #else uint16_t pdc = PhysDimCode((char*)xunits); #endif if ((pdc & 0xffe0) == PhysDimCode("s")) { fprintf(stderr,"Stimfit exportBiosigFile: xunits [%s] has not proper units, assume [ms]\n",Data.GetXUnits().c_str()); pdc = PhysDimCode("ms"); } hdr->SampleRate = 1.0/(PhysDimScale(pdc) * Data.GetXScale()); hdr->SPR = 1; hdr->FLAG.UCAL = 0; hdr->FLAG.OVERFLOWDETECTION = 0; hdr->FILE.COMPRESSION = 0; /* Initialize all channel parameters */ size_t k, m; for (k = 0; k < hdr->NS; ++k) { CHANNEL_TYPE *hc = hdr->CHANNEL+k; hc->PhysMin = -1e9; hc->PhysMax = 1e9; hc->DigMin = -1e9; hc->DigMax = 1e9; hc->Cal = 1.0; hc->Off = 0.0; /* Channel descriptions. */ strncpy(hc->Label, Data[k].GetChannelName().c_str(), MAX_LENGTH_LABEL); #if (BIOSIG_VERSION_MAJOR > 0) hc->PhysDimCode = PhysDimCode(Data[k].GetYUnits().c_str()); #else hc->PhysDimCode = PhysDimCode((char*)Data[k].GetYUnits().c_str()); #endif hc->OnOff = 1; hc->LeadIdCode = 0; hc->TOffset = 0.0; hc->Notch = NAN; hc->LowPass = NAN; hc->HighPass = NAN; hc->Impedance= NAN; hc->SPR = hdr->SPR; hc->GDFTYP = 17; // double // each segment gets one marker, roughly hdr->EVENT.N += Data[k].size(); size_t m,len = 0; for (len=0, m = 0; m < Data[k].size(); ++m) { unsigned div = lround(Data[k][m].GetXScale()/Data.GetXScale()); hc->SPR = lcm(hc->SPR,div); // sampling interval of m-th segment in k-th channel len += div*Data[k][m].size(); } hdr->SPR = lcm(hdr->SPR, hc->SPR); if (k==0) { hdr->NRec = len; } else if ((size_t)hdr->NRec != len) { destructHDR(hdr); throw std::runtime_error("File can't be exported:\n" "No data or traces have different sizes" ); return false; } } hdr->AS.bpb = 0; for (k = 0; k < hdr->NS; ++k) { CHANNEL_TYPE *hc = hdr->CHANNEL+k; hc->SPR = hdr->SPR / hc->SPR; hc->bi = hdr->AS.bpb; hdr->AS.bpb += hc->SPR * 8; /* its always double */ } /*** build Event table for storing segment information ***/ size_t N = hdr->EVENT.N * 2; // about two events per segment hdr->EVENT.POS = (uint32_t*)realloc(hdr->EVENT.POS, N * sizeof(*hdr->EVENT.POS)); hdr->EVENT.DUR = (uint32_t*)realloc(hdr->EVENT.DUR, N * sizeof(*hdr->EVENT.DUR)); hdr->EVENT.TYP = (uint16_t*)realloc(hdr->EVENT.TYP, N * sizeof(*hdr->EVENT.TYP)); hdr->EVENT.CHN = (uint16_t*)realloc(hdr->EVENT.CHN, N * sizeof(*hdr->EVENT.CHN)); #if (BIOSIG_VERSION >= 10500) hdr->EVENT.TimeStamp = (gdf_time*)realloc(hdr->EVENT.TimeStamp, N * sizeof(gdf_time)); #endif /* check whether all segments have same size */ { char flag = (hdr->NS>0); size_t m, POS, pos; for (k=0; k < hdr->NS; ++k) { pos = Data[k].size(); if (k==0) POS = pos; else flag &= (POS == pos); } for (m=0; flag && (m < Data[(size_t)0].size()); ++m) { for (k=0; k < hdr->NS; ++k) { pos = Data[k][m].size() * lround(Data[k][m].GetXScale()/Data.GetXScale()); if (k==0) POS = pos; else flag &= (POS == pos); } } if (!flag) { destructHDR(hdr); throw std::runtime_error( "File can't be exported:\n" "Traces have different sizes or no channels found" ); return false; } } N=0; k=0; size_t pos = 0; for (m=0; m < (Data[k].size()); ++m) { if (pos > 0) { // start of new segment after break hdr->EVENT.POS[N] = pos; hdr->EVENT.TYP[N] = 0x7ffe; hdr->EVENT.CHN[N] = 0; hdr->EVENT.DUR[N] = 0; N++; } #if 0 // event description hdr->EVENT.POS[N] = pos; FreeTextEvent(hdr, N, "myevent"); //FreeTextEvent(hdr, N, Data[k][m].GetSectionDescription().c_str()); // TODO hdr->EVENT.CHN[N] = k; hdr->EVENT.DUR[N] = 0; N++; #endif pos += Data[k][m].size() * lround(Data[k][m].GetXScale()/Data.GetXScale()); } hdr->EVENT.N = N; hdr->EVENT.SampleRate = hdr->SampleRate; sort_eventtable(hdr); /* convert data into GDF rawdata from */ hdr->AS.rawdata = (uint8_t*)realloc(hdr->AS.rawdata, hdr->AS.bpb*hdr->NRec); for (k=0; k < hdr->NS; ++k) { CHANNEL_TYPE *hc = hdr->CHANNEL+k; size_t m,n,len=0; for (m=0; m < Data[k].size(); ++m) { size_t div = lround(Data[k][m].GetXScale()/Data.GetXScale()); size_t div2 = hdr->SPR/div; // fprintf(stdout,"k,m,div,div2: %i,%i,%i,%i\n",(int)k,(int)m,(int)div,(int)div2); // for (n=0; n < Data[k][m].size(); ++n) { uint64_t val; double d = Data[k][m][n]; #if !defined(__MINGW32__) && !defined(_MSC_VER) && !defined(__APPLE__) val = htole64(*(uint64_t*)&d); #else val = *(uint64_t*)&d; #endif size_t p, spr = (len + n*div) / hdr->SPR; for (p=0; p < div2; p++) *(uint64_t*)(hdr->AS.rawdata + hc->bi + hdr->AS.bpb * spr + p*8) = val; } len += div*Data[k][m].size(); } } /****************************** write to file *******************************/ std::string errorMsg("Exception while calling std::exportBiosigFile():\n"); hdr = sopen( fName.c_str(), "w", hdr ); #if (BIOSIG_VERSION > 10400) if (serror2(hdr)) { errorMsg += hdr->AS.B4C_ERRMSG; #else if (serror()) { errorMsg += B4C_ERRMSG; #endif destructHDR(hdr); throw std::runtime_error(errorMsg.c_str()); return false; } ifwrite(hdr->AS.rawdata, hdr->AS.bpb, hdr->NRec, hdr); sclose(hdr); destructHDR(hdr); #endif return true; }
void mexFunction( int nlhs, /* number of expected outputs */ mxArray *plhs[], /* array of pointers to output arguments */ int nrhs, /* number of inputs */ const mxArray *prhs[] /* array of pointers to input arguments */ ) { size_t k,k1; const mxArray *arg; mxArray *HDR; HDRTYPE *hdr; CHANNEL_TYPE* cp; size_t count; time_t T0; char *FileName=NULL; int status; int CHAN = 0; int TARGETSEGMENT = 1; double *ChanList=NULL; int NS = -1; char FlagOverflowDetection = 1, FlagUCAL = 0; int argSweepSel = -1; #ifdef CHOLMOD_H cholmod_sparse RR,*rr=NULL; double dummy; #endif // ToDO: output single data // mxClassId FlagMXclass=mxDOUBLE_CLASS; if (nrhs<1) { #ifdef mexSOPEN mexPrintf(" Usage of mexSOPEN:\n"); mexPrintf("\tHDR = mexSOPEN(f)\n"); mexPrintf(" Input:\n\tf\tfilename\n"); mexPrintf(" Output:\n\tHDR\theader structure\n\n"); #else mexPrintf(" Usage of mexSLOAD:\n"); mexPrintf("\t[s,HDR]=mexSLOAD(f)\n"); mexPrintf("\t[s,HDR]=mexSLOAD(f,chan)\n\t\tchan must be sorted in ascending order\n"); mexPrintf("\t[s,HDR]=mexSLOAD(f,ReRef)\n\t\treref is a (sparse) matrix for rerefencing\n"); mexPrintf("\t[s,HDR]=mexSLOAD(f,chan,'...')\n"); mexPrintf("\t[s,HDR]=mexSLOAD(f,chan,'OVERFLOWDETECTION:ON')\n"); mexPrintf("\t[s,HDR]=mexSLOAD(f,chan,'OVERFLOWDETECTION:OFF')\n"); mexPrintf("\t[s,HDR]=mexSLOAD(f,chan,'UCAL:ON')\n"); mexPrintf("\t[s,HDR]=mexSLOAD(f,chan,'UCAL:OFF')\n"); mexPrintf("\t[s,HDR]=mexSLOAD(f,chan,'OUTPUT:SINGLE')\n"); mexPrintf("\t[s,HDR]=mexSLOAD(f,chan,'TARGETSEGMENT:<N>')\n"); mexPrintf("\t[s,HDR]=mexSLOAD(f,chan,'SWEEP',[NE, NG, NS])\n"); mexPrintf(" Input:\n\tf\tfilename\n"); mexPrintf("\tchan\tlist of selected channels; 0=all channels [default]\n"); mexPrintf("\tUCAL\tON: do not calibrate data; default=OFF\n"); // mexPrintf("\tOUTPUT\tSINGLE: single precision; default='double'\n"); mexPrintf("\tOVERFLOWDETECTION\tdefault = ON\n\t\tON: values outside dynamic range are not-a-number (NaN)\n"); mexPrintf("\tTARGETSEGMENT:<N>\n\t\tselect segment <N> in multisegment files (like Nihon-Khoden), default=1\n\t\tIt has no effect for other data formats.