示例#1
0
static void demo3()
{
#define TWOPI (2.0*3.14159265)
#define NPOL  6
  
  int i, j, k;
  int n1[] = {3, 4, 5, 5, 6, 8};
  int n2[] = {1, 1, 1, 2, 1, 3};
  float x[10], y[10], y0;
  
  char* lab[] =  {"Fill style 1 (solid)",
		  "Fill style 2 (outline)",
		  "Fill style 3 (hatched)",
		  "Fill style 4 (cross-hatched)"};
  
/* Initialize the viewport and window. */

  cpgbbuf();
  cpgsave();
  cpgpage();
  cpgsvp(0.0, 1.0, 0.0, 1.0);
  cpgwnad(0.0, 10.0, 0.0, 10.0);
  
/* Label the graph. */

  cpgsci(1);
  cpgmtxt("T", -2.0, 0.5, 0.5, 
          "PGPLOT fill area: routines cpgpoly(), cpgcirc(), cpgrect()");
  
/* Draw assorted polygons. */

  for (k=1; k<5; k++) {
    cpgsci(1);
    y0 = 10.0 -2.0*k;
    cpgtext(0.2, y0+0.6, lab[k-1]);
    cpgsfs(k);
    for (i=0; i<NPOL; i++) {
      cpgsci(i+1);
      for (j=0; j<n1[i]; j++) {
	x[j] = i+1 + 0.5*cos(n2[i]*TWOPI*j/n1[i]);
	y[j] = y0 + 0.5*sin(n2[i]*TWOPI*j/n1[i]);
      }
      cpgpoly(n1[i], x, y);
    }
    cpgsci(7);
    cpgshs(0.0, 1.0, 0.0);
    cpgcirc(7.0, y0, 0.5);
    cpgsci(8);
    cpgshs(-45.0, 1.0, 0.0);
    cpgrect(7.8, 9.5, y0-0.5, y0+0.5);
  }
  cpgunsa();
  cpgebuf();
  return;
}
JNIEXPORT void JNICALL Java_pulsarhunter_PgplotInterface_pgtext
(JNIEnv *env, jclass cl, jstring text, jfloat x, jfloat y){

        char *textStr = (char*)(*env)->GetStringUTFChars(env,text,NULL);
        jint strlen =  (*env)->GetStringUTFLength(env,text);


        cpgtext(x,y,textStr);

        (*env)->ReleaseStringUTFChars(env,text,textStr);



}
示例#3
0
void scaledep() {
	int i, d;
	char t[24];

	cpgsci(1);
	cpgmtxt("T",1.0,0.0,0.0,"Prof.:");

	cpgsvp(0.12, 0.25, 0.912, 0.922);
	cpgswin(0.0,700.0, 0.0, 2.0);

	cpgsch(0.4);
	for(i=1.0;i<700.0;i+=10.0) {
		cpgsci(depthcolor((float)i));
		cpgpt1(i,1.0,16);
	}

	cpgsci(1);

	d = 0;
	cpgsci(depthcolor((float)d));
	sprintf(t,"%.1d",d);
	cpgtext(d-25.0,2.8,t);

	d = 15;
	cpgsci(depthcolor((float)d));
	sprintf(t,"%.1d",d);
	cpgtext(d-35.0,-1.8,t);

	d = 35;
	cpgsci(depthcolor((float)d));
	sprintf(t,"%.1d",d);
	cpgtext(d-20.0,2.8,t);

	d = 70;
	cpgsci(depthcolor((float)d));
	sprintf(t,"%.1d",d);
	cpgtext(d-25,-1.8,t);

	d = 120;
	cpgsci(depthcolor((float)d));
	sprintf(t,"%.1d",d);
	cpgtext(d-50,2.8,t);

	d = 300;
	cpgsci(depthcolor((float)d));
	sprintf(t,"%.1d",d);
	cpgtext(d-50,2.8,t);

	cpgsch(FS);
	cpgsci(1);

	return;
}
示例#4
0
int button::draw(){
cpgsvp(0.0,1.0,0.0,1.0);
cpgswin(0.0,1.0,0.0,1.0);
cpgsfs(2);

float xl, yl;
cpglen(4,label,&xl,&yl);
xmin = x-2.0*0.005; 
xmax = x + xl + 2.0 * 0.005;
ymin = y-2.0*0.005;
ymax = y+0.015 + 2.0 * 0.005;

cpgsci(1);
cpgrect(x-0.005, x+xl+0.005, y-0.005, y+0.015 + 0.005);
cpgrect(x-2.0*0.005, x+xl+2.0*0.005, y-2.0*0.005, y+0.015 + 2.0*0.005);
cpgtext(x,y,label);
 return(0);
}
示例#5
0
int check::draw(){

  if (on) {
    cpgsci(2);
    cpgsfs(1);
    cpgrect(xmin,xmax,ymin,ymax);
    cpgsci(1);
    cpgsfs(2);
    cpgrect(xmin,xmax,ymin,ymax);
  }
  else{
    cpgsci(0);
    cpgsfs(1);
    cpgrect(xmin,xmax,ymin,ymax);
    cpgsci(1);
    cpgsfs(2);
    cpgrect(xmin,xmax,ymin,ymax);
  }
  cpgtext(x+0.05,y,label);
  return(0);
}
示例#6
0
void scalemag() {
	int i;
	char t[24];

	cpgsci(1);
	cpgmtxt("T",1.0,0.0,0.0,"Mag.:");
	cpgsvp(0.12, 0.25, 0.912, 0.922);
	cpgswin(0.0, 11.0, 0.0, 2.0);

	cpgsch(0.4);
	for(i=0.0;i<10.0;i++) {
		cpgsci(magcolor((float)i));
		sprintf(t,"%.1d",i);
		cpgtext(i+1-0.12,2.8,t);
		cpgpt1(i+1,1.0,16);
	}
	cpgsch(FS);
	cpgsci(1);

	return;
}
示例#7
0
void rfifind_plot(int numchan, int numint, int ptsperint,
                  float timesigma, float freqsigma,
                  float inttrigfrac, float chantrigfrac,
                  float **dataavg, float **datastd, float **datapow,
                  int *userchan, int numuserchan,
                  int *userints, int numuserints,
                  infodata * idata, unsigned char **bytemask,
                  mask * oldmask, mask * newmask,
                  rfi * rfivect, int numrfi, int rfixwin, int rfips, int xwin)
/* Make the beautiful multi-page rfifind plots */
{
   int ii, jj, ct, loops = 1;
   float *freqs, *chans, *times, *ints;
   float *avg_chan_avg, *std_chan_avg, *pow_chan_avg;
   float *avg_chan_med, *std_chan_med, *pow_chan_med;
   float *avg_chan_std, *std_chan_std, *pow_chan_std;
   float *avg_int_avg, *std_int_avg, *pow_int_avg;
   float *avg_int_med, *std_int_med, *pow_int_med;
   float *avg_int_std, *std_int_std, *pow_int_std;
   float dataavg_avg, datastd_avg, datapow_avg;
   float dataavg_med, datastd_med, datapow_med;
   float dataavg_std, datastd_std, datapow_std;
   float avg_reject, std_reject, pow_reject;
   double inttim, T, lof, hif;

   inttim = ptsperint * idata->dt;
   T = inttim * numint;
   lof = idata->freq - 0.5 * idata->chan_wid;
   hif = lof + idata->freqband;
   avg_chan_avg = gen_fvect(numchan);
   std_chan_avg = gen_fvect(numchan);
   pow_chan_avg = gen_fvect(numchan);
   avg_int_avg = gen_fvect(numint);
   std_int_avg = gen_fvect(numint);
   pow_int_avg = gen_fvect(numint);
   avg_chan_med = gen_fvect(numchan);
   std_chan_med = gen_fvect(numchan);
   pow_chan_med = gen_fvect(numchan);
   avg_int_med = gen_fvect(numint);
   std_int_med = gen_fvect(numint);
   pow_int_med = gen_fvect(numint);
   avg_chan_std = gen_fvect(numchan);
   std_chan_std = gen_fvect(numchan);
   pow_chan_std = gen_fvect(numchan);
   avg_int_std = gen_fvect(numint);
   std_int_std = gen_fvect(numint);
   pow_int_std = gen_fvect(numint);
   chans = gen_fvect(numchan);
   freqs = gen_fvect(numchan);
   for (ii = 0; ii < numchan; ii++) {
      chans[ii] = ii;
      freqs[ii] = idata->freq + ii * idata->chan_wid;
   }
   ints = gen_fvect(numint);
   times = gen_fvect(numint);
   for (ii = 0; ii < numint; ii++) {
      ints[ii] = ii;
      times[ii] = 0.0 + ii * inttim;
   }

   /* Calculate the statistics of the full set */

   ct = numchan * numint;
   calc_avgmedstd(dataavg[0], ct, 0.8, 1, &dataavg_avg, &dataavg_med, &dataavg_std);
   calc_avgmedstd(datastd[0], ct, 0.8, 1, &datastd_avg, &datastd_med, &datastd_std);
   calc_avgmedstd(datapow[0], ct, 0.5, 1, &datapow_avg, &datapow_med, &datapow_std);
   avg_reject = timesigma * dataavg_std;
   std_reject = timesigma * datastd_std;
   pow_reject = power_for_sigma(freqsigma, 1, ptsperint / 2);

   /* Calculate the channel/integration statistics vectors */

   for (ii = 0; ii < numint; ii++) {
      calc_avgmedstd(dataavg[0] + ii * numchan, numchan, 0.8, 1,
                     avg_int_avg + ii, avg_int_med + ii, avg_int_std + ii);
      calc_avgmedstd(datastd[0] + ii * numchan, numchan, 0.8, 1,
                     std_int_avg + ii, std_int_med + ii, std_int_std + ii);
      calc_avgmedstd(datapow[0] + ii * numchan, numchan, 0.5, 1,
                     pow_int_avg + ii, pow_int_med + ii, pow_int_std + ii);
   }
   for (ii = 0; ii < numchan; ii++) {
      calc_avgmedstd(dataavg[0] + ii, numint, 0.8, numchan,
                     avg_chan_avg + ii, avg_chan_med + ii, avg_chan_std + ii);
      calc_avgmedstd(datastd[0] + ii, numint, 0.8, numchan,
                     std_chan_avg + ii, std_chan_med + ii, std_chan_std + ii);
      calc_avgmedstd(datapow[0] + ii, numint, 0.5, numchan,
                     pow_chan_avg + ii, pow_chan_med + ii, pow_chan_std + ii);
      /*
         fprintf(stderr, "%12.7g  %12.7g  %12.7g    %12.7g  %12.7g  %12.7g    %12.7g  %12.7g  %12.7g    \n", 
         avg_chan_avg[ii], avg_chan_med[ii], avg_chan_std[ii],
         std_chan_avg[ii], std_chan_med[ii], std_chan_std[ii],
         pow_chan_avg[ii], pow_chan_med[ii], pow_chan_std[ii]);
       */
   }

   /* Generate the byte mask */

   /* Set the channels/intervals picked by the user */
   if (numuserints)
      for (ii = 0; ii < numuserints; ii++)
         if (userints[ii] >= 0 && userints[ii] < numint)
            for (jj = 0; jj < numchan; jj++)
               bytemask[userints[ii]][jj] |= USERINTS;
   if (numuserchan)
      for (ii = 0; ii < numuserchan; ii++)
         if (userchan[ii] >= 0 && userchan[ii] < numchan)
            for (jj = 0; jj < numint; jj++)
               bytemask[jj][userchan[ii]] |= USERCHAN;

   /* Compare each point in an interval (or channel) with   */
   /* the interval's (or channel's) median and the overall  */
   /* standard deviation.  If the channel/integration       */
   /* medians are more than sigma different than the global */
   /* value, set them to the global.                        */
   {
      float int_med, chan_med;

      for (ii = 0; ii < numint; ii++) {
         for (jj = 0; jj < numchan; jj++) {
            {                   /* Powers */
               if (datapow[ii][jj] > pow_reject)
                  if (!(bytemask[ii][jj] & PADDING))
                     bytemask[ii][jj] |= BAD_POW;
            }
            {                   /* Averages */
               if (fabs(avg_int_med[ii] - dataavg_med) > timesigma * dataavg_std)
                  int_med = dataavg_med;
               else
                  int_med = avg_int_med[ii];
               if (fabs(avg_chan_med[jj] - dataavg_med) > timesigma * dataavg_std)
                  chan_med = dataavg_med;
               else
                  chan_med = avg_chan_med[jj];
               if (fabs(dataavg[ii][jj] - int_med) > avg_reject ||
                   fabs(dataavg[ii][jj] - chan_med) > avg_reject)
                  if (!(bytemask[ii][jj] & PADDING))
                     bytemask[ii][jj] |= BAD_AVG;
            }
            {                   /* Standard Deviations */
               if (fabs(std_int_med[ii] - datastd_med) > timesigma * datastd_std)
                  int_med = datastd_med;
               else
                  int_med = std_int_med[ii];
               if (fabs(std_chan_med[jj] - datastd_med) > timesigma * datastd_std)
                  chan_med = datastd_med;
               else
                  chan_med = std_chan_med[jj];
               if (fabs(datastd[ii][jj] - int_med) > std_reject ||
                   fabs(datastd[ii][jj] - chan_med) > std_reject)
                  if (!(bytemask[ii][jj] & PADDING))
                     bytemask[ii][jj] |= BAD_STD;
            }
         }
      }
   }

   /* Step over the intervals and channels and count how many are set "bad". */
   /* For a given interval, if the number of bad channels is greater than    */
   /* chantrigfrac*numchan then reject the whole interval.                   */
   /* For a given channel, if the number of bad intervals is greater than    */
   /* inttrigfrac*numint then reject the whole channel.                      */
   {
      int badnum, trignum;

      /* Loop over the intervals */
      trignum = (int) (numchan * chantrigfrac);
      for (ii = 0; ii < numint; ii++) {
         if (!(bytemask[ii][0] & USERINTS)) {
            badnum = 0;
            for (jj = 0; jj < numchan; jj++)
               if (bytemask[ii][jj] & BADDATA)
                  badnum++;
            if (badnum > trignum) {
               userints[numuserints++] = ii;
               for (jj = 0; jj < numchan; jj++)
                  bytemask[ii][jj] |= USERINTS;
            }
         }
      }

