void find_tight_bounds(const Cubic& cubic, _Rect& bounds) { CubicPair cubicPair; chop_at(cubic, cubicPair, 0.5); if (!tiny(cubicPair.first()) && !controls_inside(cubicPair.first())) { find_tight_bounds(cubicPair.first(), bounds); } else { bounds.add(cubicPair.first()[0]); bounds.add(cubicPair.first()[3]); } if (!tiny(cubicPair.second()) && !controls_inside(cubicPair.second())) { find_tight_bounds(cubicPair.second(), bounds); } else { bounds.add(cubicPair.second()[0]); bounds.add(cubicPair.second()[3]); } }
void CubicReduceOrder_Test() { size_t index; Cubic reduce; int order; enum { RunAll, RunPointDegenerates, RunNotPointDegenerates, RunLines, RunNotLines, RunModEpsilonLines, RunLessEpsilonLines, RunNegEpsilonLines, RunQuadraticLines, RunQuadraticModLines, RunComputedLines, RunNone } run = RunAll; int firstTestIndex = 0; #if 0 run = RunComputedLines; firstTestIndex = 18; #endif int firstPointDegeneratesTest = run == RunAll ? 0 : run == RunPointDegenerates ? firstTestIndex : SK_MaxS32; int firstNotPointDegeneratesTest = run == RunAll ? 0 : run == RunNotPointDegenerates ? firstTestIndex : SK_MaxS32; int firstLinesTest = run == RunAll ? 0 : run == RunLines ? firstTestIndex : SK_MaxS32; int firstNotLinesTest = run == RunAll ? 0 : run == RunNotLines ? firstTestIndex : SK_MaxS32; int firstModEpsilonTest = run == RunAll ? 0 : run == RunModEpsilonLines ? firstTestIndex : SK_MaxS32; int firstLessEpsilonTest = run == RunAll ? 0 : run == RunLessEpsilonLines ? firstTestIndex : SK_MaxS32; int firstNegEpsilonTest = run == RunAll ? 0 : run == RunNegEpsilonLines ? firstTestIndex : SK_MaxS32; int firstQuadraticLineTest = run == RunAll ? 0 : run == RunQuadraticLines ? firstTestIndex : SK_MaxS32; int firstQuadraticModLineTest = run == RunAll ? 0 : run == RunQuadraticModLines ? firstTestIndex : SK_MaxS32; int firstComputedLinesTest = run == RunAll ? 0 : run == RunComputedLines ? firstTestIndex : SK_MaxS32; for (index = firstPointDegeneratesTest; index < pointDegenerates_count; ++index) { const Cubic& cubic = pointDegenerates[index]; order = reduceOrder(cubic, reduce, kReduceOrder_QuadraticsAllowed, kReduceOrder_TreatAsFill); if (order != 1) { SkDebugf("[%d] pointDegenerates order=%d\n", (int) index, order); } } for (index = firstNotPointDegeneratesTest; index < notPointDegenerates_count; ++index) { const Cubic& cubic = notPointDegenerates[index]; order = reduceOrder(cubic, reduce, kReduceOrder_QuadraticsAllowed, kReduceOrder_TreatAsFill); if (order == 1) { SkDebugf("[%d] notPointDegenerates order=%d\n", (int) index, order); } } for (index = firstLinesTest; index < lines_count; ++index) { const Cubic& cubic = lines[index]; order = reduceOrder(cubic, reduce, kReduceOrder_QuadraticsAllowed, kReduceOrder_TreatAsFill); if (order != 2) { SkDebugf("[%d] lines order=%d\n", (int) index, order); } } for (index = firstNotLinesTest; index < notLines_count; ++index) { const Cubic& cubic = notLines[index]; order = reduceOrder(cubic, reduce, kReduceOrder_QuadraticsAllowed, kReduceOrder_TreatAsFill); if (order == 2) { SkDebugf("[%d] notLines order=%d\n", (int) index, order); } } for (index = firstModEpsilonTest; index < modEpsilonLines_count; ++index) { const Cubic& cubic = modEpsilonLines[index]; order = reduceOrder(cubic, reduce, kReduceOrder_QuadraticsAllowed, kReduceOrder_TreatAsFill); if (order == 2) { SkDebugf("[%d] line mod by epsilon order=%d\n", (int) index, order); } } for (index = firstLessEpsilonTest; index < lessEpsilonLines_count; ++index) { const Cubic& cubic = lessEpsilonLines[index]; order = reduceOrder(cubic, reduce, kReduceOrder_QuadraticsAllowed, kReduceOrder_TreatAsFill); if (order != 2) { SkDebugf("[%d] line less by epsilon/2 order=%d\n", (int) index, order); } } for (index = firstNegEpsilonTest; index < negEpsilonLines_count; ++index) { const Cubic& cubic = negEpsilonLines[index]; order = reduceOrder(cubic, reduce, kReduceOrder_QuadraticsAllowed, kReduceOrder_TreatAsFill); if (order != 2) { SkDebugf("[%d] line neg by epsilon/2 order=%d\n", (int) index, order); } } for (index = firstQuadraticLineTest; index < quadraticLines_count; ++index) { const Quadratic& quad = quadraticLines[index]; Cubic cubic; quad_to_cubic(quad, cubic); order = reduceOrder(cubic, reduce, kReduceOrder_QuadraticsAllowed, kReduceOrder_TreatAsFill); if (order != 2) { SkDebugf("[%d] line quad order=%d\n", (int) index, order); } } for (index = firstQuadraticModLineTest; index < quadraticModEpsilonLines_count; ++index) { const Quadratic& quad = quadraticModEpsilonLines[index]; Cubic cubic; quad_to_cubic(quad, cubic); order = reduceOrder(cubic, reduce, kReduceOrder_QuadraticsAllowed, kReduceOrder_TreatAsFill); if (order != 3) { SkDebugf("[%d] line mod quad order=%d\n", (int) index, order); } } // test if computed line end points are valid for (index = firstComputedLinesTest; index < lines_count; ++index) { const Cubic& cubic = lines[index]; bool controlsInside = controls_inside(cubic); order = reduceOrder(cubic, reduce, kReduceOrder_QuadraticsAllowed, kReduceOrder_TreatAsFill); if (reduce[0].x == reduce[1].x && reduce[0].y == reduce[1].y) { SkDebugf("[%d] line computed ends match order=%d\n", (int) index, order); } if (controlsInside) { if ( (reduce[0].x != cubic[0].x && reduce[0].x != cubic[3].x) || (reduce[0].y != cubic[0].y && reduce[0].y != cubic[3].y) || (reduce[1].x != cubic[0].x && reduce[1].x != cubic[3].x) || (reduce[1].y != cubic[0].y && reduce[1].y != cubic[3].y)) { SkDebugf("[%d] line computed ends order=%d\n", (int) index, order); } } else { // binary search for extrema, compare against actual results // while a control point is outside of bounding box formed by end points, split _Rect bounds = {DBL_MAX, DBL_MAX, -DBL_MAX, -DBL_MAX}; find_tight_bounds(cubic, bounds); if ( (!AlmostEqualUlps(reduce[0].x, bounds.left) && !AlmostEqualUlps(reduce[0].x, bounds.right)) || (!AlmostEqualUlps(reduce[0].y, bounds.top) && !AlmostEqualUlps(reduce[0].y, bounds.bottom)) || (!AlmostEqualUlps(reduce[1].x, bounds.left) && !AlmostEqualUlps(reduce[1].x, bounds.right)) || (!AlmostEqualUlps(reduce[1].y, bounds.top) && !AlmostEqualUlps(reduce[1].y, bounds.bottom))) { SkDebugf("[%d] line computed tight bounds order=%d\n", (int) index, order); } } } }