\n"); mexPrintf("\t[NE, NG, NS] are the number of the experiment, the series and the sweep, resp. for sweep selection in HEKA/PatchMaster files. (0 indicates all)\n"); mexPrintf("\t\t examples: [1,2,3] the 3rd sweep from the 2nd series of experiment 1; [1,3,0] selects all sweeps from experiment=1, series=3. \n\n"); mexPrintf(" Output:\n\ts\tsignal data, each column is one channel\n"); mexPrintf("\tHDR\theader structure\n\n"); #endif return; } /* improve checks for input arguments */ /* process input arguments */ for (k = 0; k < nrhs; k++) { arg = prhs[k]; if (mxIsEmpty(arg) && (k>0)) { #ifdef DEBUG mexPrintf("arg[%i] Empty\n",k); #endif } else if ((k==0) && mxIsCell(arg) && mxGetNumberOfElements(arg)==1 && mxGetCell(arg,0) && mxIsChar(mxGetCell(arg,0))) { FileName = mxArrayToString(mxGetCell(arg,0)); #ifdef DEBUG mexPrintf("arg[%i] IsCell\n",k); #endif } else if ((k==0) && mxIsStruct(arg)) { FileName = mxArrayToString(mxGetField(prhs[k],0,"FileName")); #ifdef DEBUG mexPrintf("arg[%i] IsStruct\n",k); #endif } #ifdef CHOLMOD_H else if ((k==1) && mxIsSparse(arg)) { rr = sputil_get_sparse(arg,&RR,&dummy,0); } #endif else if ((k==1) && mxIsNumeric(arg)) { #ifdef DEBUG mexPrintf("arg[%i] IsNumeric\n",k); #endif ChanList = (double*)mxGetData(prhs[k]); NS = mxGetNumberOfElements(prhs[k]); } else if (mxIsChar(arg)) { #ifdef DEBUG mexPrintf("arg[%i]=%s \n",k,mxArrayToString(prhs[k])); #endif if (k==0) FileName = mxArrayToString(prhs[k]); else if (!strcmp(mxArrayToString(prhs[k]), "CNT32")) ; // obsolete - supported for backwards compatibility else if (!strcmp(mxArrayToString(prhs[k]), "OVERFLOWDETECTION:ON")) FlagOverflowDetection = 1; else if (!strcmp(mxArrayToString(prhs[k]), "OVERFLOWDETECTION:OFF")) FlagOverflowDetection = 0; else if (!strcmp(mxArrayToString(prhs[k]), "UCAL:ON")) FlagUCAL = 1; else if (!strcmp(mxArrayToString(prhs[k]), "UCAL:OFF")) FlagUCAL = 0; // else if (!strcmp(mxArrayToString(prhs[k]),"OUTPUT:SINGLE")) // FlagMXclass = mxSINGLE_CLASS; else if (!strncmp(mxArrayToString(prhs[k]),"TARGETSEGMENT:",14)) TARGETSEGMENT = atoi(mxArrayToString(prhs[k])+14); else if (!strcasecmp(mxArrayToString(prhs[k]), "SWEEP") && (prhs[k+1] != NULL) && mxIsNumeric(prhs[k+1])) argSweepSel = ++k; } else { #ifndef mexSOPEN mexPrintf("mexSLOAD: argument #%i is invalid.",k+1); mexErrMsgTxt("mexSLOAD failes because of unknown parameter\n"); #else mexPrintf("mexSOPEN: argument #%i is invalid.",k+1); mexErrMsgTxt("mexSOPEN fails because of unknown parameter\n"); #endif } } if (VERBOSE_LEVEL>7) mexPrintf("110: input arguments checked\n"); hdr = constructHDR(0,0); #ifdef __LIBBIOSIG2_H__ unsigned flags = (!!FlagOverflowDetection)*BIOSIG_FLAG_OVERFLOWDETECTION + (!!FlagUCAL)*BIOSIG_FLAG_UCAL; #ifdef CHOLMOD_H flags += (rr!=NULL)*BIOSIG_FLAG_ROW_BASED_CHANNELS; #else biosig_reset_flag(hdr, BIOSIG_FLAG_ROW_BASED_CHANNELS); #endif biosig_set_flag(hdr, flags); biosig_set_targetsegment(hdr, TARGETSEGMENT); // sweep selection for Heka format if (argSweepSel>0) { double *SZ = (double*) mxGetData(prhs[argSweepSel]); k = 0; while (k < mxGetNumberOfElements(prhs[argSweepSel]) && k < 5) { biosig_set_segment_selection(hdr, k+1, (uint32_t)SZ[k]); k++; } } #else //__LIBBIOSIG2_H__ hdr->FLAG.OVERFLOWDETECTION = FlagOverflowDetection; hdr->FLAG.UCAL = FlagUCAL; #ifdef CHOLMOD_H hdr->FLAG.ROW_BASED_CHANNELS = (rr!