      /* Loop over the channels */
      trignum = (int) (numint * inttrigfrac);
      for (ii = 0; ii < numchan; ii++) {
         if (!(bytemask[0][ii] & USERCHAN)) {
            badnum = 0;
            for (jj = 0; jj < numint; jj++)
               if (bytemask[jj][ii] & BADDATA)
                  badnum++;
            if (badnum > trignum) {
               userchan[numuserchan++] = ii;
               for (jj = 0; jj < numint; jj++)
                  bytemask[jj][ii] |= USERCHAN;
            }
         }
      }
   }

   /* Generate the New Mask */

   fill_mask(timesigma, freqsigma, idata->mjd_i + idata->mjd_f,
             ptsperint * idata->dt, idata->freq, idata->chan_wid,
             numchan, numint, ptsperint, numuserchan, userchan,
             numuserints, userints, bytemask, newmask);

   /* Place the oldmask over the newmask for plotting purposes */

   if (oldmask->numchan)
      set_oldmask_bits(oldmask, bytemask);

   /*
    *  Now plot the results
    */

   if (xwin)
      loops = 2;
   for (ct = 0; ct < loops; ct++) {     /* PS/XWIN Plot Loop */
      float min, max, tr[6], locut, hicut;
      float left, right, top, bottom;
      float xl, xh, yl, yh;
      float tt, ft, th, fh;     /* thin and fat thicknesses and heights */
      float lm, rm, tm, bm;     /* LRTB margins */
      float xarr[2], yarr[2];
      char outdev[100];
      int ii, mincol, maxcol, numcol;

      /*Set the PGPLOT device to an X-Window */

      if (ct == 1)
         strcpy(outdev, "/XWIN");
      else
         sprintf(outdev, "%s.ps/CPS", idata->name);

      /* Open and prep our device */

      cpgopen(outdev);
      cpgpap(10.25, 8.5 / 11.0);
      cpgpage();
      cpgiden();
      cpgsch(0.7);
      cpgqcir(&mincol, &maxcol);
      numcol = maxcol - mincol + 1;
      for (ii = mincol; ii <= maxcol; ii++) {
         float color;
         color = (float) (maxcol - ii) / (float) numcol;
         cpgscr(ii, color, color, color);
      }

      /* Set thicknesses and margins */

      lm = 0.04;
      rm = 0.04;
      bm = 0.08;
      tm = 0.05;
      ft = 3.0;                 /* This sets fat thickness = 3 x thin thickness */
      tt = 0.92 / (6.0 + 4.0 * ft);
      ft *= tt;
      fh = 0.55;
      th = tt * 11.0 / 8.5;

      {                         /* Powers Histogram */
         float *theo, *hist, *hpows, *tpows, maxhist = 0.0, maxtheo = 0.0;
         int numhist = 40, numtheo = 200, bin, numpows;
         double dtheo, dhist, spacing;

         /* Calculate the predicted distribution of max powers */

         numpows = numint * numchan;
         find_min_max_arr(numpows, datapow[0], &min, &max);
         min = (min < 5.0) ? log10(5.0 * 0.95) : log10(min * 0.95);
         max = log10(max * 1.05);
         dhist = (max - min) / numhist;
         theo = gen_fvect(numtheo);
         tpows = gen_fvect(numtheo);
         hist = gen_fvect(numhist);
         hpows = gen_fvect(numhist);
         for (ii = 0; ii < numhist; ii++) {
            hist[ii] = 0.0;
            hpows[ii] = min + ii * dhist;
         }
         for (ii = 0; ii < numpows; ii++) {
            bin = (*(datapow[0] + ii) == 0.0) ? 0 :
                (log10(*(datapow[0] + ii)) - min) / dhist;
            if (bin < 0)
               bin = 0;
            if (bin >= numhist)
               bin = numhist;
            hist[bin] += 1.0;
         }
         for (ii = 0; ii < numhist; ii++)
            if (hist[ii] > maxhist)
               maxhist = hist[ii];
         maxhist *= 1.1;
         dtheo = (max - min) / (double) (numtheo - 1);
         for (ii = 0; ii < numtheo; ii++) {
            tpows[ii] = min + ii * dtheo;
            theo[ii] = single_power_pdf(pow(10.0, tpows[ii]),
                                        ptsperint / 2) * numpows;
            spacing = (pow(10.0, tpows[ii] + dhist) - pow(10.0, tpows[ii]));
            theo[ii] *= spacing;
            if (theo[ii] > maxtheo)
               maxtheo = theo[ii];
         }
         maxtheo *= 1.1;
         if (maxtheo > maxhist)
            maxhist = maxtheo;
         left = lm;
         right = lm + ft + tt;
         bottom = 0.80;
         top = 0.96;
         cpgsvp(left, right, bottom, top);
         xl = min;
         xh = max;
         yl = 0.0;
         yh = maxhist;
         cpgswin(xl, xh, yl, yh);
         cpgmtxt("L", 1.1, 0.5, 0.5, "Number");
         cpgmtxt("B", 2.1, 0.5, 0.5, "Max Power");
         cpgbin(numhist, hpows, hist, 0);
         cpgscr(maxcol, 0.5, 0.5, 0.5);
         cpgsci(maxcol);        /* Grey */
         cpgline(numtheo, tpows, theo);
         xarr[0] = log10(power_for_sigma(freqsigma, 1, ptsperint / 2));
         xarr[1] = xarr[0];
         yarr[0] = yl;
         yarr[1] = yh;
         cpgsls(4);             /* Dotted line */
         cpgscr(maxcol, 1.0, 0.0, 0.0);
         cpgsci(maxcol);        /* Red */
         cpgline(2, xarr, yarr);
         cpgsls(1);             /* Solid line */
         cpgsci(1);             /* Default color */
         cpgbox("BCLNST", 0.0, 0, "BC", 0.0, 0);
         vect_free(hist);
         vect_free(theo);
         vect_free(tpows);
         vect_free(hpows);
      }

      /* Maximum Powers */

      left = lm;
      right = lm + ft;
      bottom = bm;
      top = bm + fh;
      xl = 0.0;
      xh = numchan;
      yl = 0.0;
      yh = T;
      cpgsvp(left, right, bottom, top);
      cpgswin(xl, xh, yl, yh);
      cpgscr(maxcol, 1.0, 0.0, 0.0);    /* Red */
      locut = 0.0;
      hicut = pow_reject;
      tr[2] = tr[4] = 0.0;
      tr[1] = (xh - xl) / numchan;
      tr[0] = xl - (tr[1] / 2);
      tr[5] = (yh - yl) / numint;
      tr[3] = yl - (tr[5] / 2);
      cpgimag(datapow[0], numchan, numint, 1, numchan, 1, numint, locut, hicut, tr);
      cpgswin(xl, xh, yl, yh);
      cpgbox("BNST", 0.0, 0, "BNST", 0.0, 0);
      cpgmtxt("B", 2.6, 0.5, 0.5, "Channel");
      cpgmtxt("L", 2.1, 0.5, 0.5, "Time (s)");
      xl = lof;
      xh = hif;
      yl = 0.0;
      yh = numint;
      cpgswin(xl, xh, yl, yh);
      cpgbox("CST", 0.0, 0, "CST", 0.0, 0);

      /* Max Power Label */

      left = lm + ft;
      right = lm + ft + tt;
      bottom = bm + fh;
      top = bm + fh + th;
      cpgsvp(left, right, bottom, top);
      cpgswin(0.0, 1.0, 0.0, 1.0);
      cpgscr(maxcol, 1.0, 0.0, 0.0);
      cpgsci(maxcol);           /* Red */
      cpgptxt(0.5, 0.7, 0.0, 0.5, "Max");
      cpgptxt(0.5, 0.3, 0.0, 0.5, "Power");
      cpgsci(1);                /* Default color */

      /*  Max Power versus Time */

      left = lm + ft;
      right = lm + ft + tt;
      bottom = bm;
      top = bm + fh;
      cpgsvp(left, right, bottom, top);
      find_min_max_arr(numint, pow_int_med, &min, &max);
      xl = 0.0;
      xh = 1.5 * pow_reject;
      yl = 0.0;
      yh = T;
      cpgswin(xl, xh, yl, yh);
      cpgbox("BCST", 0.0, 0, "BST", 0.0, 0);
      cpgscr(maxcol, 1.0, 0.0, 0.0);
      cpgsci(maxcol);           /* Red */
      yarr[0] = yl;
      yarr[1] = yh;
      xarr[0] = xarr[1] = datapow_med;
      cpgline(2, xarr, yarr);
      cpgsls(4);                /* Dotted line */
      xarr[0] = xarr[1] = pow_reject;
      cpgline(2, xarr, yarr);
      cpgsls(1);                /* Solid line */
      cpgsci(1);                /* Default color */
      cpgline(numint, pow_int_med, times);
      yl = 0.0;
      yh = numint;
      cpgswin(xl, xh, yl, yh);
      cpgbox("", 0.0, 0, "CMST", 0.0, 0);
      /* cpgmtxt("R", 2.3, 0.5, 0.5, "Interval Number"); */

      /*  Max Power versus Channel */

      left = lm;
      right = lm + ft;
      bottom = bm + fh;
      top = bm + fh + th;
      cpgsvp(left, right, bottom, top);
      find_min_max_arr(numchan, pow_chan_med, &min, &max);
      xl = 0.0;
      xh = numchan;
      yl = 0.0;
      yh = 1.5 * pow_reject;
      cpgswin(xl, xh, yl, yh);
      cpgbox("BST", 0.0, 0, "BCST", 0.0, 0);
      cpgscr(maxcol, 1.0, 0.0, 0.0);
      cpgsci(maxcol);           /* Red */
      xarr[0] = xl;
      xarr[1] = xh;
      yarr[0] = yarr[1] = datapow_med;
      cpgline(2, xarr, yarr);
      cpgsls(4);                /* Dotted line */
      yarr[0] = yarr[1] = pow_reject;
      cpgline(2, xarr, yarr);
      cpgsls(1);                /* Solid line */
      cpgsci(1);                /* Default color */
      cpgline(numchan, chans, pow_chan_med);
      xl = lof;
      xh = hif;
      cpgswin(xl, xh, yl, yh);
      cpgbox("CMST", 0.0, 0, "", 0.0, 0);
      cpgmtxt("T", 1.8, 0.5, 0.5, "Frequency (MHz)");

      /* Standard Deviations */

      left = lm + ft + 2.0 * tt;
      right = lm + 2.0 * ft + 2.0 * tt;
      bottom = bm;
      top = bm + fh;
      xl = 0.0;
      xh = numchan;
      yl = 0.0;
      yh = T;
      cpgsvp(left, right, bottom, top);
      cpgswin(xl, xh, yl, yh);
      cpgscr(mincol, 0.7, 1.0, 0.7);    /* Light Green */
      cpgscr(maxcol, 0.3, 1.0, 0.3);    /* Dark Green */
      locut = datastd_med - timesigma * datastd_std;
      hicut = datastd_med + timesigma * datastd_std;
      tr[2] = tr[4] = 0.0;
      tr[1] = (xh - xl) / numchan;
      tr[0] = xl - (tr[1] / 2);
      tr[5] = (yh - yl) / numint;
      tr[3] = yl - (tr[5] / 2);
      cpgimag(datastd[0], numchan, numint, 1, numchan, 1, numint, locut, hicut, tr);
      cpgswin(xl, xh, yl, yh);
      cpgbox("BNST", 0.0, 0, "BNST", 0.0, 0);
      cpgmtxt("B", 2.6, 0.5, 0.5, "Channel");
      xl = lof;
      xh = hif;
      yl = 0.0;
      yh = numint;
      cpgswin(xl, xh, yl, yh);
      cpgbox("CST", 0.0, 0, "CST", 0.0, 0);

      /* Data Sigma Label */

      left = lm + 2.0 * ft + 2.0 * tt;
      right = lm + 2.0 * ft + 3.0 * tt;
      bottom = bm + fh;
      top = bm + fh + th;
      cpgsvp(left, right, bottom, top);
      cpgswin(0.0, 1.0, 0.0, 1.0);
      cpgscr(maxcol, 0.0, 1.0, 0.0);
      cpgsci(maxcol);           /* Green */
      cpgptxt(0.5, 0.7, 0.0, 0.5, "Data");
      cpgptxt(0.5, 0.3, 0.0, 0.5, "Sigma");
      cpgsci(1);                /* Default color */

      /*  Data Sigma versus Time */

      left = lm + 2.0 * ft + 2.0 * tt;
      right = lm + 2.0 * ft + 3.0 * tt;
      bottom = bm;
      top = bm + fh;
      cpgsvp(left, right, bottom, top);
      xl = datastd_med - 2.0 * std_reject;
      xh = datastd_med + 2.0 * std_reject;
      yl = 0.0;
      yh = T;
      cpgswin(xl, xh, yl, yh);
      cpgbox("BCST", 0.0, 0, "BST", 0.0, 0);
      cpgscr(maxcol, 0.0, 1.0, 0.0);
      cpgsci(maxcol);           /* Green */
      yarr[0] = yl;
      yarr[1] = yh;
      xarr[0] = xarr[1] = datastd_med;
      cpgline(2, xarr, yarr);
      cpgsls(4);                /* Dotted line */
      xarr[0] = xarr[1] = datastd_med + std_reject;
      cpgline(2, xarr, yarr);
      xarr[0] = xarr[1] = datastd_med - std_reject;
      cpgline(2, xarr, yarr);
      cpgsls(1);                /* Solid line */
      cpgsci(1);                /* Default color */
      cpgline(numint, std_int_med, times);
      yl = 0.0;
      yh = numint;
      cpgswin(xl, xh, yl, yh);
      cpgbox("", 0.0, 0, "CMST", 0.0, 0);
      /* cpgmtxt("R", 2.3, 0.5, 0.5, "Interval Number"); */

