示例#1
0
// This one is complicated and gross. Just don't go there...
// TODO: Comment me!
static int
seg2poly(const cpShape *shape1, const cpShape *shape2, cpContact *arr)
{
	cpSegmentShape *seg = (cpSegmentShape *)shape1;
	cpPolyShape *poly = (cpPolyShape *)shape2;
	cpSplittingPlane *planes = poly->tPlanes;
	
	cpFloat segD = cpvdot(seg->tn, seg->ta);
	cpFloat minNorm = cpPolyShapeValueOnAxis(poly, seg->tn, segD) - seg->r;
	cpFloat minNeg = cpPolyShapeValueOnAxis(poly, cpvneg(seg->tn), -segD) - seg->r;
	if(minNeg > 0.0f || minNorm > 0.0f) return 0;
	
	int mini = 0;
	cpFloat poly_min = segValueOnAxis(seg, planes->n, planes->d);
	if(poly_min > 0.0f) return 0;
	for(int i=0; i<poly->numVerts; i++){
		cpFloat dist = segValueOnAxis(seg, planes[i].n, planes[i].d);
		if(dist > 0.0f){
			return 0;
		} else if(dist > poly_min){
			poly_min = dist;
			mini = i;
		}
	}
	
	int num = 0;
	
	cpVect poly_n = cpvneg(planes[mini].n);
	
	cpVect va = cpvadd(seg->ta, cpvmult(poly_n, seg->r));
	cpVect vb = cpvadd(seg->tb, cpvmult(poly_n, seg->r));
	if(cpPolyShapeContainsVert(poly, va))
		cpContactInit(nextContactPoint(arr, &num), va, poly_n, poly_min, CP_HASH_PAIR(seg->shape.hashid, 0));
	if(cpPolyShapeContainsVert(poly, vb))
		cpContactInit(nextContactPoint(arr, &num), vb, poly_n, poly_min, CP_HASH_PAIR(seg->shape.hashid, 1));
	
	// Floating point precision problems here.
	// This will have to do for now.
//	poly_min -= cp_collision_slop; // TODO is this needed anymore?
	
	if(minNorm >= poly_min || minNeg >= poly_min) {
		if(minNorm > minNeg)
			findPointsBehindSeg(arr, &num, seg, poly, minNorm, 1.0f);
		else
			findPointsBehindSeg(arr, &num, seg, poly, minNeg, -1.0f);
	}
	
	// If no other collision points are found, try colliding endpoints.
	if(num == 0){
		cpVect poly_a = poly->tVerts[mini];
		cpVect poly_b = poly->tVerts[(mini + 1)%poly->numVerts];
		
		if(circle2circleQuery(seg->ta, poly_a, seg->r, 0.0f, arr)) return 1;
		if(circle2circleQuery(seg->tb, poly_a, seg->r, 0.0f, arr)) return 1;
		if(circle2circleQuery(seg->ta, poly_b, seg->r, 0.0f, arr)) return 1;
		if(circle2circleQuery(seg->tb, poly_b, seg->r, 0.0f, arr)) return 1;
	}

	return num;
}
示例#2
0
// This one is complicated and gross. Just don't go there...
// TODO: Comment me!
static int
seg2poly(cpShape *shape1, cpShape *shape2, cpContact **arr)
{
	cpSegmentShape *seg = (cpSegmentShape *)shape1;
	cpPolyShape *poly = (cpPolyShape *)shape2;
	cpPolyShapeAxis *axes = poly->tAxes;
	
	cpFloat segD = cpvdot(seg->tn, seg->ta);
	cpFloat minNorm = cpPolyShapeValueOnAxis(poly, seg->tn, segD) - seg->r;
	cpFloat minNeg = cpPolyShapeValueOnAxis(poly, cpvneg(seg->tn), -segD) - seg->r;
	if(minNeg > 0.0f || minNorm > 0.0f) return 0;
	