=NULL); #else hdr->FLAG.ROW_BASED_CHANNELS = 0; #endif hdr->FLAG.TARGETSEGMENT = TARGETSEGMENT; // sweep selection for Heka format if (argSweepSel>0) { double *SZ = (double*) mxGetData(prhs[argSweepSel]); k = 0; while (k < mxGetNumberOfElements(prhs[argSweepSel]) && k < 5) { hdr->AS.SegSel[k] = (uint32_t)SZ[k]; k++; } } #endif // __LIBBIOSIG2_H__ : TODO: below, nothing is converted to level-2 interface, yet if (VERBOSE_LEVEL>7) mexPrintf("120: going to sopen\n"); hdr = sopen(FileName, "r", hdr); /* #ifdef WITH_PDP if (hdr->AS.B4C_ERRNUM) { hdr->AS.B4C_ERRNUM = 0; sopen_pdp_read(hdr); } #endif */ if (VERBOSE_LEVEL>7) mexPrintf("121: sopen done\n"); if ((status=serror2(hdr))) { const char* fields[]={"TYPE","VERSION","FileName","FLAG","ErrNum","ErrMsg"}; HDR = mxCreateStructMatrix(1, 1, 6, fields); #ifdef __LIBBIOSIG2_H__ mxSetField(HDR,0,"FileName",mxCreateString(biosig_get_filename(hdr))); const char *FileTypeString = GetFileTypeString(biosig_get_filetype(hdr)); mxSetField(HDR,0,"VERSION",mxCreateDoubleScalar(biosig_get_version(hdr))); #else mxSetField(HDR,0,"FileName",mxCreateString(hdr->FileName)); const char *FileTypeString = GetFileTypeString(hdr->TYPE); mxSetField(HDR,0,"VERSION",mxCreateDoubleScalar(hdr->VERSION)); #endif mxArray *errnum = mxCreateNumericMatrix(1,1,mxUINT8_CLASS,mxREAL); *(uint8_t*)mxGetData(errnum) = (uint8_t)status; mxSetField(HDR,0,"ErrNum",errnum); #ifdef HAVE_OCTAVE // handle bug in octave: mxCreateString(NULL) causes segmentation fault // Octave 3.2.3 causes a seg-fault in mxCreateString(NULL) if (FileTypeString) FileTypeString="\0"; #endif mxSetField(HDR,0,"TYPE",mxCreateString(FileTypeString)); char *msg = (char*)malloc(72+23+strlen(FileName)); // 72: max length of constant text, 23: max length of GetFileTypeString() if (msg == NULL) mxSetField(HDR,0,"ErrMsg",mxCreateString("Error mexSLOAD: Cannot open file\n")); else { if (status==B4C_CANNOT_OPEN_FILE) sprintf(msg,"Error mexSLOAD: file %s not found.\n",FileName); /* Flawfinder: ignore *** sufficient memory is allocated above */ else if (status==B4C_FORMAT_UNKNOWN) sprintf(msg,"Error mexSLOAD: Cannot open file %s - format %s not known.\n",FileName,FileTypeString); /* Flawfinder: ignore *** sufficient memory is allocated above */ else if (status==B4C_FORMAT_UNSUPPORTED) sprintf(msg,"Error mexSLOAD: Cannot open file %s - format %s not supported [%s].\n", FileName, FileTypeString, hdr->AS.B4C_ERRMSG); /* Flawfinder: ignore *** sufficient memory is allocated above */ else sprintf(msg,"Error %i mexSLOAD: Cannot open file %s - format %s not supported [%s].\n", status, FileName, FileTypeString, hdr->AS.B4C_ERRMSG); /* Flawfinder: ignore *** sufficient memory is allocated above */ mxSetField(HDR,0,"ErrMsg",mxCreateString(msg)); free(msg); } if (VERBOSE_LEVEL>7) mexPrintf("737: abort mexSLOAD - sopen failed\n"); destructHDR(hdr); if (VERBOSE_LEVEL>7) mexPrintf("757: abort mexSLOAD - sopen failed\n"); #ifdef mexSOPEN plhs[0] = HDR; #else plhs[0] = mxCreateDoubleMatrix(0,0, mxREAL); plhs[1] = HDR; #endif if (VERBOSE_LEVEL>7) mexPrintf("777: abort mexSLOAD - sopen failed\n"); return; } #ifdef CHOLMOD_H RerefCHANNEL(hdr,rr,2); #endif if (hdr->FLAG.OVERFLOWDETECTION != FlagOverflowDetection) mexPrintf("Warning mexSLOAD: Overflowdetection not supported in file %s\n",hdr->FileName); if (hdr->FLAG.UCAL != FlagUCAL) mexPrintf("Warning mexSLOAD: Flag UCAL is %i instead of %i (%s)\n",hdr->FLAG.UCAL,FlagUCAL,hdr->FileName); if (VERBOSE_LEVEL>7) fprintf(stderr,"[112] SOPEN-R finished NS=%i %i\n",hdr->NS,NS); // convert2to4_eventtable(hdr); #ifdef CHOLMOD_H if (hdr->Calib != NULL) { NS = hdr->Calib->ncol; } else #endif if ((NS<0) || ((NS==1) && (ChanList[0] == 0.0))) { // all channels for (k=0, NS=0; k<hdr->NS; ++k) { if (hdr->CHANNEL[k].OnOff) NS++; } } else { for (k=0; k<hdr->NS; ++k) hdr->CHANNEL[k].OnOff = 0; // reset for (k=0; k<NS; ++k) { int ch = (int)ChanList[k]; if ((ch < 1) || (ch > hdr->NS)) mexPrintf("Invalid channel number CHAN(%i) = %i!