      /*  Data Sigma versus Channel */

      left = lm + ft + 2.0 * tt;
      right = lm + 2.0 * ft + 2.0 * tt;
      bottom = bm + fh;
      top = bm + fh + th;
      cpgsvp(left, right, bottom, top);
      xl = 0.0;
      xh = numchan;
      yl = datastd_med - 2.0 * std_reject;
      yh = datastd_med + 2.0 * std_reject;
      cpgswin(xl, xh, yl, yh);
      cpgbox("BST", 0.0, 0, "BCST", 0.0, 0);
      cpgscr(maxcol, 0.0, 1.0, 0.0);
      cpgsci(maxcol);           /* Green */
      xarr[0] = xl;
      xarr[1] = xh;
      yarr[0] = yarr[1] = datastd_med;
      cpgline(2, xarr, yarr);
      cpgsls(4);                /* Dotted line */
      yarr[0] = yarr[1] = datastd_med + std_reject;
      cpgline(2, xarr, yarr);
      yarr[0] = yarr[1] = datastd_med - std_reject;
      cpgline(2, xarr, yarr);
      cpgsls(1);                /* Solid line */
      cpgsci(1);                /* Default color */
      cpgline(numchan, chans, std_chan_med);
      xl = lof;
      xh = hif;
      cpgswin(xl, xh, yl, yh);
      cpgbox("CMST", 0.0, 0, "", 0.0, 0);
      cpgmtxt("T", 1.8, 0.5, 0.5, "Frequency (MHz)");

      /* Data Mean */

      left = lm + 2.0 * ft + 4.0 * tt;
      right = lm + 3.0 * ft + 4.0 * tt;
      bottom = bm;
      top = bm + fh;
      xl = 0.0;
      xh = numchan;
      yl = 0.0;
      yh = T;
      cpgsvp(left, right, bottom, top);
      cpgswin(xl, xh, yl, yh);
      cpgscr(mincol, 0.7, 0.7, 1.0);    /* Light Blue */
      cpgscr(maxcol, 0.3, 0.3, 1.0);    /* Dark Blue */
      locut = dataavg_med - timesigma * dataavg_std;
      hicut = dataavg_med + timesigma * dataavg_std;
      tr[2] = tr[4] = 0.0;
      tr[1] = (xh - xl) / numchan;
      tr[0] = xl - (tr[1] / 2);
      tr[5] = (yh - yl) / numint;
      tr[3] = yl - (tr[5] / 2);
      cpgimag(dataavg[0], numchan, numint, 1, numchan, 1, numint, locut, hicut, tr);
      cpgswin(xl, xh, yl, yh);
      cpgbox("BNST", 0.0, 0, "BNST", 0.0, 0);
      cpgmtxt("B", 2.6, 0.5, 0.5, "Channel");
      xl = lof;
      xh = hif;
      yl = 0.0;
      yh = numint;
      cpgswin(xl, xh, yl, yh);
      cpgbox("CST", 0.0, 0, "CST", 0.0, 0);

      /* Data Mean Label */

      left = lm + 3.0 * ft + 4.0 * tt;
      right = lm + 3.0 * ft + 5.0 * tt;
      bottom = bm + fh;
      top = bm + fh + th;
      cpgsvp(left, right, bottom, top);
      cpgswin(0.0, 1.0, 0.0, 1.0);
      cpgscr(maxcol, 0.0, 0.0, 1.0);
      cpgsci(maxcol);           /* Blue */
      cpgptxt(0.5, 0.7, 0.0, 0.5, "Data");
      cpgptxt(0.5, 0.3, 0.0, 0.5, "Mean");
      cpgsci(1);                /* Default color */

      /*  Data Mean versus Time */

      left = lm + 3.0 * ft + 4.0 * tt;
      right = lm + 3.0 * ft + 5.0 * tt;
      bottom = bm;
      top = bm + fh;
      cpgsvp(left, right, bottom, top);
      xl = dataavg_med - 2.0 * avg_reject;
      xh = dataavg_med + 2.0 * avg_reject;
      yl = 0.0;
      yh = T;
      cpgswin(xl, xh, yl, yh);
      cpgbox("BCST", 0.0, 0, "BST", 0.0, 0);
      cpgscr(maxcol, 0.0, 0.0, 1.0);
      cpgsci(maxcol);           /* Blue */
      yarr[0] = yl;
      yarr[1] = yh;
      xarr[0] = xarr[1] = dataavg_med;
      cpgline(2, xarr, yarr);
      cpgsls(4);                /* Dotted line */
      xarr[0] = xarr[1] = dataavg_med + avg_reject;
      cpgline(2, xarr, yarr);
      xarr[0] = xarr[1] = dataavg_med - avg_reject;
      cpgline(2, xarr, yarr);
      cpgsls(1);                /* Solid line */
      cpgsci(1);                /* Default color */
      cpgline(numint, avg_int_med, times);
      yl = 0.0;
      yh = numint;
      cpgswin(xl, xh, yl, yh);
      cpgbox("", 0.0, 0, "CMST", 0.0, 0);

      /*  Data Mean versus Channel */

      left = lm + 2.0 * ft + 4.0 * tt;
      right = lm + 3.0 * ft + 4.0 * tt;
      bottom = bm + fh;
      top = bm + fh + th;
      cpgsvp(left, right, bottom, top);
      xl = 0.0;
      xh = numchan;
      yl = dataavg_med - 2.0 * avg_reject;
      yh = dataavg_med + 2.0 * avg_reject;
      cpgswin(xl, xh, yl, yh);
      cpgbox("BST", 0.0, 0, "BCST", 0.0, 0);
      cpgscr(maxcol, 0.0, 0.0, 1.0);
      cpgsci(maxcol);           /* Blue */
      xarr[0] = xl;
      xarr[1] = xh;
      yarr[0] = yarr[1] = dataavg_med;
      cpgline(2, xarr, yarr);
      cpgsls(4);                /* Dotted line */
      yarr[0] = yarr[1] = dataavg_med + avg_reject;
      cpgline(2, xarr, yarr);
      yarr[0] = yarr[1] = dataavg_med - avg_reject;
      cpgline(2, xarr, yarr);
      cpgsls(1);                /* Solid line */
      cpgsci(1);                /* Default color */
      cpgline(numchan, chans, avg_chan_med);
      xl = lof;
      xh = hif;
      cpgswin(xl, xh, yl, yh);
      cpgbox("CMST", 0.0, 0, "", 0.0, 0);
      cpgmtxt("T", 1.8, 0.5, 0.5, "Frequency (MHz)");

      {                         /* Add the Data Info area */
         char out[200], out2[100];
         float dy = 0.025;

         cpgsvp(0.0, 1.0, 0.0, 1.0);
         cpgswin(0.0, 1.0, 0.0, 1.0);
         left = lm + ft + 1.5 * tt;
         top = 1.0 - tm;
         cpgsch(1.0);
         sprintf(out, "%-s", idata->name);
         cpgptxt(0.5, 1.0 - 0.5 * tm, 0.0, 0.5, out);
         cpgsch(0.8);

         sprintf(out, "Object:");
         cpgtext(left + 0.0, top - 0 * dy, out);
         sprintf(out, "%-s", idata->object);
         cpgtext(left + 0.1, top - 0 * dy, out);
         sprintf(out, "Telescope:");
         cpgtext(left + 0.0, top - 1 * dy, out);
         sprintf(out, "%-s", idata->telescope);
         cpgtext(left + 0.1, top - 1 * dy, out);
         sprintf(out, "Instrument:");
         cpgtext(left + 0.0, top - 2 * dy, out);
         sprintf(out, "%-s", idata->instrument);
         cpgtext(left + 0.1, top - 2 * dy, out);
         ra_dec_to_string(out2, idata->ra_h, idata->ra_m, idata->ra_s);
         sprintf(out, "RA\\dJ2000\\u");
         cpgtext(left + 0.0, top - 3 * dy, out);
         sprintf(out, "= %-s", out2);
         cpgtext(left + 0.08, top - 3 * dy, out);
         ra_dec_to_string(out2, idata->dec_d, idata->dec_m, idata->dec_s);
         sprintf(out, "DEC\\dJ2000\\u");
         cpgtext(left + 0.0, top - 4 * dy, out);
         sprintf(out, "= %-s", out2);
         cpgtext(left + 0.08, top - 4 * dy, out);
         sprintf(out, "Epoch\\dtopo\\u");
         cpgtext(left + 0.0, top - 5 * dy, out);
         sprintf(out, "= %-.11f", idata->mjd_i + idata->mjd_f);
         cpgtext(left + 0.08, top - 5 * dy, out);
         sprintf(out, "T\\dsample\\u (s)");
         cpgtext(left + 0.0, top - 6 * dy, out);
         sprintf(out, "= %g", idata->dt);
         cpgtext(left + 0.08, top - 6 * dy, out);
         sprintf(out, "T\\dtotal\\u (s)");
         cpgtext(left + 0.0, top - 7 * dy, out);
         sprintf(out, "= %g", T);
         cpgtext(left + 0.08, top - 7 * dy, out);

         left = lm + ft + 7.8 * tt;
         sprintf(out, "Num channels");
         cpgtext(left + 0.0, top - 0 * dy, out);
         sprintf(out, "= %-d", numchan);
         cpgtext(left + 0.12, top - 0 * dy, out);
         sprintf(out, "Pts per int");
         cpgtext(left + 0.19, top - 0 * dy, out);
         sprintf(out, "= %-d", ptsperint);
         cpgtext(left + 0.29, top - 0 * dy, out);
         sprintf(out, "Num intervals");
         cpgtext(left + 0.0, top - 1 * dy, out);
         sprintf(out, "= %-d", numint);
         cpgtext(left + 0.12, top - 1 * dy, out);
         sprintf(out, "Time per int");
         cpgtext(left + 0.19, top - 1 * dy, out);
         sprintf(out, "= %-g", inttim);
         cpgtext(left + 0.29, top - 1 * dy, out);
         sprintf(out, "Power:");
         cpgtext(left + 0.0, top - 2 * dy, out);
         sprintf(out, "median");
         cpgtext(left + 0.06, top - 2 * dy, out);
         sprintf(out, "= %-.3f", datapow_med);
         cpgtext(left + 0.12, top - 2 * dy, out);
         sprintf(out, "\\gs");
         cpgtext(left + 0.21, top - 2 * dy, out);
         sprintf(out, "= %-.3g", datapow_std);
         cpgtext(left + 0.245, top - 2 * dy, out);
         find_min_max_arr(numint * numchan, datapow[0], &min, &max);
         sprintf(out, "min");
         cpgtext(left + 0.06, top - 3 * dy, out);
         sprintf(out, "= %-.3f", min);
         cpgtext(left + 0.12, top - 3 * dy, out);
         sprintf(out, "max");
         cpgtext(left + 0.21, top - 3 * dy, out);
         sprintf(out, "= %-.3f", max);
         cpgtext(left + 0.245, top - 3 * dy, out);
         sprintf(out, "Sigma:");
         cpgtext(left + 0.0, top - 4 * dy, out);
         sprintf(out, "median");
         cpgtext(left + 0.06, top - 4 * dy, out);
         sprintf(out, "= %-.3f", datastd_med);
         cpgtext(left + 0.12, top - 4 * dy, out);
         sprintf(out, "\\gs");
         cpgtext(left + 0.21, top - 4 * dy, out);
         sprintf(out, "= %-.3g", datastd_std);
         cpgtext(left + 0.245, top - 4 * dy, out);
         find_min_max_arr(numint * numchan, datastd[0], &min, &max);
         sprintf(out, "min");
         cpgtext(left + 0.06, top - 5 * dy, out);
         sprintf(out, "= %-.3f", min);
         cpgtext(left + 0.12, top - 5 * dy, out);
         sprintf(out, "max");
         cpgtext(left + 0.21, top - 5 * dy, out);
         sprintf(out, "= %-.3f", max);
         cpgtext(left + 0.245, top - 5 * dy, out);
         sprintf(out, "Mean:");
         cpgtext(left + 0.0, top - 6 * dy, out);
         sprintf(out, "median");
         cpgtext(left + 0.06, top - 6 * dy, out);
         sprintf(out, "= %-.3f", dataavg_med);
         cpgtext(left + 0.12, top - 6 * dy, out);
         sprintf(out, "\\gs");
         cpgtext(left + 0.21, top - 6 * dy, out);
         sprintf(out, "= %-.3g", dataavg_std);
         cpgtext(left + 0.245, top - 6 * dy, out);
         find_min_max_arr(numint * numchan, dataavg[0], &min, &max);
         sprintf(out, "min");
         cpgtext(left + 0.06, top - 7 * dy, out);
         sprintf(out, "= %-.3f", min);
         cpgtext(left + 0.12, top - 7 * dy, out);
         sprintf(out, "max");
         cpgtext(left + 0.21, top - 7 * dy, out);
         sprintf(out, "= %-.3f", max);
         cpgtext(left + 0.245, top - 7 * dy, out);
      }