	int mini = 0;
	cpFloat poly_min = segValueOnAxis(seg, axes->n, axes->d);
	if(poly_min > 0.0f) return 0;
	for(int i=0; i<poly->numVerts; i++){
		cpFloat dist = segValueOnAxis(seg, axes[i].n, axes[i].d);
		if(dist > 0.0f){
			return 0;
		} else if(dist > poly_min){
			poly_min = dist;
			mini = i;
		}
	}
	
	int max = 0;
	int num = 0;
	
	cpVect poly_n = cpvneg(axes[mini].n);
	
	cpVect va = cpvadd(seg->ta, cpvmult(poly_n, seg->r));
	cpVect vb = cpvadd(seg->tb, cpvmult(poly_n, seg->r));
	if(cpPolyShapeContainsVert(poly, va))
		cpContactInit(addContactPoint(arr, &max, &num), va, poly_n, poly_min, CP_HASH_PAIR(seg, 0));
	if(cpPolyShapeContainsVert(poly, vb))
		cpContactInit(addContactPoint(arr, &max, &num), vb, poly_n, poly_min, CP_HASH_PAIR(seg, 1));

	// Floating point precision problems here.
	// This will have to do for now.
	poly_min -= cp_collision_slop;
	if(minNorm >= poly_min || minNeg >= poly_min) {
		if(minNorm > minNeg)
			findPointsBehindSeg(arr, &max, &num, seg, poly, minNorm, 1.0f);
		else
			findPointsBehindSeg(arr, &max, &num, seg, poly, minNeg, -1.0f);
	}

	return num;
}
示例#3
0
// Add contacts for penetrating vertexes.
static inline int
findVerts(cpContact *arr, const cpPolyShape *poly1, const cpPolyShape *poly2, const cpVect n, const cpFloat dist)
{
	int num = 0;
	
	for(int i=0; i<poly1->numVerts; i++){
		cpVect v = poly1->tVerts[i];
		if(cpPolyShapeContainsVert(poly2, v))
			cpContactInit(nextContactPoint(arr, &num), v, n, dist, CP_HASH_PAIR(poly1->shape.hashid, i));
	}
	
	for(int i=0; i<poly2->numVerts; i++){
		cpVect v = poly2->tVerts[i];
		if(cpPolyShapeContainsVert(poly1, v))
			cpContactInit(nextContactPoint(arr, &num), v, n, dist, CP_HASH_PAIR(poly2->shape.hashid, i));
	}
	
	return (num ? num : findVertsFallback(arr, poly1, poly2, n, dist));
}
示例#4
0
// Add contacts for probably penetrating vertexes.
// This handles the degenerate case where an overlap was detected, but no vertexes fall inside
// the opposing polygon. (like a star of david)
static /*inline*/ int
findVertsFallback(cpContact *arr, const cpPolyShape *poly1, const cpPolyShape *poly2, const cpVect n, const cpFloat dist)
{
	int num = 0;
	
	for(int i=0; i<poly1->numVerts; i++){
		cpVect v = poly1->tVerts[i];
		if(cpPolyShapeContainsVertPartial(poly2, v, cpvneg(n)))
			cpContactInit(nextContactPoint(arr, &num), v, n, dist, CP_HASH_PAIR(poly1->shape.hashid, i));
	}
	
	for(int i=0; i<poly2->numVerts; i++){
		cpVect v = poly2->tVerts[i];
		if(cpPolyShapeContainsVertPartial(poly1, v, n))
			cpContactInit(nextContactPoint(arr, &num), v, n, dist, CP_HASH_PAIR(poly2->shape.hashid, i));
	}
	
	return num;
}
// Add contacts for penetrating vertexes.
static inline int
findVerts(cpContact *arr, cpPolyShape *poly1, cpPolyShape *poly2, cpVect n, cpFloat dist)
{
	int num = 0;
	
	for(int i=0; i<poly1->numVerts; i++){
		cpVect v = poly1->tVerts[i];
		if(cpPolyShapeContainsVertPartial(poly2, v, cpvneg(n)))
			cpContactInit(nextContactPoint(arr, &num), v, n, dist, CP_HASH_PAIR(poly1->shape.hashid, i));
	}
	
	for(int i=0; i<poly2->numVerts; i++){
		cpVect v = poly2->tVerts[i];
		if(cpPolyShapeContainsVertPartial(poly1, v, n))
			cpContactInit(nextContactPoint(arr, &num), v, n, dist, CP_HASH_PAIR(poly2->shape.hashid, i));
	}
	