\n",k+1,ch); else hdr->CHANNEL[ch-1].OnOff = 1; // set } } if (VERBOSE_LEVEL>7) fprintf(stderr,"[113] NS=%i %i\n",hdr->NS,NS); #ifndef mexSOPEN if (hdr->FLAG.ROW_BASED_CHANNELS) plhs[0] = mxCreateDoubleMatrix(NS, hdr->NRec*hdr->SPR, mxREAL); else plhs[0] = mxCreateDoubleMatrix(hdr->NRec*hdr->SPR, NS, mxREAL); count = sread(mxGetPr(plhs[0]), 0, hdr->NRec, hdr); hdr->NRec = count; #endif sclose(hdr); #ifdef CHOLMOD_H if (hdr->Calib && hdr->rerefCHANNEL) { hdr->NS = hdr->Calib->ncol; free(hdr->CHANNEL); hdr->CHANNEL = hdr->rerefCHANNEL; hdr->rerefCHANNEL = NULL; hdr->Calib = NULL; } #endif if ((status=serror2(hdr))) return; if (VERBOSE_LEVEL>7) fprintf(stderr,"\n[129] SREAD/SCLOSE on %s successful [%i,%i] [%i,%i] %i.\n",hdr->FileName,(int)hdr->data.size[0],(int)hdr->data.size[1],(int)hdr->NRec,(int)count,(int)NS); // hdr2ascii(hdr,stderr,4); #ifndef mexSOPEN if (nlhs>1) { #endif char* mexFileName = (char*)mxMalloc(strlen(hdr->FileName)+1); mxArray *tmp, *tmp2, *Patient, *Manufacturer, *ID, *EVENT, *Filter, *Flag, *FileType; uint16_t numfields; const char *fnames[] = {"TYPE","VERSION","FileName","T0","tzmin","FILE","Patient",\ "HeadLen","NS","SPR","NRec","SampleRate", "FLAG", \ "EVENT","Label","LeadIdCode","PhysDimCode","PhysDim","Filter",\ "PhysMax","PhysMin","DigMax","DigMin","Transducer","Cal","Off","GDFTYP","TOffset",\ "LowPass","HighPass","Notch","ELEC","Impedance","fZ","AS","Dur","REC","Manufacturer",NULL}; for (numfields=0; fnames[numfields++] != NULL; ); HDR = mxCreateStructMatrix(1, 1, --numfields, fnames); mxSetField(HDR,0,"TYPE",mxCreateString(GetFileTypeString(hdr->TYPE))); mxSetField(HDR,0,"HeadLen",mxCreateDoubleScalar(hdr->HeadLen)); mxSetField(HDR,0,"VERSION",mxCreateDoubleScalar(hdr->VERSION)); mxSetField(HDR,0,"NS",mxCreateDoubleScalar(NS)); mxSetField(HDR,0,"SPR",mxCreateDoubleScalar(hdr->SPR)); mxSetField(HDR,0,"NRec",mxCreateDoubleScalar(hdr->NRec)); mxSetField(HDR,0,"SampleRate",mxCreateDoubleScalar(hdr->SampleRate)); mxSetField(HDR,0,"Dur",mxCreateDoubleScalar(hdr->SPR/hdr->SampleRate)); mxSetField(HDR,0,"FileName",mxCreateString(hdr->FileName)); mxSetField(HDR,0,"T0",mxCreateDoubleScalar(ldexp(hdr->T0,-32))); mxSetField(HDR,0,"tzmin",mxCreateDoubleScalar(hdr->tzmin)); /* Channel information */ #ifdef CHOLMOD_H /* if (hdr->Calib == NULL) { // is refering to &RR, do not destroy mxArray *Calib = mxCreateDoubleMatrix(hdr->Calib->nrow, hdr->Calib->ncol, mxREAL); } */ #endif mxArray *LeadIdCode = mxCreateDoubleMatrix(1,NS, mxREAL); mxArray *PhysDimCode = mxCreateDoubleMatrix(1,NS, mxREAL); mxArray *GDFTYP = mxCreateDoubleMatrix(1,NS, mxREAL); mxArray *PhysMax = mxCreateDoubleMatrix(1,NS, mxREAL); mxArray *PhysMin = mxCreateDoubleMatrix(1,NS, mxREAL); mxArray *DigMax = mxCreateDoubleMatrix(1,NS, mxREAL); mxArray *DigMin = mxCreateDoubleMatrix(1,NS, mxREAL); mxArray *Cal = mxCreateDoubleMatrix(1,NS, mxREAL); mxArray *Off = mxCreateDoubleMatrix(1,NS, mxREAL); mxArray *Toffset = mxCreateDoubleMatrix(1,NS, mxREAL); mxArray *ELEC_POS = mxCreateDoubleMatrix(NS,3, mxREAL); /* mxArray *ELEC_Orient = mxCreateDoubleMatrix(NS,3, mxREAL); mxArray *ELEC_Area = mxCreateDoubleMatrix(NS,1, mxREAL); */ mxArray *LowPass = mxCreateDoubleMatrix(1,NS, mxREAL); mxArray *HighPass = mxCreateDoubleMatrix(1,NS, mxREAL); mxArray *Notch = mxCreateDoubleMatrix(1,NS, mxREAL); mxArray *Impedance = mxCreateDoubleMatrix(1,NS, mxREAL); mxArray *fZ = mxCreateDoubleMatrix(1,NS, mxREAL); mxArray *SPR = mxCreateDoubleMatrix(1,NS, mxREAL); mxArray *Label = mxCreateCellMatrix(NS,1); mxArray *Transducer = mxCreateCellMatrix(NS,1); mxArray *PhysDim1 = mxCreateCellMatrix(NS,1); for (k=0,k1=0; k1<NS; ++k) if (hdr->CHANNEL[k].OnOff) { *(mxGetPr(LeadIdCode)+k1) = (double)hdr->CHANNEL[k].LeadIdCode; *(mxGetPr(PhysDimCode)+k1) = (double)hdr->CHANNEL[k].PhysDimCode; *(mxGetPr(GDFTYP)+k1) = (double)hdr->CHANNEL[k].GDFTYP; *(mxGetPr(PhysMax)+k1) = (double)hdr->CHANNEL[k].PhysMax; *(mxGetPr(PhysMin)+k1) = (double)hdr->CHANNEL[k].PhysMin; *(mxGetPr(DigMax)+k1) = (double)hdr->CHANNEL[k].DigMax; *(mxGetPr(DigMin)+k1) = (double)hdr->CHANNEL[k].DigMin; *(mxGetPr(Toffset)+k1) = (double)hdr->CHANNEL[k].TOffset; *(mxGetPr(Cal)+k1) = (double)hdr->CHANNEL[k].Cal; *(mxGetPr(Off)+k1) = (double)hdr->CHANNEL[k].Off; *(mxGetPr(SPR)+k1) = (double)hdr->CHANNEL[k].SPR; *(mxGetPr(LowPass)+k1) = (double)hdr->CHANNEL[k].LowPass; *(mxGetPr(HighPass)+k1) = (double)hdr->CHANNEL[k].HighPass; *(mxGetPr(Notch)+k1) = (double)hdr->CHANNEL[k].Notch; *(mxGetPr(Impedance)+k1) = (double)hdr->CHANNEL[k].Impedance; *(mxGetPr(fZ)+k1) = (double)hdr->CHANNEL[k].fZ; *(mxGetPr(ELEC_POS)+k1) = (double)hdr->CHANNEL[k].XYZ[0]; *(mxGetPr(ELEC_POS)+k1+NS) = (double)hdr->CHANNEL[k].XYZ[1]; *(mxGetPr(ELEC_POS)+k1+NS*2) = (double)hdr->CHANNEL[k].XYZ[2]; /* *(mxGetPr(ELEC_Orient)+k1) = (double)hdr->CHANNEL[k].Orientation[0]; *(mxGetPr(ELEC_Orient)+k1+NS) = (double)hdr->CHANNEL[k].Orientation[1]; *(mxGetPr(ELEC_Orient)+k1+NS*2) = (double)hdr->CHANNEL[k].Orientation[2]; *(mxGetPr(ELEC_Area)+k1) = (double)hdr->CHANNEL[k].Area; */ mxSetCell(Label,k1,mxCreateString(hdr->CHANNEL[k].Label)); mxSetCell(Transducer,k1,mxCreateString(hdr->CHANNEL[k].Transducer)); mxSetCell(PhysDim1,k1,mxCreateString(PhysDim3(hdr->CHANNEL[k].PhysDimCode))); k1++; } mxSetField(HDR,0,"LeadIdCode",LeadIdCode); mxSetField(HDR,0,"PhysDimCode",PhysDimCode); mxSetField(HDR,0,"GDFTYP",GDFTYP); mxSetField(HDR,0,"PhysMax",PhysMax); mxSetField(HDR,0,"PhysMin",PhysMin); mxSetField(HDR,0,"DigMax",DigMax); mxSetField(HDR,0,"DigMin",DigMin); mxSetField(HDR,0,"TOffset",Toffset); mxSetField(HDR,0,"Cal",Cal); mxSetField(HDR,0,"Off",Off); mxSetField(HDR,0,"Impedance",Impedance); mxSetField(HDR,0,"fZ",fZ); mxSetField(HDR,0,"Off",Off); mxSetField(HDR,0,"PhysDim",PhysDim1); mxSetField(HDR,0,"Transducer",Transducer); mxSetField(HDR,0,"Label",Label); const char* field[] = {"XYZ","Orientation","Area","GND","REF",NULL}; for (numfields=0; field[numfields++] != 0; ); tmp = mxCreateStructMatrix(1, 1, --numfields, field); mxSetField(tmp,0,"XYZ",ELEC_POS); /* mxSetField(tmp,0,"Orientation",ELEC_Orient); mxSetField(tmp,0,"Area",ELEC_Area); */ mxSetField(HDR,0,"ELEC",tmp); const char* field2[] = {"SPR",NULL}; for (numfields=0; field2[numfields++] != 0; ); tmp2 = mxCreateStructMatrix(1, 1, --numfields, field2); mxSetField(tmp2,0,"SPR",SPR); if (hdr->AS.bci2000!=NULL) { mxAddField(tmp2, "BCI2000"); mxSetField(tmp2,0,"BCI2000",mxCreateString(hdr->AS.bci2000)); } if (hdr->TYPE==Sigma) { mxAddField(tmp2, "H1"); mxSetField(tmp2,0,"H1",mxCreateString((char*)hdr->AS.Header)); } mxSetField(HDR,0,"AS",tmp2); /* FLAG */ const char* field3[] = {"UCAL","OVERFLOWDETECTION","ROW_BASED_CHANNELS",NULL}; for (numfields=0; field3[numfields++] != 0; ); Flag = mxCreateStructMatrix(1, 1, --numfields, field3); #ifdef MX_API_VER //#if 1 // Matlab, Octave 3.6.1 