      {                         /* Plot the Mask */
         unsigned char byte;
         char temp[200];
         float **plotmask, rr, gg, bb, page;

         plotmask = gen_fmatrix(numint, numchan);
         for (ii = 0; ii < numint; ii++) {
            for (jj = 0; jj < numchan; jj++) {
               byte = bytemask[ii][jj];
               plotmask[ii][jj] = 0.0;
               if (byte & PADDING)
                  plotmask[ii][jj] = 1.0;
               if (byte & OLDMASK)
                  plotmask[ii][jj] = 2.0;
               if (byte & USERZAP)
                  plotmask[ii][jj] = 3.0;
               if (byte & BAD_POW)
                  plotmask[ii][jj] = 4.0;
               else if (byte & BAD_AVG)
                  plotmask[ii][jj] = 5.0;
               else if (byte & BAD_STD)
                  plotmask[ii][jj] = 6.0;
            }
         }
         /* Set the colors */
         numcol = 7;
         maxcol = mincol + numcol - 1;
         cpgscir(mincol, maxcol);
         cpgqcr(0, &rr, &gg, &bb);
         cpgscr(mincol + 0, rr, gg, bb);        /* GOODDATA = background */
         cpgscr(mincol + 1, 0.7, 0.7, 0.7);     /* PADDING  = light grey */
         cpgscr(mincol + 2, 0.3, 0.3, 0.3);     /* OLDMASK  = dark grey */
         cpgqcr(1, &rr, &gg, &bb);
         cpgscr(mincol + 3, rr, gg, bb);        /* USERZAP  = foreground */
         cpgscr(mincol + 4, 1.0, 0.0, 0.0);     /* BAD+POW  = red */
         cpgscr(mincol + 5, 0.0, 0.0, 1.0);     /* BAD+AVG  = blue */
         cpgscr(mincol + 6, 0.0, 1.0, 0.0);     /* BAD+STD  = green */
         /* Prep the image */
         for (page = 0; page <= 1; page++) {
            xl = 0.0;
            xh = numchan;
            yl = 0.0;
            yh = T;
            locut = 0.0;
            hicut = 6.0;
            tr[2] = tr[4] = 0.0;
            tr[1] = (xh - xl) / numchan;
            tr[0] = xl - (tr[1] / 2);
            tr[5] = (yh - yl) / numint;
            tr[3] = yl - (tr[5] / 2);
            if (page == 0) {
               left = lm + 3.0 * ft + 6.0 * tt;
               right = lm + 4.0 * ft + 6.0 * tt;
               bottom = bm;
               top = bm + fh;
            } else {
               cpgpage();
               cpgiden();
               left = 0.06;
               right = 0.94;
               bottom = 0.06;
               top = 0.88;
            }
            cpgsvp(left, right, bottom, top);
            cpgswin(xl, xh, yl, yh);
            cpgimag(plotmask[0], numchan, numint, 1,
                    numchan, 1, numint, locut, hicut, tr);
            cpgswin(xl, xh, yl, yh);
            cpgbox("BNST", 0.0, 0, "BNST", 0.0, 0);
            cpgmtxt("B", 2.6, 0.5, 0.5, "Channel");
            if (page)
               cpgmtxt("L", 2.1, 0.5, 0.5, "Time (s)");
            xl = lof;
            xh = hif;
            yl = 0.0;
            yh = numint;
            cpgswin(xl, xh, yl, yh);
            cpgbox("CMST", 0.0, 0, "CMST", 0.0, 0);
            cpgmtxt("T", 1.8, 0.5, 0.5, "Frequency (MHz)");
            cpgmtxt("R", 2.3, 0.5, 0.5, "Interval Number");
            /* Add the Labels */
            cpgsvp(0.0, 1.0, 0.0, 1.0);
            cpgswin(0.0, 1.0, 0.0, 1.0);
            cpgsch(0.8);
            if (page == 0) {
               cpgsci(mincol + 1);
               cpgptxt(left, top + 0.1, 0.0, 0.0, "Padding");
               cpgsci(mincol + 2);
               cpgptxt(left, top + 0.08, 0.0, 0.0, "Old Mask");
               cpgsci(mincol + 3);
               cpgptxt(left, top + 0.06, 0.0, 0.0, "User Zap");
               cpgsci(mincol + 4);
               cpgptxt(right, top + 0.1, 0.0, 1.0, "Power");
               cpgsci(mincol + 6);
               cpgptxt(right, top + 0.08, 0.0, 1.0, "Sigma");
               cpgsci(mincol + 5);
               cpgptxt(right, top + 0.06, 0.0, 1.0, "Mean");
               cpgsci(1);
            } else {
               cpgsci(mincol + 1);
               cpgptxt(1.0 / 12.0, 0.955, 0.0, 0.5, "Padding");
               cpgsci(mincol + 2);
               cpgptxt(3.0 / 12.0, 0.955, 0.0, 0.5, "Old Mask");
               cpgsci(mincol + 3);
               cpgptxt(5.0 / 12.0, 0.955, 0.0, 0.5, "User Zap");
               cpgsci(mincol + 4);
               cpgptxt(7.0 / 12.0, 0.955, 0.0, 0.5, "Max Power");
               cpgsci(mincol + 6);
               cpgptxt(9.0 / 12.0, 0.955, 0.0, 0.5, "Data Sigma");
               cpgsci(mincol + 5);
               cpgptxt(11.0 / 12.0, 0.955, 0.0, 0.5, "Data Mean");
               cpgsci(1);
               cpgsch(0.9);
               sprintf(temp, "Recommended Mask for '%-s'", idata->name);
               cpgptxt(0.5, 0.985, 0.0, 0.5, temp);
            }
         }
         vect_free(plotmask[0]);
         vect_free(plotmask);
      }

      if (ct == 0)
         printf("There are %d RFI instances.\n\n", numrfi);

      if ((ct == 0 && rfips) || (ct == 1 && rfixwin)) { /* Plot the RFI instances */
         int maxcol, mincol, numperpage = 25, numtoplot;
         float dy = 0.035, top = 0.95, rr, gg, bb;
         char temp[200];

         qsort(rfivect, numrfi, sizeof(rfi), compare_rfi_freq);
         /* qsort(rfivect, numrfi, sizeof(rfi), compare_rfi_sigma); */
         for (ii = 0; ii <= (numrfi - 1) / numperpage; ii++) {
            cpgpage();
            cpgiden();
            cpgsvp(0.0, 1.0, 0.0, 1.0);
            cpgswin(0.0, 1.0, 0.0, 1.0);
            cpgsch(0.8);
            sprintf(temp, "%-s", idata->name);
            cpgtext(0.05, 0.985, temp);
            cpgsch(0.6);
            sprintf(temp, "Freq (Hz)");
            cpgptxt(0.03, 0.96, 0.0, 0.0, temp);
            sprintf(temp, "Period (ms)");
            cpgptxt(0.12, 0.96, 0.0, 0.0, temp);
            sprintf(temp, "Sigma");
            cpgptxt(0.21, 0.96, 0.0, 0.0, temp);
            sprintf(temp, "Number");
            cpgptxt(0.27, 0.96, 0.0, 0.0, temp);
            cpgsvp(0.33, 0.64, top - dy, top);
            cpgswin(lof, hif, 0.0, 1.0);
            cpgbox("CIMST", 0.0, 0, "", 0.0, 0);
            cpgmtxt("T", 2.5, 0.5, 0.5, "Frequency (MHz)");
            cpgsvp(0.65, 0.96, top - dy, top);
            cpgswin(0.0, T, 0.0, 1.0);
            cpgbox("CIMST", 0.0, 0, "", 0.0, 0);
            cpgmtxt("T", 2.5, 0.5, 0.5, "Time (s)");
            cpgqcir(&mincol, &maxcol);
            maxcol = mincol + 1;
            cpgscir(mincol, maxcol);
            cpgqcr(0, &rr, &gg, &bb);
            cpgscr(mincol, rr, gg, bb); /* background */
            cpgqcr(1, &rr, &gg, &bb);
            /* cpgscr(maxcol, rr, gg, bb);  foreground */
            cpgscr(maxcol, 0.5, 0.5, 0.5);      /* grey */
            if (ii == (numrfi - 1) / numperpage)
               numtoplot = numrfi % numperpage;
            else
               numtoplot = numperpage;
            for (jj = 0; jj < numtoplot; jj++)
               plot_rfi(rfivect + ii * numperpage + jj,
                        top - jj * dy, numint, numchan, T, lof, hif);
            cpgsvp(0.33, 0.64, top - jj * dy, top - (jj - 1) * dy);
            cpgswin(0.0, numchan, 0.0, 1.0);
            cpgbox("BINST", 0.0, 0, "", 0.0, 0);
            cpgmtxt("B", 2.5, 0.5, 0.5, "Channel");
            cpgsvp(0.65, 0.96, top - jj * dy, top - (jj - 1) * dy);
            cpgswin(0.0, numint, 0.0, 1.0);
            cpgbox("BINST", 0.0, 0, "", 0.0, 0);
            cpgmtxt("B", 2.5, 0.5, 0.5, "Interval");
         }
      }
      cpgclos();
   }                            /* Plot for loop */

   /* Free our arrays */

   vect_free(freqs);
   vect_free(chans);
   vect_free(times);
   vect_free(ints);
   vect_free(avg_chan_avg);
   vect_free(std_chan_avg);
   vect_free(pow_chan_avg);
   vect_free(avg_int_avg);
   vect_free(std_int_avg);
   vect_free(pow_int_avg);
   vect_free(avg_chan_med);
   vect_free(std_chan_med);
   vect_free(pow_chan_med);
   vect_free(avg_int_med);
   vect_free(std_int_med);
   vect_free(pow_int_med);
   vect_free(avg_chan_std);
   vect_free(std_chan_std);
   vect_free(pow_chan_std);
   vect_free(avg_int_std);
   vect_free(std_int_std);
   vect_free(pow_int_std);
}
示例#8
0
int main (int argc, char *argv[]) 
{
  int ntimglobal=0;  // number of time samples in original
  int ngulp_original=0;       // number of time samples to look at at once
  int nskipstart=0;       // number skipped at start
  int nrejects; //ZAPPER
  int zapswitch = 0; //ZAPPER  
  double tsamp_orig=0;

  //gsearch setup & defaults
  float Gsigmacut=6.0;
  float delta, tstart;
  vector<Gpulse> * Giant = new vector<Gpulse>[MAXFILES];
  bool Gsearched=false;

  int i,ntim,headersize[MAXFILES],noff=0,gulp;
  float *time_series[MAXFILES],sum=0.0,sumsq=0.0,mean,meansq,sigma;
  int MAXMARKERS = 1024;
  int nfiles = 0;
  FILE *inputfile[MAXFILES];
  char filename[MAXFILES][256];
  int spectra=0;
  int powerspectra=0;
  double dmoffirstfile;
  char *killfile;
  bool dokill=false;
  bool ssigned=true;
  bool fsigned=false;
  int topfold=-1;
  int topgiant=-1;
  int toppeak=-1; //?!? sarah added this 
  bool askdevice=false;
  char devicename[200];

  if (argc<2 || help_required(argv[1])) {
      helpmenu();
//    fprintf(stderr,"Usage: giant filenames\n\t(e.g.>>  giant *.tim)\n\n\t-s  N\tskip N samples\n\t-n  N\tread N samples\n\t-S read spectra instead of amplitudes\n-i interpret signed chars as unsigned\n\t-z make a zap list of bad time samples\n");
      exit(0);
  }
  print_version(argv[0],argv[1]);
  i=1;
  while (i<argc) {
    if (file_exists(argv[i]))          {
      inputfile[nfiles]=open_file(argv[i],"r");
      strcpy(filename[nfiles],argv[i]);
      nfiles++;
    }
    if (strings_equal(argv[i],"-s"))       sscanf(argv[++i],"%d",&nskipstart);
    if (strings_equal(argv[i],"-S"))       spectra=1;
    if (strings_equal(argv[i],"-i"))       ssigned=false;
    if (strings_equal(argv[i],"-f"))      fsigned=true;
    if (strings_equal(argv[i],"-n"))       sscanf(argv[++i],"%d",&ngulp_original);
    if (strings_equal(argv[i],"-c"))       sscanf(argv[++i],"%f",&Gsigmacut);
    if (strings_equal(argv[i],"-z"))       zapswitch=1;
    if (strings_equal(argv[i],"-g"))       {askdevice=true;sscanf(argv[++i],"%s",&devicename);}
    if (strings_equal(argv[i],"-k"))       {killfile=(char*)malloc(strlen(argv[++i])+1); strcpy(killfile,argv[i]);dokill=true;}
    if (nfiles>MAXFILES) error_message("too many open files");
    i++;
  }


  int ntimglobal_smallest=0, nsamp;
  for (i=0; i<nfiles; i++) {

    if (spectra){
      int npf; 
      double rate;
      time_series[i]=Creadspec(filename[i],&npf,&rate);
      tsamp = 1.0/(rate);
      //normalise(npf,time_series[i]);
      nsamp = ntimglobal = ntimglobal_smallest = npf;
    }
    else
    {
    if ((headersize[i]=read_header(inputfile[i]))) {
	    if (! fsigned){
		    if (isign > 0) {
			    ssigned=false;
			    fprintf(stderr,"using signed header variable to set UNSIGNED\n");
		    }
		    if (isign < 0) {
			    ssigned=true;
			    fprintf(stderr,"using signed header variable to set SIGNED\n");
		    }
	    }
      if (i==0) dmoffirstfile = refdm;
      if (nbits!=8 && nbits!=32)
	    error_message("giant currently only works for 8- or 32-bit data");

      nsamp = nsamples(filename[i],headersize[i],nbits,nifs,nchans);
      if (i == 0) {
	ntimglobal_smallest=nsamp;
      } else {
	ntimglobal= nsamp;
	if (ntimglobal < ntimglobal_smallest) ntimglobal_smallest = ntimglobal;
      }
      
      // Space for data (time_series)
      time_series[i]=(float *) malloc((nsamp+2)*sizeof(float));
      if (time_series[i]==NULL){
	fprintf(stderr,"Error mallocing %d floats of %d size\n",nsamp,
		sizeof(float));
	exit(-1);
      }
      tsamp_orig = tsamp;
      
      // Skip data
      fprintf(stderr,"Skipping %d bytes\n",nskipstart*nbits/8);
      fseek(inputfile[i],nskipstart*nbits/8,SEEK_CUR);
      
    } // each file
    } // spectra or not
  }  // for (i...)
  puti(ntimglobal_smallest);
  if (ngulp_original==0) ngulp_original=ntimglobal_smallest;


// ****** SAM'S ZAP SWITCH ******
// Sam Bates 2009
// Integrated into new giant by SBS
// Switch to make a .killtchan file for time samples > 3.5 sigma
// SARAHZAP tag means addition was added later by Sarah
// ******************************
  int ngulp=ngulp_original;
//  int nrejects_max=ngulp_original/100;
  int * mown = new int[ngulp_original];
  int nstart=0;
  if (zapswitch){
    float dummy;
    int NActuallyRead;
    char *buffer;
    buffer = new char[ngulp*nbits/8];
    for (i=0; i<nfiles; i++){
      NActuallyRead = fread(buffer,nbits/8,ngulp,inputfile[i]);
      if (nbits==32){
	memcpy(time_series[i],buffer,sizeof(float)*ngulp);
      } else {
	for (int j=0;j<NActuallyRead;j++){
	  if (ssigned) time_series[i][j]=(float)buffer[j];
	  if (!ssigned) time_series[i][j]=(float)((unsigned char)buffer[j]);
	}
      }
      puti(ngulp);
      find_baseline(ngulp,time_series[i],10.0/tsamp,5.0);
      mowlawn(ngulp,time_series[i],5,256);
    }
    printf("%f\n",dummy);
    printf("Bad time samples found...\n");
    exit(0);
  }


  int pgpID;
  if (askdevice){
      pgpID = cpgbeg(0,devicename,1,1);
  } else {
      pgpID = cpgbeg(0,"/xs",1,1);
  }
  cpgsch(0.5);
  cpgtext(0.6,0.0,"Press 'h' over the main window for help and full options list.");
  cpgsch(1.0);
  /* create the dialog */
  dialog * d = new dialog();