	//	if(!num)
	//		addContactPoint(arr, &size, &num, cpContactNew(shape1->body->p, n, dist, 0));

	return num;
}
示例#6
0
// Collide circles to segment shapes.
static int
circle2segment(cpShape *circleShape, cpShape *segmentShape, cpContact **con)
{
	cpCircleShape *circ = (cpCircleShape *)circleShape;
	cpSegmentShape *seg = (cpSegmentShape *)segmentShape;
	
	// Radius sum
	cpFloat rsum = circ->r + seg->r;
	
	// Calculate normal distance from segment.
	cpFloat dn = cpvdot(seg->tn, circ->tc) - cpvdot(seg->ta, seg->tn);
	cpFloat dist = cpfabs(dn) - rsum;
	if(dist > 0.0f) return 0;
	
	// Calculate tangential distance along segment.
	cpFloat dt = -cpvcross(seg->tn, circ->tc);
	cpFloat dtMin = -cpvcross(seg->tn, seg->ta);
	cpFloat dtMax = -cpvcross(seg->tn, seg->tb);
	
	// Decision tree to decide which feature of the segment to collide with.
	if(dt < dtMin){
		if(dt < (dtMin - rsum)){
			return 0;
		} else {
			return circle2circleQuery(circ->tc, seg->ta, circ->r, seg->r, con);
		}
	} else {
		if(dt < dtMax){
			cpVect n = (dn < 0.0f) ? seg->tn : cpvneg(seg->tn);
			(*con) = (cpContact *)cpmalloc(sizeof(cpContact));
			cpContactInit(
				(*con),
				cpvadd(circ->tc, cpvmult(n, circ->r + dist*0.5f)),
				n,
				dist,
				0				 
			);
			return 1;
		} else {
			if(dt < (dtMax + rsum)) {
				return circle2circleQuery(circ->tc, seg->tb, circ->r, seg->r, con);
			} else {
				return 0;
			}
		}
	}
	
	return 1;
}
示例#7
0
// Identify vertexes that have penetrated the segment.
static inline void
findPointsBehindSeg(cpContact **arr, int *max, int *num, cpSegmentShape *seg, cpPolyShape *poly, cpFloat pDist, cpFloat coef) 
{
	cpFloat dta = cpvcross(seg->tn, seg->ta);
	cpFloat dtb = cpvcross(seg->tn, seg->tb);
	cpVect n = cpvmult(seg->tn, coef);
	
	for(int i=0; i<poly->numVerts; i++){
		cpVect v = poly->tVerts[i];
		if(cpvdot(v, n) < cpvdot(seg->tn, seg->ta)*coef + seg->r){
			cpFloat dt = cpvcross(seg->tn, v);
			if(dta >= dt && dt >= dtb){
				cpContactInit(addContactPoint(arr, max, num), v, n, pDist, CP_HASH_PAIR(poly->shape.hashid, i));
			}
		}
	}
}
示例#8
0
// This one is less gross, but still gross.
// TODO: Comment me!
static int
circle2poly(cpShape *shape1, cpShape *shape2, cpContact **con)
{
	cpCircleShape *circ = (cpCircleShape *)shape1;
	cpPolyShape *poly = (cpPolyShape *)shape2;
	cpPolyShapeAxis *axes = poly->tAxes;
	
	int mini = 0;
	cpFloat min = cpvdot(axes->n, circ->tc) - axes->d - circ->r;
	for(int i=0; i<poly->numVerts; i++){
		cpFloat dist = cpvdot(axes[i].n, circ->tc) - axes[i].d - circ->r;
		if(dist > 0.0f){
			return 0;
		} else if(dist > min) {
			min = dist;
			mini = i;
		}
	}
	
	cpVect n = axes[mini].n;
	cpVect a = poly->tVerts[mini];
	cpVect b = poly->tVerts[(mini + 1)%poly->numVerts];
	cpFloat dta = cpvcross(n, a);
	cpFloat dtb = cpvcross(n, b);
	cpFloat dt = cpvcross(n, circ->tc);
		