mxSetField(Flag,0,"UCAL",mxCreateLogicalScalar(hdr->FLAG.UCAL)); mxSetField(Flag,0,"OVERFLOWDETECTION",mxCreateLogicalScalar(hdr->FLAG.OVERFLOWDETECTION)); mxSetField(Flag,0,"ROW_BASED_CHANNELS",mxCreateLogicalScalar(hdr->FLAG.ROW_BASED_CHANNELS)); #else // mxCreateLogicalScalar are not included in Octave 3.0 mxSetField(Flag,0,"UCAL",mxCreateDoubleScalar(hdr->FLAG.UCAL)); mxSetField(Flag,0,"OVERFLOWDETECTION",mxCreateDoubleScalar(hdr->FLAG.OVERFLOWDETECTION)); mxSetField(Flag,0,"ROW_BASED_CHANNELS",mxCreateDoubleScalar(hdr->FLAG.ROW_BASED_CHANNELS)); #endif mxSetField(HDR,0,"FLAG",Flag); /* Filter */ const char *filter_fields[] = {"HighPass","LowPass","Notch",NULL}; for (numfields=0; filter_fields[numfields++] != 0; ); Filter = mxCreateStructMatrix(1, 1, --numfields, filter_fields); mxSetField(Filter,0,"LowPass",LowPass); mxSetField(Filter,0,"HighPass",HighPass); mxSetField(Filter,0,"Notch",Notch); mxSetField(HDR,0,"Filter",Filter); /* annotation, marker, event table */ const char *event_fields[] = {"SampleRate","TYP","POS","DUR","CHN","Desc",NULL}; if (hdr->EVENT.DUR == NULL) EVENT = mxCreateStructMatrix(1, 1, 3, event_fields); else { EVENT = mxCreateStructMatrix(1, 1, 5, event_fields); mxArray *DUR = mxCreateDoubleMatrix(hdr->EVENT.N,1, mxREAL); mxArray *CHN = mxCreateDoubleMatrix(hdr->EVENT.N,1, mxREAL); for (k=0; k<hdr->EVENT.N; ++k) { *(mxGetPr(DUR)+k) = (double)hdr->EVENT.DUR[k]; *(mxGetPr(CHN)+k) = (double)hdr->EVENT.CHN[k]; // channels use a 1-based index, 0 indicates all channels } mxSetField(EVENT,0,"DUR",DUR); mxSetField(EVENT,0,"CHN",CHN); } if (hdr->EVENT.CodeDesc != NULL) { mxAddField(EVENT, "CodeDesc"); mxArray *CodeDesc = mxCreateCellMatrix(hdr->EVENT.LenCodeDesc-1,1); for (k=1; k < hdr->EVENT.LenCodeDesc; ++k) { mxSetCell(CodeDesc,k-1,mxCreateString(hdr->EVENT.CodeDesc[k])); } mxSetField(EVENT,0,"CodeDesc",CodeDesc); } mxArray *TYP = mxCreateDoubleMatrix(hdr->EVENT.N,1, mxREAL); mxArray *POS = mxCreateDoubleMatrix(hdr->EVENT.N,1, mxREAL); for (k=0; k<hdr->EVENT.N; ++k) { *(mxGetPr(TYP)+k) = (double)hdr->EVENT.TYP[k]; *(mxGetPr(POS)+k) = (double)hdr->EVENT.POS[k]+1; // conversion from 0-based to 1-based indexing } mxSetField(EVENT,0,"TYP",TYP); mxSetField(EVENT,0,"POS",POS); #if (BIOSIG_VERSION >= 10500) if (hdr->EVENT.TimeStamp) { mxArray *TimeStamp = mxCreateDoubleMatrix(hdr->EVENT.N,1, mxREAL); for (k=0; k<hdr->EVENT.N; ++k) { *(mxGetPr(TimeStamp)+k) = ldexp(hdr->EVENT.TimeStamp[k],-32); } mxAddField(EVENT, "TimeStamp"); mxSetField(EVENT,0,"TimeStamp",TimeStamp); } #endif mxSetField(EVENT,0,"SampleRate",mxCreateDoubleScalar(hdr->EVENT.SampleRate)); mxSetField(HDR,0,"EVENT",EVENT); /* Record identification */ const char *ID_fields[] = {"Recording","Technician","Hospital","Equipment","IPaddr",NULL}; for (numfields=0; ID_fields[numfields++] != 0; ); ID = mxCreateStructMatrix(1, 1, --numfields, ID_fields); mxSetField(ID,0,"Recording",mxCreateString(hdr->ID.Recording)); mxSetField(ID,0,"Technician",mxCreateString(hdr->ID.Technician)); mxSetField(ID,0,"Hospital",mxCreateString(hdr->ID.Hospital)); mxSetField(ID,0,"Equipment",mxCreateString((char*)&hdr->ID.Equipment)); int len = 4; uint8_t IPv6=0; for (k=4; k<16; k++) IPv6 |= hdr->IPaddr[k]; if (IPv6) len=16; mxArray *IPaddr = mxCreateNumericMatrix(1,len,mxUINT8_CLASS,mxREAL); memcpy(mxGetData(IPaddr),hdr->IPaddr,len); mxSetField(ID,0,"IPaddr",IPaddr); mxSetField(HDR,0,"REC",ID); /* Patient Information */ const char *patient_fields[] = {"Sex","Handedness","Id","Name","Weight","Height","Birthday",NULL}; for (numfields=0; patient_fields[numfields++] != 0; ); Patient = mxCreateStructMatrix(1, 