  /* add the "action" buttons */
  int QUIT         = d->addbutton(0.02,0.95,"Quit");
  int POWER        = d->addbutton(0.07,0.85,"POWER");
  int SMHRM        = d->addbutton(0.075,0.80,"SMHRM");
  int FFT          = d->addbutton(0.02,0.85,"FFT");
  int PLOT         = d->addbutton(0.02,0.80,"Plot");
  int NEXT         = d->addbutton(0.02,0.75,"Next");
  int ZAPPEAK      = d->addbutton(0.075,0.75,"ZapPeak");
  int RESET        = d->addbutton(0.02,0.70,"Reset");
  int GLOBALRESET  = d->addbutton(0.02,0.65,"Global Reset");
  int HALVEPLOT    = d->addbutton(0.02,0.60,"Halve Plot");
  int BASELINE     = d->addbutton(0.02,0.50,"Baseline");
  int ZAPCOMMON    = d->addbutton(0.02,0.45,"Zap Common");
  int SUBTRACTMEAN = d->addbutton(0.02,0.40,"ZAP Mean");
  int BSCRUNCH     = d->addbutton(0.02,0.35,"Bscrunch");
  int NORMALISE    = d->addbutton(0.02,0.30,"Normalise"); 
  int HISTOGRAM    = d->addbutton(0.02,0.25,"Histogram"); 
  int GSEARCH      = d->addbutton(0.02,0.20,"Find Giants");
  int MOWLAWN      = d->addbutton(0.08,0.70,"LAWN");
  int SEEFIL       = d->addbutton(0.02,0.15,"View Band");
  int FWRITE       = d->addbutton(0.02,0.05,"Write File");
 

  /* add the plot regions */
  d->addplotregion(0.2,0.99,0.98,0.99);
  float deltay = 0.9/(float)nfiles;
  for (i=0; i<nfiles; i++) 
      d->addplotregion(0.2,0.99,0.95-deltay*(float)(i+1),0.95-deltay*(float)i);

  d->draw();

  float x,y;
  char ans;
  int button=-1; int plotno=-1;
  int NPIXELS = 1024;
  float * xaxis = new float[NPIXELS];
  float * ymaxes = new float[NPIXELS];
  float * ymins = new float[NPIXELS];

  int scrunch=1;
  int nmarkers=0;
  int * markers= new int[MAXMARKERS];
  int nfileptr=nskipstart;
  int nplot=ngulp_original;
  nstart=0;  //COMMENTED IN ZAPPER VERSION: MAY CAUSE CONFLICTS IN THIS VER.
  ngulp=ngulp_original;  //COMMENTED IN ZAPPER VERSION: MAY CAUSE CONFLICTS IN THIS VER.
  double trialperiod;
  int doperiod=-1;
  double xperiod;

  bool zoneplot=false;
  int ngates=0;
  float xgate=0.0;



  button=NEXT;
  if (spectra) button = PLOT;
  while (button!=QUIT){
    // Plot the zone
    // Entire file is white
    if (button!=NEXT)button=d->manage(&x,&y,&ans,&plotno);
    if (ans=='h'){
	buttonexplain();
	continue;
    }
//    printf("manage x %f y %f plotno %d\n",x,y,plotno);
    if (button==BASELINE) {
	for (i=0; i<nfiles; i++){
	    find_baseline(ngulp,time_series[i],10.0/tsamp,5.0);
	}
	button = PLOT;
	zoneplot=false;
        plotno = -1;
    }
    if (button==FWRITE) {
      // reread first header and close it. Sets globals.
      fclose(inputfile[0]);
      inputfile[0]=open_file(argv[1],"r");
      headersize[0]=read_header(inputfile[0]);
      output = open_file("giant.tim","w");
      nobits=32;
      nbands=1;
      dedisperse_header();
      fprintf(stderr,"Opened file, writing data\n");
      fwrite(time_series[0],sizeof(float),ngulp,output);
      fclose(output);
      button = -1;
      zoneplot=false;
      plotno =-1;
    }
    if (button==BSCRUNCH) {
	for (i=0; i<nfiles; i++){
	    bscrunch(ngulp,time_series[i]);
	}
	tsamp*=2;
	scrunch*=2;
      	ngulp/=2;
	nplot/=2;
	button = PLOT;
	zoneplot=false;
	Gsearched=false;
        plotno = -1;
    }
    if (button==FFT) {
	for (i=0; i<nfiles; i++){
	  ngulp = ngulp_original;
	  find_fft(&ngulp,time_series[i]);
	// Zap DC spike
	  time_series[i][0]=0.0;
	  time_series[i][1]=0.0;
	}
	spectra = 1;
	nplot = ngulp;
	button = PLOT;
	Gsearched=false;
        plotno = -1;
    }
    if (button==POWER) {
	for (i=0; i<nfiles; i++){
	  find_formspec(ngulp,time_series[i]);
	}
	ngulp/=2;
	powerspectra = 1;
	nplot = ngulp;
	button = PLOT;
        plotno = -1;
    }
    if (button==SMHRM) {
        nfiles = 6;
	for (i=1; i<nfiles; i++){
	  time_series[i]=(float *) malloc((ngulp+2)*sizeof(float));
	  if (time_series[i]==NULL){
	    fprintf(stderr,"Error allocating memory\n");
	    exit(-1);
	  }
	}
	for (i=1;i<nfiles;i++) memcpy(time_series[i],time_series[0],
				      (ngulp+2)*sizeof(float));
	d->nplotregion=1;
        float deltay = 0.9/(float)nfiles;
        for (i=0; i<nfiles; i++) 
          d->addplotregion(0.2,0.99,0.95-deltay*(float)(i+1),
			   0.95-deltay*(float)i);
	cpgeras();
	d->draw();

	float * workspace = new float[ngulp];

	// Set up space for data, now actually sumhrm
	int one=1;
			newoldsumhrm_(&time_series[0][1],workspace,&ngulp,&one,
	//		newoldsumhrm_(&time_series[0][0],workspace,&ngulp,&one,
		   time_series[1],time_series[2],time_series[3],
		   time_series[4],time_series[5]);
		/*	newnewsumhrm_(time_series[0],&ngulp,&one,
		   time_series[1],time_series[2],time_series[3],
		   time_series[4],time_series[5]);*/
		for (int iff=2;iff<6;iff++){
		  for (int i=0;i<ngulp;i++){
		    time_series[iff][i]/=sqrt(pow(2.0,(float)(iff-1)));
		  }
		}
	delete [] workspace;
	button = PLOT;
        plotno = -1;
    }
    if (button==NORMALISE) {
	for (i=0; i<nfiles; i++){
	  normalise(ngulp,time_series[i],5.0);
	}
	button = PLOT;
	Gsearched=false;
        plotno = -1;
    }
    if (button==HISTOGRAM) {
      float pdfs[nfiles][MAXSIGMA];
      //  create pdfs for each beam
      for (int i=0;i<nfiles;i++)
	formpdf(pdfs[i],MAXSIGMA,ngulp,time_series[i]);

      for (int i=0;i<nfiles;i++){
	for (int j=0;j<MAXSIGMA; j++){
	  fprintf(stderr, "pdfs[%d][%2d]=%8.0f %f \%\n", i, j+1, pdfs[i][j], 100*pdfs[i][j]/ngulp);
	}
      }
        button = PLOT;
        plotno = -1;
    }
    if (button==HALVEPLOT) {
	nplot/=2;
	button = PLOT;
	zoneplot=true;
	Gsearched=false;
        plotno = -1;
    }
    if (button==GLOBALRESET) {
      plotno = -1;
      nstart = 0;
      scrunch=1;
      tsamp = tsamp_orig;
      nplot=ngulp_original;
      ngulp=ngulp_original;
      button=PLOT;
      // Skip to end of skipped data
      for (i=0; i<nfiles; i++){
	fseek(inputfile[i],-(nfileptr-nskipstart)*nbits/8,SEEK_CUR);
	Giant[i].clear();
      }
      nfileptr=nskipstart;
      zoneplot=false;
      Gsearched=false;
      doperiod=-1;
      button=NEXT;
    }
    if (button==SUBTRACTMEAN && nfiles>1) {
      plotno = -1;
      nstart = 0;
      nplot=ngulp_original;
      ngulp=ngulp_original;
      button=PLOT;
      // Skip to end of skipped data
	for (int jj=0;jj<ngulp;jj++){
	  float sum;
	  sum=0.0;
	  for (i=1;i<nfiles;i++){
	    sum+=time_series[i][jj];
	  }
	  time_series[0][jj]-=sum/(float(nfiles-1));
	}
	Gsearched=false;
    }
    if (button==ZAPCOMMON && nfiles>1) {
      plotno = -1;
      nstart = 0;
      nplot=ngulp_original;
      ngulp=ngulp_original;
      button=PLOT;
      float pdfs[nfiles][MAXSIGMA];
      //  create pdfs for each beam
      for (int i=0;i<nfiles;i++)
	formpdf(pdfs[i],MAXSIGMA,ngulp,time_series[i]);
      //  for each point in each beam, mask if improbable
      float thresh = 3.0;
      int nbeammax = 5;
      zap_improbables(pdfs,time_series,nfiles,ngulp,MAXSIGMA,thresh,nbeammax);
      // Skip to end of skipped data
      //for (int jj=0;jj<ngulp;jj++){
      //  float sum;
      //  sum=0.0;
      //  for (i=1;i<nfiles;i++){
      //    sum+=time_series[i][jj];
      //  }
      //  time_series[0][jj]-=sum/(float(nfiles-1));
      //}
      //Gsearched=false;
    }
    if (button==NEXT) {
      ngulp=ngulp_original;
      nstart=0;
      nplot=ngulp_original;
      // Read the data
      int NActuallyRead;
      //      unsigned char *buffer;
      char *buffer;
      buffer = new char[ngulp*nbits/8];
      //buffer = new char[ngulp*nbits/8];
      for (i=0; i<nfiles; i++) {
//	NActuallyRead = fread(time_series[i],sizeof(float),ngulp,inputfile[i]);
	NActuallyRead = fread(buffer,nbits/8,ngulp,inputfile[i]);
	if (nbits==32){
	  memcpy(time_series[i],buffer,sizeof(float)*ngulp);
	} else {
	    for (int j=0;j<NActuallyRead;j++){
	      if (ssigned) time_series[i][j]=(float)buffer[j];
	      if (!ssigned) time_series[i][j]=(float)((unsigned char)buffer[j]);
	    }
	}
	
	puti(ngulp);
	if (NActuallyRead!=ngulp){
	  fprintf(stderr,"Could not read %d floats from file\n",ngulp);
	  ngulp = NActuallyRead;
	}
	if(nfiles==1){
	  // Add fake pulsar here....
	  //	  for (int ii=0;ii<ngulp;ii++) time_series[i][ii]+= 10.0*pow(sin(float(ii*2.0*M_PI/60.0)),250.0);
	}
	//normalise(ngulp,time_series[i]);
      }
      nfileptr+=ngulp;
      button = PLOT;
      plotno= -1;
      zoneplot=true;
    }
    if (button==RESET) {
      button = plotno = -1;
      nstart=0;
      nplot=ngulp;
      button=PLOT;
      zoneplot=true;
      Gsearched=false;
      if (ans=='p'){
	doperiod=-1;
      }
    }
    if (plotno>0){
/*      if (ans=='p'){  // hit p on a plot to type in a period
	d->plotregions[plotno].reset();
	//plot the thing;
	fprintf(stderr,"Please enter a period in seconds: ");
	cin>>trialperiod;
	xperiod = x;
	doperiod=plotno;
	button=PLOT;
	}*/
      if (ans=='p'){  // hit p on a plot to type in a period
	d->plotregions[plotno].reset();
	//plot the thing;
	fprintf(stderr,"Please enter a period in seconds: ");
	cin>>trialperiod;
	xperiod = (double)x;
	doperiod=plotno;
	button=PLOT;
      }
      if (ans=='m'){  // subtract 0.0000005 seconds from period
	d->plotregions[plotno].reset();
	trialperiod-=0.0000005;
	fprintf(stderr,"Trial period is now %lf\n",trialperiod);
	doperiod=plotno;
	button=PLOT;
      }
      if (ans=='/'){  // add 0.0000005 seconds to period
	d->plotregions[plotno].reset();
	trialperiod+=0.0000005;
	fprintf(stderr,"Trial period is now %lf\n",trialperiod);
	doperiod=plotno;
	button=PLOT;
      }
      if (ans==','){  // subtract 0.000005 seconds from period
	d->plotregions[plotno].reset();
	trialperiod-=0.000005;
	fprintf(stderr,"Trial period is now %lf\n",trialperiod);
	doperiod=plotno;
	button=PLOT;
      }
      if (ans=='.'){  // add 0.000005 seconds to period
	d->plotregions[plotno].reset();
	trialperiod+=0.000005;
	fprintf(stderr,"Trial period is now %lf\n",trialperiod);
	doperiod=plotno;
	button=PLOT;
      }
      if (ans=='<'){  // subtract 0.001 seconds from period
	d->plotregions[plotno].reset();
	trialperiod-=0.001;
	fprintf(stderr,"Trial period is now %lf\n",trialperiod);
	doperiod=plotno;
	button=PLOT;
      }
      if (ans=='>'){  // add 0.001 seconds to period
	d->plotregions[plotno].reset();
	trialperiod+=0.001;
	fprintf(stderr,"Trial period is now %lf\n",trialperiod);
	doperiod=plotno;
	button=PLOT;
      }
      if (ans=='X'){  // right click two points on a plot to calculate and plot a period
	d->plotregions[plotno].reset();
	cpgsci(3);
	cpgmove(x,-1000);
	cpgdraw(x,1000);
	if (ngates==0){
	  xgate=x;
	  ngates++;
	} else {
	  min_means_min(&x,&xgate);
	  printf("Period from %f to %f is %f\n",x,xgate,xgate-x);  
	  doperiod=plotno;
	  xperiod = (double)x;
	  trialperiod=(double)(xgate-x);
	  ngates=0;
	  button=PLOT;
	}
      }
      if (ans=='D'){
	markers[nmarkers]=(int)(x/NPIXELS)*nplot+nstart+nfileptr-ngulp;
	nmarkers++;
	zoneplot=true;
      }
      if (ans=='A'){
	d->plotregions[plotno].reset();
	cpgsci(2);
	cpgmove(x,-1000);
	cpgdraw(x,1000);
	if (ngates==0){
	  xgate=x;
	  ngates++;
	} else {
	  min_means_min(&x,&xgate);
//	  printf("x %f xgate %f tstart %f\n",x,xgate,tstart);
	  nstart=(int)((x-tstart)/delta)+nstart;
	  nplot=(int)((xgate-x)/delta);
	  //if (nplot<NPIXELS) nplot=NPIXELS;
	  ngates=0;
	  button=PLOT;
	  zoneplot=true;
//	  printf("nplot %d nstart %d\n",nplot,nstart);
	}
      }
      if (ans=='z'){
	if (NPIXELS>nplot) {
	  nstart+=(int)x;
	}else
	nstart=(int)(x/(float)NPIXELS*nplot)+nstart;
	printf("nstart %d\n",nstart);
	nplot/=4;
	printf("nplot %d\n",nplot);
	nstart-=nplot/2;
	printf("nstart %d\n",nstart);
	//if (nplot<NPIXELS){nplot=NPIXELS;}
	button=PLOT;
	zoneplot=true;
      }
    }
示例#9
0
文件: tcel1.c 项目: jhunkeler/pywcs
int main()