	if(dt < dtb){
		return circle2circleQuery(circ->tc, b, circ->r, 0.0f, con);
	} else if(dt < dta) {
		(*con) = (cpContact *)cpmalloc(sizeof(cpContact));
		cpContactInit(
			(*con),
			cpvsub(circ->tc, cpvmult(n, circ->r + min/2.0f)),
			cpvneg(n),
			min,
			0				 
		);
	
		return 1;
	} else {
		return circle2circleQuery(circ->tc, a, circ->r, 0.0f, con);
	}
}
示例#9
0
// This one is less gross, but still gross.
// TODO: Comment me!
static int
circle2poly(const cpShape *shape1, const cpShape *shape2, cpContact *con)
{
	cpCircleShape *circ = (cpCircleShape *)shape1;
	cpPolyShape *poly = (cpPolyShape *)shape2;
	cpSplittingPlane *planes = poly->tPlanes;
	
	int mini = 0;
	cpFloat min = cpSplittingPlaneCompare(planes[0], circ->tc) - circ->r;
	for(int i=0; i<poly->numVerts; i++){
		cpFloat dist = cpSplittingPlaneCompare(planes[i], circ->tc) - circ->r;
		if(dist > 0.0f){
			return 0;
		} else if(dist > min) {
			min = dist;
			mini = i;
		}
	}
	
	cpVect n = planes[mini].n;
	cpVect a = poly->tVerts[mini];
	cpVect b = poly->tVerts[(mini + 1)%poly->numVerts];
	cpFloat dta = cpvcross(n, a);
	cpFloat dtb = cpvcross(n, b);
	cpFloat dt = cpvcross(n, circ->tc);
		
	if(dt < dtb){
		return circle2circleQuery(circ->tc, b, circ->r, 0.0f, con);
	} else if(dt < dta) {
		cpContactInit(
			con,
			cpvsub(circ->tc, cpvmult(n, circ->r + min/2.0f)),
			cpvneg(n),
			min,
			0				 
		);
	
		return 1;
	} else {
		return circle2circleQuery(circ->tc, a, circ->r, 0.0f, con);
	}
}
示例#10
0
// Add contact points for circle to circle collisions.
// Used by several collision tests.
static int
circle2circleQuery(const cpVect p1, const cpVect p2, const cpFloat r1, const cpFloat r2, cpContact *con)
{
	cpFloat mindist = r1 + r2;
	cpVect delta = cpvsub(p2, p1);
	cpFloat distsq = cpvlengthsq(delta);
	if(distsq >= mindist*mindist) return 0;
	
	cpFloat dist = cpfsqrt(distsq);

	// Allocate and initialize the contact.
	cpContactInit(
		con,
		cpvadd(p1, cpvmult(delta, 0.5f + (r1 - 0.5f*mindist)/(dist ? dist : INFINITY))),
		(dist ? cpvmult(delta, 1.0f/dist) : cpv(1.0f, 0.0f)),
		dist - mindist,
		0
	);
	
	return 1;
}
示例#11
0
// Add contact points for circle to circle collisions.
// Used by several collision tests.
static int
circle2circleQuery(cpVect p1, cpVect p2, cpFloat r1, cpFloat r2, cpContact *con)
{
	cpFloat mindist = r1 + r2;
	cpVect delta = cpvsub(p2, p1);
	cpFloat distsq = cpvlengthsq(delta);
	if(distsq >= mindist*mindist) return 0;
	
	cpFloat dist = cpfsqrt(distsq);
	// To avoid singularities, do nothing in the case of dist = 0.
	cpFloat non_zero_dist = (dist ? dist : INFINITY);

	// Allocate and initialize the contact.
	cpContactInit(
		con,
		cpvadd(p1, cpvmult(delta, 0.5f + (r1 - 0.5f*mindist)/non_zero_dist)),
		cpvmult(delta, 1.0f/non_zero_dist),
		dist - mindist,
		0
	);
	
	return 1;
}