1, --numfields, patient_fields); const char *strarray[1]; #ifdef __LIBBIOSIG2_H__ strarray[0] = biosig_get_patient_name(hdr); if (strarray[0]) { mxSetField(Patient,0,"Name",mxCreateCharMatrixFromStrings(1,strarray)); } strarray[0] = biosig_get_patient_id(hdr); if (strarray[0]) { mxSetField(Patient,0,"Id",mxCreateCharMatrixFromStrings(1,strarray)); } #else strarray[0] = hdr->Patient.Name; if (strarray[0]) { mxSetField(Patient,0,"Name",mxCreateCharMatrixFromStrings(1,strarray)); } strarray[0] = hdr->Patient.Id; if (strarray[0]) { mxSetField(Patient,0,"Id",mxCreateCharMatrixFromStrings(1,strarray)); } #endif mxSetField(Patient,0,"Handedness",mxCreateDoubleScalar(hdr->Patient.Handedness)); mxSetField(Patient,0,"Sex",mxCreateDoubleScalar(hdr->Patient.Sex)); mxSetField(Patient,0,"Weight",mxCreateDoubleScalar((double)hdr->Patient.Weight)); mxSetField(Patient,0,"Height",mxCreateDoubleScalar((double)hdr->Patient.Height)); mxSetField(Patient,0,"Birthday",mxCreateDoubleScalar(ldexp(hdr->Patient.Birthday,-32))); double d; if (hdr->Patient.Weight==0) d = NAN; // not-a-number else if (hdr->Patient.Weight==255) d = INFINITY; // Overflow else d = (double)hdr->Patient.Weight; mxSetField(Patient,0,"Weight",mxCreateDoubleScalar(d)); if (hdr->Patient.Height==0) d = NAN; // not-a-number else if (hdr->Patient.Height==255) d = INFINITY; // Overflow else d = (double)hdr->Patient.Height; mxSetField(Patient,0,"Height",mxCreateDoubleScalar(d)); /* Manufacturer Information */ const char *manufacturer_fields[] = {"Name","Model","Version","SerialNumber",NULL}; for (numfields=0; manufacturer_fields[numfields++] != 0; ); Manufacturer = mxCreateStructMatrix(1, 1, --numfields, manufacturer_fields); #ifdef __LIBBIOSIG2_H__ strarray[0] = biosig_get_manufacturer_name(hdr); if (strarray[0]) { mxSetField(Manufacturer,0,"Name",mxCreateCharMatrixFromStrings(1,strarray)); } strarray[0] = biosig_get_manufacturer_model(hdr); if (strarray[0]) { biosig_get_manufacturer_model(hdr); mxSetField(Manufacturer,0,"Model",mxCreateCharMatrixFromStrings(1,strarray)); } strarray[0] = biosig_get_manufacturer_version(hdr); if (strarray[0]) { biosig_get_manufacturer_version(hdr); mxSetField(Manufacturer,0,"Version",mxCreateCharMatrixFromStrings(1,strarray)); } strarray[0] = biosig_get_manufacturer_serial_number(hdr); if (strarray[0]) { mxSetField(Manufacturer,0,"SerialNumber",mxCreateCharMatrixFromStrings(1,strarray)); } #else strarray[0] = hdr->ID.Manufacturer.Name; if (strarray[0]) { mxSetField(Manufacturer,0,"Name",mxCreateCharMatrixFromStrings(1,strarray)); } strarray[0] = hdr->ID.Manufacturer.Model; if (strarray[0]) { mxSetField(Manufacturer,0,"Model",mxCreateCharMatrixFromStrings(1,strarray)); } strarray[0] = hdr->ID.Manufacturer.Version; if (strarray[0]) { mxSetField(Manufacturer,0,"Version",mxCreateCharMatrixFromStrings(1,strarray)); } strarray[0] = hdr->ID.Manufacturer.SerialNumber; if (strarray[0]) { mxSetField(Manufacturer,0,"SerialNumber",mxCreateCharMatrixFromStrings(1,strarray)); } #endif mxSetField(HDR,0,"Manufacturer",Manufacturer); if (VERBOSE_LEVEL>7) fprintf(stdout,"[148] going for SCLOSE\n"); mxSetField(HDR,0,"Patient",Patient); #ifndef mexSOPEN plhs[1] = HDR; } #else plhs[0] = HDR; #endif if (VERBOSE_LEVEL>7) fprintf(stdout,"[151] going for SCLOSE\n"); #ifdef CHOLMOD_H hdr->Calib = NULL; // is refering to &RR, do not destroy #endif if (VERBOSE_LEVEL>7) fprintf(stdout,"[156] SCLOSE finished\n"); destructHDR(hdr); hdr = NULL; if (VERBOSE_LEVEL>7) fprintf(stdout,"[157] SCLOSE finished\n"); };