{
  char   text[80];
  int    ci, crval1, crval2, ilat, ilng, j, k, latpole, lonpole, stat[361],
         status;
  float  xr[512], yr[512];
  double lat[181], lng[361], phi[361], theta[361], x[361], y[361];
  struct celprm native, celestial;


  printf(
  "Testing WCSLIB celestial coordinate transformation routines (tcel1.c)\n"
  "---------------------------------------------------------------------\n");

  /* List status return messages. */
  printf("\nList of cel status return values:\n");
  for (status = 1; status <= 6; status++) {
    printf("%4d: %s.\n", status, cel_errmsg[status]);
  }

  printf("\n");


  /* Initialize. */
  celini(&native);

  /* Reference angles for the native graticule (in fact, the defaults). */
  native.ref[0] = 0.0;
  native.ref[1] = 0.0;

  /* Set up Bonne's projection with conformal latitude at +35. */
  strcpy(native.prj.code, "BON");
  native.prj.pv[1] = 35.0;


  /* Celestial graticule. */
  celini(&celestial);
  celestial.prj = native.prj;


  /* PGPLOT initialization. */
  strcpy(text, "/xwindow");
  cpgbeg(0, text, 1, 1);

  /* Define pen colours. */
  cpgscr(0, 0.0f, 0.0f, 0.0f);
  cpgscr(1, 1.0f, 1.0f, 0.0f);
  cpgscr(2, 1.0f, 1.0f, 1.0f);
  cpgscr(3, 0.5f, 0.5f, 0.8f);
  cpgscr(4, 0.8f, 0.5f, 0.5f);
  cpgscr(5, 0.8f, 0.8f, 0.8f);
  cpgscr(6, 0.5f, 0.5f, 0.8f);
  cpgscr(7, 0.8f, 0.5f, 0.5f);
  cpgscr(8, 0.3f, 0.5f, 0.3f);

  /* Define PGPLOT viewport. */
  cpgenv(-180.0f, 180.0f, -90.0f, 140.0f, 1, -2);

  /* Loop over CRVAL2, LONPOLE, and LATPOLE with CRVAL1 incrementing by */
  /* 15 degrees each time (it has an uninteresting effect).             */
  crval1 = -180;
  for (crval2 = -90; crval2 <=  90; crval2 += 30) {
    for (lonpole = -180; lonpole <= 180; lonpole += 30) {
      for (latpole = -1; latpole <= 1; latpole += 2) {
        /* For the celestial graticule, set the celestial coordinates of
         * the reference point of the projection (which for Bonne's
         * projection is at the intersection of the native equator and
         * prime meridian), the native longitude of the celestial pole,
         * and extra information needed to determine the celestial
         * latitude of the native pole.  These correspond to FITS keywords
         * CRVAL1, CRVAL2, LONPOLE, and LATPOLE.
         */
        celestial.ref[0] = (double)crval1;
        celestial.ref[1] = (double)crval2;
        celestial.ref[2] = (double)lonpole;
        celestial.ref[3] = (double)latpole;

        /* Skip invalid values of LONPOLE. */
        if (celset(&celestial)) {
          continue;
        }

        /* Skip redundant values of LATPOLE. */
        if (latpole == 1 && fabs(celestial.ref[3]) < 0.1) {
          continue;
        }

        /* Buffer PGPLOT output. */
        cpgbbuf();
        cpgeras();

        /* Write a descriptive title. */
        sprintf(text, "Bonne's projection (BON) - 15 degree graticule");
        printf("\n%s\n", text);
        cpgtext(-180.0f, -100.0f, text);

        sprintf(text, "centred on celestial coordinates (%7.2f,%6.2f)",
          celestial.ref[0], celestial.ref[1]);
        printf("%s\n", text);
        cpgtext (-180.0f, -110.0f, text);

        sprintf(text, "with north celestial pole at native coordinates "
          "(%7.2f,%7.2f)", celestial.ref[2], celestial.ref[3]);
        printf("%s\n", text);
        cpgtext(-180.0f, -120.0f, text);


        /* Draw the native graticule faintly in the background. */
        cpgsci(8);

        /* Draw native meridians of longitude. */
        for (j = 0, ilat = -90; ilat <= 90; ilat++, j++) {
          lat[j] = (double)ilat;
        }

        for (ilng = -180; ilng <= 180; ilng += 15) {
          lng[0] = (double)ilng;
          if (ilng == -180) lng[0] = -179.99;
          if (ilng ==  180) lng[0] =  179.99;

          /* Dash the longitude of the celestial pole. */
          if ((ilng-lonpole)%360 == 0) {
            cpgsls(2);
            cpgslw(5);
          }

          cels2x(&native, 1, 181, 1, 1, lng, lat, phi, theta, x, y, stat);

          k = 0;
          for (j = 0; j < 181; j++) {
            if (stat[j]) {
              if (k > 1) cpgline(k, xr, yr);
              k = 0;
              continue;
            }

            xr[k] = -x[j];
            yr[k] =  y[j];
            k++;
          }

          cpgline(k, xr, yr);
          cpgsls(1);
          cpgslw(1);
        }

        /* Draw native parallels of latitude. */
        lng[0]   = -179.99;
        lng[360] =  179.99;
        for (j = 1, ilng = -179; ilng < 180; ilng++, j++) {
          lng[j] = (double)ilng;
        }

        for (ilat = -90; ilat <= 90; ilat += 15) {
          lat[0] = (double)ilat;

          cels2x(&native, 361, 1, 1, 1, lng, lat, phi, theta, x, y, stat);

          k = 0;
          for (j = 0; j < 361; j++) {
            if (stat[j]) {
              if (k > 1) cpgline(k, xr, yr);
              k = 0;
              continue;
            }

            xr[k] = -x[j];
            yr[k] =  y[j];
            k++;
          }

          cpgline(k, xr, yr);
        }


        /* Draw a colour-coded celestial coordinate graticule. */
        ci = 1;

        /* Draw celestial meridians of longitude. */
        for (j = 0, ilat = -90; ilat <= 90; ilat++, j++) {
          lat[j] = (double)ilat;
        }

        for (ilng = -180; ilng <= 180; ilng += 15) {
          lng[0] = (double)ilng;

          if (++ci > 7) ci = 2;
          cpgsci(ilng?ci:1);

          /* Dash the reference longitude. */
          if ((ilng-crval1)%360 == 0) {
            cpgsls(2);
            cpgslw(5);
          }

          cels2x(&celestial, 1, 181, 1, 1, lng, lat, phi, theta, x, y, stat);

          k = 0;
          for (j = 0; j < 181; j++) {
            if (stat[j]) {
              if (k > 1) cpgline(k, xr, yr);
              k = 0;
              continue;
            }

            /* Test for discontinuities. */
            if (j > 0) {
              if (fabs(x[j]-x[j-1]) > 4.0 || fabs(y[j]-y[j-1]) > 4.0) {
                if (k > 1) cpgline(k, xr, yr);
                k = 0;
              }
            }

            xr[k] = -x[j];
            yr[k] =  y[j];
            k++;
          }

          cpgline(k, xr, yr);
          cpgsls(1);
          cpgslw(1);
        }

        /* Draw celestial parallels of latitude. */
        for (j = 0, ilng = -180; ilng <= 180; ilng++, j++) {
          lng[j] = (double)ilng;
        }

        ci = 1;
        for (ilat = -90; ilat <= 90; ilat += 15) {
          lat[0] = (double)ilat;

          if (++ci > 7) ci = 2;
          cpgsci(ilat?ci:1);

          /* Dash the reference latitude. */
          if (ilat == crval2) {
            cpgsls(2);
            cpgslw(5);
          }

          cels2x(&celestial, 361, 1, 1, 1, lng, lat, phi, theta, x, y, stat);

          k = 0;
          for (j = 0; j < 361; j++) {
            if (stat[j]) {
              if (k > 1) cpgline(k, xr, yr);
              k = 0;
              continue;
            }

            /* Test for discontinuities. */
            if (j > 0) {
              if (fabs(x[j]-x[j-1]) > 4.0 || fabs(y[j]-y[j-1]) > 4.0) {
                if (k > 1) cpgline(k, xr, yr);
                k = 0;
              }
            }

            xr[k] = -x[j];
            yr[k] =  y[j];
            k++;
          }

          cpgline(k, xr, yr);
          cpgsls(1);
          cpgslw(1);
        }

        /* Flush PGPLOT buffer. */
        cpgebuf();
        printf(" Type <RETURN> for next page: ");
        getc(stdin);

        /* Cycle through celestial longitudes. */
        if ((crval1 += 15) > 180) crval1 = -180;

        /* Skip boring celestial latitudes. */
        if (crval2 == 0) break;
      }

      if (crval2 == 0) break;
    }
  }

  cpgask(0);
  cpgend();

  return 0;
}
示例#10
0
int radio::draw(){  
  if (on) fillcircle(x,y,2); else fillcircle(x,y,0);
  cpgsci(1);
  cpgtext(x+0.02,y-0.005,label);
  return(0);
}
示例#11
0
文件: ttab2.c 项目: orlanthi/wcslib
int main()

{
  /* Set up a 2 x 2 lookup table. */
  const int M = 2;
  const int K[] = {K1, K2};
  const int map[] = {0, 1};
  const double crval[] = {0.0, 0.0};

  char text[80];
  int i, j, k, l, l1, l2, l3, lstep, m, stat[NP*NP], status;
  float array[NP][NP], clev[31], v0, v1, w;
  const float scl = 2.0f/(NP-1);
  float ltm[6];
  double x[NP][NP][2], world[NP][NP][2];
  struct tabprm tab;

  printf("Testing WCSLIB coordinate lookup table routines (ttab2.c)\n"
         "---------------------------------------------------------\n");

  /* List status return messages. */
  printf("\nList of tab status return values:\n");
  for (status = 1; status <= 5; status++) {
    printf("%4d: %s.\n", status, tab_errmsg[status]);
  }

  printf("\n");


  /* PGPLOT initialization. */
  strcpy(text, "/xwindow");
  cpgbeg(0, text, 1, 1);
  cpgvstd();
  cpgsch(0.7f);

  /* The viewport is slightly oversized. */
  cpgwnad(-0.65f, 1.65f, -0.65f, 1.65f);

  for (l = 0; l <= 30; l++) {
    clev[l] = 0.2f*(l-10);
  }

  ltm[0] = -scl*(1.0f + (NP-1)/4.0f);
  ltm[1] =  scl;
  ltm[2] =  0.0f;
  ltm[3] = -scl*(1.0f + (NP-1)/4.0f);
  ltm[4] =  0.0f;
  ltm[5] =  scl;


  /* Set up the lookup table. */
  tab.flag = -1;
  if ((status = tabini(1, M, K, &tab))) {
    printf("tabini ERROR %d: %s.\n", status, tab_errmsg[status]);
    return 1;
  }

  tab.M = M;
  for (m = 0; m < tab.M; m++) {
    tab.K[m] = K[m];
    tab.map[m] = map[m];
    tab.crval[m] = crval[m];

    for (k = 0; k < tab.K[m]; k++) {
      tab.index[m][k] = (double)k;
    }
  }

  /* Subdivide the interpolation element. */
  for (i = 0; i < NP; i++) {
    for (j = 0; j < NP; j++) {
      x[i][j][0] = j*(K1-1.0)*scl - 0.5 - crval[0];
      x[i][j][1] = i*(K2-1.0)*scl - 0.5 - crval[1];
    }
  }

  /* The first coordinate element is static. */
  tab.coord[0] = 0.0;
  tab.coord[2] = 0.0;
  tab.coord[4] = 0.0;
  tab.coord[6] = 0.0;

  /* (k1,k2) = (0,0). */
  tab.coord[1] = 0.0;

  /* The second coordinate element varies in three of the corners. */
  for (l3 = 0; l3 <= 100; l3 += 20) {
    /* (k1,k2) = (1,1). */
    tab.coord[7] = 0.01 * l3;

    for (l2 = 0; l2 <= 100; l2 += 20) {
      /* (k1,k2) = (0,1). */
      tab.coord[5] = 0.01 * l2;

      cpgpage();
      for (l1 = 0; l1 <= 100; l1 += 2) {
        /* (k1,k2) = (1,0). */
        tab.coord[3] = 0.01 * l1;

        /* Compute coordinates within the interpolation element. */
        tab.flag = 0;
        if ((status = tabx2s(&tab, NP*NP, 2, (double *)x, (double *)world,
                             stat))) {
          printf("tabx2s ERROR %d: %s.\n", status, tab_errmsg[status]);
        }

        /* Start a new plot. */
        cpgbbuf();
        cpgeras();
        cpgsci(1);
        cpgslw(3);
        cpgbox("BCNST", 0.0f, 0, "BCNSTV", 0.0f, 0);
        cpgmtxt("T", 0.7f, 0.5f, 0.5f, "-TAB coordinates:  "
          "linear interpolation / extrapolation in 2-D");

        /* Draw the boundary of the interpolation element in red. */
        cpgsci(2);
        cpgmove(-0.5f,  0.0f);
        cpgdraw( 1.5f,  0.0f);

        cpgmove( 1.0f, -0.5f);
        cpgdraw( 1.0f,  1.5f);

        cpgmove( 1.5f,  1.0f);
        cpgdraw(-0.5f,  1.0f);

        cpgmove( 0.0f,  1.5f);
        cpgdraw( 0.0f, -0.5f);

        /* Label the value of the coordinate element in each corner. */
        sprintf(text, "%.1f", tab.coord[1]);
        cpgtext(-0.09f, -0.05f, text);
        sprintf(text, "%.2f", tab.coord[3]);
        cpgtext( 1.02f, -0.05f, text);
        sprintf(text, "%.1f", tab.coord[5]);
        cpgtext(-0.13f,  1.02f, text);
        sprintf(text, "%.1f", tab.coord[7]);
        cpgtext( 1.02f,  1.02f, text);

        cpgsci(1);
        /* Contour labelling: bottom. */
        v0 = world[0][0][1];
        v1 = world[0][NP-1][1];
        if (v0 != v1) {
          lstep = (abs((int)((v1-v0)/0.2f)) < 10) ? 20 : 40;
          for (l = -200; l <= 300; l += lstep) {
            w = -0.5f + 2.0f * (l*0.01f - v0) / (v1 - v0);
            if (w < -0.5 || w > 1.5) continue;

            sprintf(text, "%4.1f", l*0.01f);
            cpgptxt(w+0.04f, -0.56f, 0.0f, 1.0f, text);
          }
        }

        /* Contour labelling: left. */
        v0 = world[0][0][1];
        v1 = world[NP-1][0][1];
        if (v0 != v1) {
          lstep = (abs((int)((v1-v0)/0.2f)) < 10) ? 20 : 40;
          for (l = -200; l <= 300; l += lstep) {
            w = -0.5f + 2.0f * (l*0.01f - v0) / (v1 - v0);
            if (w < -0.5 || w > 1.5) continue;

            sprintf(text, "%4.1f", l*0.01f);
            cpgptxt(-0.52f, w-0.02f, 0.0f, 1.0f, text);
          }
        }

        /* Contour labelling: right. */
        v0 = world[0][NP-1][1];
        v1 = world[NP-1][NP-1][1];
        if (v0 != v1) {
          lstep = (abs((int)((v1-v0)/0.2f)) < 10) ? 20 : 40;
          for (l = -200; l <= 300; l += lstep) {
            w = -0.5f + 2.0f * (l*0.01f - v0) / (v1 - v0);
            if (w < -0.5 || w > 1.5) continue;

            sprintf(text, "%.1f", l*0.01f);
            cpgptxt(1.52f, w-0.02f, 0.0f, 0.0f, text);
          }
        }

        /* Contour labelling: top. */
        v0 = world[NP-1][0][1];
        v1 = world[NP-1][NP-1][1];
        if (v0 != v1) {
          lstep = (abs((int)((v1-v0)/0.2f)) < 10) ? 20 : 40;
          for (l = -200; l <= 300; l += lstep) {
            w = -0.5f + 2.0f * (l*0.01f - v0) / (v1 - v0);
            if (w < -0.5 || w > 1.5) continue;

            sprintf(text, "%4.1f", l*0.01f);
            cpgptxt(w+0.04f, 1.52f, 0.0f, 1.0f, text);
          }
        }

        /* Draw contours for the second coordinate element. */
        for (i = 0; i < NP; i++) {
          for (j = 0; j < NP; j++) {
            array[i][j] = world[i][j][1];
          }
        }

        cpgsci(4);
        cpgslw(2);
        cpgcont(array[0], NP, NP, 1, NP, 1, NP, clev, 10, ltm);

        cpgsci(7);
        cpgcont(array[0], NP, NP, 1, NP, 1, NP, clev+10, 1, ltm);

        cpgsci(5);
        cpgcont(array[0], NP, NP, 1, NP, 1, NP, clev+11, 20, ltm);

        cpgebuf();
      }
    }
  }

  cpgend();

  tabfree(&tab);

  return 0;
}
示例#12
0
void doPlot(pulsar *psr,int npsr,float *scale,int nScale,char *grDev,int plotUs,float fontSize,float centreMJD,int ptStyle,float ptSize,int error,float minyv,float maxyv,float minxv,float maxxv,int nOverlay,float labelsize,float fracX)
{
  int i,j,fitFlag=2,exitFlag=0,scale1=0,scale2,count[MAX_PSR],p,xautoscale=0,k,graphics=1;
  int yautoscale=0,plotpre=1;
  int ps,pe,pi;
  int time=0;
  char xstr[1000],ystr[1000];
  float px[2],py[2],pye1[2],pye2[2];
  float x[MAX_PSR][MAX_OBSN],y[MAX_PSR][MAX_OBSN],yerr1[MAX_PSR][MAX_OBSN],yerr2[MAX_PSR][MAX_OBSN],tmax,tmin,tmaxy1,tminy1,tmaxy2,tminy2;
  float sminy[MAX_PSR],smaxy[MAX_PSR];
  float minx[MAX_PSR],maxx[MAX_PSR],miny[MAX_PSR],maxy[MAX_PSR],plotx1,plotx2,ploty1,ploty2,mean;
  float fx[2],fy[2];
  float mouseX,mouseY;
  char key;
  //  float widthPap=0.0,aspectPap=0.618;
  float widthPap=0.0,aspectPap=1;
  float xx[MAX_OBSN],yy[MAX_OBSN],yyerr1[MAX_OBSN],yyerr2[MAX_OBSN];
  int num=0,colour;

  /* Obtain a graphical PGPLOT window */
  cpgbeg(0,grDev,1,1);
  //    cpgpap(widthPap,aspectPap);
  cpgsch(fontSize);
  cpgscf(2);
  cpgslw(2);
  cpgask(0);

  for (p=0;p<npsr;p++)
    {
      scale2 = psr[p].nobs;
      
      /*      sprintf(xstr,"MJD-%.1Lf",psr[0].param[param_pepoch].val[0]); */
      if (centreMJD == -1)
	sprintf(xstr,"Year"); 
      else
	sprintf(xstr,"MJD-%.1f",centreMJD); 

      sprintf(ystr,"Residual (\\gmsec)");
      
      count[p]=0;
      printf("points = %d\n",psr[p].nobs);
      for (i=0;i<psr[p].nobs;i++)
	{	  
	  if (psr[p].obsn[i].deleted == 0 &&
	      (psr[p].param[param_start].paramSet[0]!=1 || psr[p].param[param_start].fitFlag[0]!=1 ||
	       psr[p].param[param_start].val[0] < psr[p].obsn[i].bat) &&
	      (psr[p].param[param_finish].paramSet[0]!=1 || psr[p].param[param_finish].fitFlag[0]!=1 ||
	       psr[p].param[param_finish].val[0] > psr[p].obsn[i].bat))
	    {
	      /* x[p][count[p]] = (double)(psr[p].obsn[i].bat-psr[0].param[param_pepoch].val[0]);	     	       */
	      if (centreMJD == -1)
		x[p][count[p]] = calcYr(psr[p].obsn[i].bat);
	      else
		x[p][count[p]] = (double)(psr[p].obsn[i].bat-centreMJD); 
	      y[p][count[p]] = (double)psr[p].obsn[i].residual*1.0e6;
	      if (nScale>0)
		y[p][count[p]] *= scale[p];
	      count[p]++;
	    }
	}
      /* Remove mean from the residuals and calculate error bars */
      mean = findMean(y[p],psr,p,scale1,count[p]);
      count[p]=0;
      for (i=0;i<psr[p].nobs;i++)
	{
	  if (psr[p].obsn[i].deleted==0   &&
	      (psr[p].param[param_start].paramSet[0]!=1 || psr[p].param[param_start].fitFlag[0]!=1 ||
	       psr[p].param[param_start].val[0] < psr[p].obsn[i].bat) &&
	      (psr[p].param[param_finish].paramSet[0]!=1 || psr[p].param[param_finish].fitFlag[0]!=1 ||
	       psr[p].param[param_finish].val[0] > psr[p].obsn[i].bat))
	    {
	      psr[p].obsn[i].residual-=mean/1.0e6;
	      y[p][count[p]]-=mean;
	      yerr1[p][count[p]] = y[p][count[p]]-(float)psr[p].obsn[i].toaErr;
	      yerr2[p][count[p]] = y[p][count[p]]+(float)psr[p].obsn[i].toaErr;
	      count[p]++;
	    }
	}
    	  
      /* Get scaling for graph */
      if (minxv == maxxv) {
	minx[p] = findMin(x[p],psr,p,scale1,count[p]);
	maxx[p] = findMax(x[p],psr,p,scale1,count[p]);
      }
      else {
	minx[p] = minxv;
	maxx[p] = maxxv;
      }
      if (minyv == maxyv){
	miny[p] = findMin(y[p],psr,p,scale1,count[p]);
	maxy[p] = findMax(y[p],psr,p,scale1,count[p]);
      }
      else {
	miny[p] = minyv;
	maxy[p] = maxyv;
      }
      sminy[p] = miny[p]/1e6;
      smaxy[p] = maxy[p]/1e6;
    }
  for (p=0;p<npsr;p++)
    {
      for (i=0;i<count[p];i++)
	{
	  y[p][i] = (y[p][i]-miny[p])/(maxy[p]-miny[p]);
	  yerr1[p][i] = (yerr1[p][i]-miny[p])/(maxy[p]-miny[p]);
	  yerr2[p][i] = (yerr2[p][i]-miny[p])/(maxy[p]-miny[p]);
	}
      //      maxy[p] = 1.0;
      //      miny[p] = 0.0;
    }
  

  tmin = findMinVal(minx,npsr);
  tmax = findMaxVal(maxx,npsr);

  tminy2 = 0.0; //findMinVal(miny,npsr);
  tmaxy2 = 1.0; //findMaxVal(maxy,npsr);

  plotx1 = tmin-(tmax-tmin)*0.1;
  plotx2 = tmax+(tmax-tmin)*0.1;
  
  //  ploty1 = tminy2-(tmaxy2-tminy2)*0.1;
  //  ploty2 = tmaxy2+(tmaxy2-tminy2)*0.1;
	
  ploty1 = 0.1;
  ploty2 = 0.9;

  for (p=0;p<npsr;p++)
    {
      for (i=0;i<count[p];i++)
	{
	  y[p][i]=(p)+ploty1+y[p][i]*(ploty2-ploty1);
	  yerr1[p][i]=(p)+ploty1+yerr1[p][i]*(ploty2-ploty1);
	  yerr2[p][i]=(p)+ploty1+yerr2[p][i]*(ploty2-ploty1);
	}
    } 
  
  printf("ytick = %g\n",ploty2-ploty1);
      /*  cpgenv(plotx1,plotx2,ploty1,ploty2+(ploty2-ploty1)*(npsr-1),0,0); */
  //  cpgenv(plotx1,plotx2,0,npsr+1,0,-1);

  if (labelsize!=-1)
    cpgsch(labelsize);
  cpgsvp(fracX,1.0,0.1,1.0);
  cpgswin(0,1,0,npsr);
  cpgbox("ABC",0.0,0,"C",0.0,0);
  cpgsch(fontSize);
  char str[1000];
  for (p=0;p<npsr;p++)
    {
      cpgsch(fontSize);
      //      cpgtext(tmax+(tmax-tmin)*0.05,p+1.5-0.5,psr[p].name);
      cpgtext(0,p+0.6,psr[p].name);
      //      cpgsch(fontSize);
      if (plotUs==0)
	{
	  sprintf(str,"%.2f",(double)((smaxy[p]-sminy[p])*psr[p].param[param_f].val[0]));
	  cpgtext(0,p+0.4,str);
	  //	  cpgtext(tmax+(tmax-tmin)*0.05,p+1.1-0.5,str);
	}
      else
	{
	  sprintf(str,"%.2f\\gms",(double)((smaxy[p]-sminy[p])/1e-6));
	  //	  cpgtext(tmax+(tmax-tmin)*0.05,p+1.1-0.5,str);
	  cpgtext(0,p+0.1,str);
	}
      cpgsch(1);
      px[0] = 0;
      //      px[1] = tmax; //+(tmax-tmin)*0.03;
	px[1] = 1;
      py[0] = p;
      py[1] = p;
      cpgline(2,px,py);
      
    }
  if (labelsize!=-1)
    cpgsch(labelsize);

  cpgsvp(0.1,fracX,0.1,1.0);
  cpgswin(plotx1,plotx2,0,npsr);
  cpgbox("ATNSBC",0.0,0,"B",0.0,0);
  cpglab(xstr,"","");	    
  cpgsch(fontSize);

  for (p=0;p<npsr;p++)
    {
      cpgsls(1);
      px[0] = plotx1;
      //      px[1] = tmax; //+(tmax-tmin)*0.03;
      px[1] = plotx2;
      py[0] = p;
      py[1] = p;
      cpgline(2,px,py);
      cpgsls(4);
      px[0] = tmin;
      px[1] = tmax+(tmax-tmin)*0.03;

      py[0]=py[1] =(p)+ploty1+(-miny[p]/(maxy[p]-miny[p]))*(ploty2-ploty1);
      //      py[0]=py[1] = (p)+ploty1;
      //      py[0] = py[1] = (0-miny[p])/(maxy[p]-miny[p])/(ploty2-ploty1)+p;
      cpgline(2,px,py);

      px[0] = plotx1+0.005*(plotx2-plotx1);
      py[0] = p;
      pye1[0] = p + 5/(ploty2-ploty1);
      pye2[0] = p - 5/(ploty2-ploty1);
      cpgsls(1);
      cpgsch(3);
      //      cpgerry(1,px,pye1,pye2,1); 
      cpgsch(1);

      for (colour=0;colour<5;colour++)
	{
	  num=0;
	  for (i=0;i<count[p];i++)
	    {
	      if ((colour==0 && psr[p].obsn[i].freq<=500) ||
		  (colour==1 && psr[p].obsn[i].freq>500 && psr[p].obsn[i].freq<=1000) ||
		  (colour==2 && psr[p].obsn[i].freq>1000 && psr[p].obsn[i].freq<=1500) ||
		  (colour==3 && psr[p].obsn[i].freq>1500 && psr[p].obsn[i].freq<=3300) ||
		  (colour==4 && psr[p].obsn[i].freq>3300))
		{
		  xx[num]=x[p][i];
		  yy[num]=y[p][i];
		  yyerr1[num]=yerr1[p][i];
		  yyerr2[num]=yerr2[p][i];
		  //		  printf("plotting: %g\n",yy[num]);

		  num++;
		}
	    }
	  cpgsci(colour+1);
	  cpgsch(ptSize);
	  cpgpt(num,xx,yy,ptStyle);
	  if (error==1)
	    cpgerry(num,xx,yyerr1,yyerr2,1);
	  cpgsch(fontSize);
	  // Plot arrow giving one period
	  fx[0] = fx[1] = tmin-(tmax-tmin)*0.05;
	  //	  fy[0] = (p+1)+0.5-(float)(1.0/psr[p].param[param_f].val[0])/2.0/(ploty2-ploty1);
	  //	  fy[1] = (p+1)+0.5+(float)(1.0/psr[p].param[param_f].val[0])/2.0/(ploty2-ploty1);

	  //	  fy[0] = (-(float)(1.0/psr[p].param[param_f].val[0])/2.0/1.0e6 - miny[p])/(maxy[p]-miny[p])/(ploty2-ploty1) + (p+1)+0.5;
	  //	  fy[1] = ((float)(1.0/psr[p].param[param_f].val[0])/2.0/1.0e6 - miny[p])/(maxy[p]-miny[p])/(ploty2-ploty1) + (p+1)+0.5;
	  fy[0] = (p+1)+0.5+(float)(1.0/psr[p].param[param_f].val[0])/2.0/(maxy[p]-miny[p])*1e6;
	  fy[1] = (p+1)+0.5-(float)(1.0/psr[p].param[param_f].val[0])/2.0/(maxy[p]-miny[p])*1e6;
	  if (fy[0] > (p+1)+1) fy[0] = (p+1)+1;
	  if (fy[1] < (p+1)) fy[1] = (p+1);
	  
	  //	  cpgsls(1); cpgline(2,fx,fy); cpgsls(1);
	}
      cpgsci(1);
    }

  
  cpgend();
}
示例#13
0
int main(int argc, char *argv[]) {
    float *x=NULL,*y=NULL,minx,maxx,miny,maxy,cx, *oparams=NULL,*nparams=NULL;
    float *rx=NULL,*ry=NULL,*w=NULL,*wparams=NULL,*wx=NULL,*wy=NULL,*ww=NULL;
    float *y_sault_fit=NULL, *x_fit=NULL, *y_new_fit=NULL, *y_reynolds_fit=NULL;
    float *y_stevens_fit=NULL,*y_whole_fit=NULL,*y_old_fit=NULL;
    int i,j,n=0,n_fit=100,new_fit_order=2,whole_fit_order=5,nr=0,nw=0;
    /* float extra_x[NEXTRA]={ 93, 95 }, extra_y[NEXTRA] = { 0.1223, 0.1168 }; */
    float extra_x[NEXTRA]= { 93, 95 }, extra_y[NEXTRA] = { 0.1116, 0.1056 };
    float extra_u[NEXTRA]= { 0.01356, 0.01399 };
    float fitp_sault[NFIT_SAULT]= { -202.6259, 149.7321, -36.4943, 2.9372 };
    float fitp_reynolds[NFIT_REYNOLDS]= { -30.7667, 26.4908, -7.0977, 0.605334 };
    float fitp_stevens[NFIT_STEVENS]= { -1.237160, 2.005317, -0.400622 };
    float fitp_old[NFIT_OLD]= { -23.839, 19.569, -4.8168, 0.35836 };
    float *ratio_reynolds_fit=NULL,*ratio_stevens_fit=NULL,*ratio_sault_fit=NULL;
    float *ratio_new_fit=NULL;
    float vpx1, vpx2, vpy1, vpy2, vpy3, lx, ly, dly;
    char fitlabel[BUFSIZE];

    /* Generate the cm fit points. */
    for (cx=1.0; cx<10.0; cx+=0.1) {
        nr++;
        rx = realloc(rx, nr * sizeof(float));
        ry = realloc(ry, nr * sizeof(float));
        rx[nr-1] = log10f(cx * 1000);
        ry[nr-1] = 0.0;
        for (i=0; i<NFIT_REYNOLDS; i++) {
            ry[nr-1] += fitp_reynolds[i] * powf(rx[n-1], (float)i);
        }
    }

    /* Generate the 15mm fit points. */
    for (cx=10.0; cx<=24.0; cx+=0.128) {
        n++;
        x = realloc(x, n * sizeof(float));
        y = realloc(y, n * sizeof(float));
        w = realloc(w, n * sizeof(float));
        x[n-1] = log10f(cx * 1000);
        y[n-1] = 0.0;
        for (i=0; i<NFIT_REYNOLDS; i++) {
            y[n-1] += fitp_sault[i] * powf(x[n-1], (float)i);
        }
        w[n-1] = 1.0/0.1;
    }

    /* Do the fit. */
    linfit_order(NFIT_SAULT, n, x, y, w, &oparams);
    for (i=0; i<NFIT_SAULT; i++) {
        printf("i = %d c[i] = %.4f\n", i, oparams[i]);
    }

    /* Add the 3mm flux points. */
    for (i=0; i<NEXTRA; i++) {
        n++;
        x = realloc(x, n * sizeof(float));
        y = realloc(y, n * sizeof(float));
        w = realloc(w, n * sizeof(float));
        x[n-1] = log10f(extra_x[i] * 1000);
        y[n-1] = log10f(extra_y[i]);
        w[n-1] = 1/extra_u[i];
    }

    /* Do another fit. */
    linfit_order(new_fit_order, n, x, y, w, &nparams);
    for (i=0; i<new_fit_order; i++) {
        printf("i = %d nc[i] = %.4f\n", i, nparams[i]);
    }

    /* Generate the whole range fit points. */
    minx=log10f(900);
    maxx=log10f(100000);
    miny=-2;
    maxy=log10f(20);
    x_fit = malloc(n_fit * sizeof(float));
    for (i=0; i<n_fit; i++) {
        x_fit[i] = minx + i * ((maxx - minx)/(float)n_fit);
        nw++;
        wx = realloc(wx, nw * sizeof(float));
        wy = realloc(wy, nw * sizeof(float));
        ww = realloc(ww, nw * sizeof(float));
        wx[nw-1] = x_fit[i];
        wy[nw-1] = 0.0;
        ww[nw-1] = 1;
        if (x_fit[i] < log10f(11143)) {
            /* Use the Reynolds fit. */
            for (j=0; j<NFIT_REYNOLDS; j++) {
                wy[nw-1] += fitp_reynolds[j] * powf(x_fit[i], (float)j);
            }
        } else {
            /* Use the new fit. */
            for (j=0; j<new_fit_order; j++) {
                wy[nw-1] += nparams[j] * powf(x_fit[i], (float)j);
            }
        }
    }

    /* Do a whole-range fit. */
    linfit_order(whole_fit_order, nw, wx, wy, ww, &wparams);
    for (i=0; i<whole_fit_order; i++) {
        printf("i = %d wc[i] = %.4f\n", i, wparams[i]);
    }

    // minmax(n, x, &minx, &maxx);
    // minmax(n, y, &miny, &maxy);

    y_sault_fit = malloc(n_fit * sizeof(float));
    y_reynolds_fit = malloc(n_fit * sizeof(float));
    y_stevens_fit = malloc(n_fit * sizeof(float));
    y_new_fit = malloc(n_fit * sizeof(float));
    y_whole_fit = malloc(n_fit * sizeof(float));
    y_old_fit = malloc(n_fit * sizeof(float));
    ratio_reynolds_fit = malloc(n_fit * sizeof(float));
    ratio_stevens_fit = malloc(n_fit * sizeof(float));
    ratio_sault_fit = malloc(n_fit * sizeof(float));
    ratio_new_fit = malloc(n_fit * sizeof(float));
    /* minx=log10f(50); */
    minx=log10f(1000);
    /* maxx=log10f(500000); */
    maxx=log10f(110000);
    for (i=0; i<n_fit; i++) {
        x_fit[i] = minx + i * ((maxx - minx)/(float)n_fit);
        y_sault_fit[i] = 0.0;
        y_reynolds_fit[i] = 0.0;
        y_new_fit[i] = 0.0;
        y_stevens_fit[i] = 0.0;
        y_whole_fit[i] = 0.0;
        y_old_fit[i] = 0.0;
        for (j=0; j<NFIT_SAULT; j++) {
            y_sault_fit[i] += fitp_sault[j] * powf(x_fit[i], (float)j);
        }
        for (j=0; j<NFIT_REYNOLDS; j++) {
            y_reynolds_fit[i] += fitp_reynolds[j] * powf(x_fit[i], (float)j);
        }
        for (j=0; j<NFIT_STEVENS; j++) {
            y_stevens_fit[i] += fitp_stevens[j] * powf(x_fit[i], (float)j);
        }
        for (j=0; j<new_fit_order; j++) {
            y_new_fit[i] += nparams[j] * powf(x_fit[i], (float)j);
        }
        for (j=0; j<whole_fit_order; j++) {
            y_whole_fit[i] += wparams[j] * powf(x_fit[i], (float)j);
        }
        for (j=0; j<NFIT_OLD; j++) {
            y_old_fit[i] += fitp_old[j] * powf(x_fit[i], (float)j);
        }
        ratio_reynolds_fit[i] = powf(10, (y_reynolds_fit[i] - y_whole_fit[i]));
        ratio_stevens_fit[i] = powf(10, (y_stevens_fit[i] - y_whole_fit[i]));
        ratio_sault_fit[i] = powf(10, (y_sault_fit[i] - y_whole_fit[i]));
        ratio_new_fit[i] = powf(10, (y_new_fit[i] - y_whole_fit[i]));
    }

    /* cpgopen("11/xs"); */
    cpgopen("1934-638_models.ps/cps");
    /* cpgopen("1934-638_models.png/png"); */
    cpgqvp(0, &vpx1, &vpx2, &vpy1, &vpy2);
    vpy3 = vpy1 + (vpy2 - vpy1) / 5.0;
    /* cpgsvp(vpx1, vpx2, vpy3, vpy2); */
    cpgswin(minx, maxx, miny, maxy);
    lx = minx + (maxx - minx) / 9.0;
    ly = miny + (maxy - miny) / 3.0;
    dly = (maxy - miny) / 20.0;
    cpgsch(1.0);
    cpgbox("BCLNTS",0,0,"BCLNTS",0,0);
    cpglab("Frequency (MHz)", "Flux Density (Jy)", "1934-638 Model Comparison");
    cpgsch(0.8);
    cpgpt(n, x, y, 4);
    /* cpgpt(nw, wx, wy, 4); */
    cpgsci(2);
    /* cpgpt(nr, rx, ry, 4); */
    cpgline(n_fit, x_fit, y_sault_fit);
    strcpy(fitlabel, "Sault: ");
    fitstring(fitp_sault, NFIT_SAULT, fitlabel);
    cpgtext(lx, ly, fitlabel);
    cpgsci(3);
    cpgline(n_fit, x_fit, y_new_fit);
    strcpy(fitlabel, "Stevens (linear): ");
    fitstring(nparams, new_fit_order, fitlabel);
    ly -= dly;
    cpgtext(lx, ly, fitlabel);
    cpgsci(4);
    cpgline(n_fit, x_fit, y_reynolds_fit);
    strcpy(fitlabel, "Reynolds: ");
    fitstring(fitp_reynolds, NFIT_REYNOLDS, fitlabel);
    ly -= dly;
    cpgtext(lx, ly, fitlabel);
    cpgsci(5);
    cpgline(n_fit, x_fit, y_stevens_fit);
    strcpy(fitlabel, "Stevens (Miriad): ");
    fitstring(fitp_stevens, NFIT_STEVENS, fitlabel);
    ly -= dly;
    cpgtext(lx, ly, fitlabel);
    cpgsci(6);
    cpgline(n_fit, x_fit, y_old_fit);
    strcpy(fitlabel, "Pre-1994: ");
    fitstring(fitp_old, NFIT_OLD, fitlabel);
    ly -= dly;
    cpgtext(lx, ly, fitlabel);
    /* cpgsci(6); */
    /* cpgline(n_fit, x_fit, y_whole_fit); */
    /* strcpy(fitlabel, "Stevens (New): "); */
    /* fitstring(wparams, whole_fit_order, fitlabel); */
    /* ly -= dly; */
    /* cpgtext(lx, ly, fitlabel); */
    /* cpgsvp(vpx1, vpx2, vpy1, vpy3); */
    /* cpgsci(1); */
    /* cpgswin(minx, maxx, 0.9, 1.1); */
    /* cpgsch(1.0); */
    /* cpgbox("BCLNTS",0,0,"BCMTS",0,0); */
    /* cpglab("Frequency (MHz)", "Model Ratio", ""); */
    /* cpgsci(2); */
    /* cpgline(n_fit, x_fit, ratio_sault_fit); */
    /* cpgsci(3); */
    /* cpgline(n_fit, x_fit, ratio_new_fit); */
    /* cpgsci(4); */
    /* cpgline(n_fit, x_fit, ratio_reynolds_fit); */
    /* cpgsci(5); */
    /* cpgline(n_fit, x_fit, ratio_stevens_fit); */
    cpgclos();

    exit(0);
}
示例#14
0
static void _pgtext (double *x, double *y, char *s)
{
   cpgtext ((float) *x, (float) *y, s);
}