void inject_freeGuestPde(void) { int i,j,pde,pte; unsigned int cr3 = cpu_single_env->cr[3]; int flags = 0x67; unsigned long start; printf("inject_freeGuestPde ... \n"); for(i = 0x800 - 0x4; i > 0; i -= 4) { cpu_physical_memory_rw(cr3 + i, (uint8_t*)&pde, 4, 0); if(pde == 0) { user_buf = i * 0x100000; pde = ram_size + sbuf_size; pde = pde | flags; cpu_physical_memory_rw(cr3 + i, (uint8_t*)&pde, 4, 1); start = ram_size; printf("PDE %x %x\n", i*0x100000, pde); pde = pde & 0xfffff000; for(j = 0 ; j < (sbuf_size) / 0x1000 * 4 ; j += 4) { pte = start | flags; cpu_physical_memory_rw(pde + j, (uint8_t*)&pte, 4, 1); start += 0x1000; //printf("pte %x %x\n", pde+j, pte); } break; } } }
/* Do frame processing on frame boundary */ static void ohci_frame_boundary(void *opaque) { OHCIState *ohci = opaque; struct ohci_hcca hcca; cpu_physical_memory_rw(ohci->hcca, (uint8_t *)&hcca, sizeof(hcca), 0); /* Process all the lists at the end of the frame */ if (ohci->ctl & OHCI_CTL_PLE) { int n; n = ohci->frame_number & 0x1f; ohci_service_ed_list(ohci, le32_to_cpu(hcca.intr[n]), 0); } /* Cancel all pending packets if either of the lists has been disabled. */ if (ohci->async_td && ohci->old_ctl & (~ohci->ctl) & (OHCI_CTL_BLE | OHCI_CTL_CLE)) { usb_cancel_packet(&ohci->usb_packet); ohci->async_td = 0; } ohci->old_ctl = ohci->ctl; ohci_process_lists(ohci, 0); /* Frame boundary, so do EOF stuf here */ ohci->frt = ohci->fit; /* XXX: endianness */ ohci->frame_number = (ohci->frame_number + 1) & 0xffff; hcca.frame = cpu_to_le32(ohci->frame_number); if (ohci->done_count == 0 && !(ohci->intr_status & OHCI_INTR_WD)) { if (!ohci->done) abort(); if (ohci->intr & ohci->intr_status) ohci->done |= 1; hcca.done = cpu_to_le32(ohci->done); ohci->done = 0; ohci->done_count = 7; ohci_set_interrupt(ohci, OHCI_INTR_WD); } if (ohci->done_count != 7 && ohci->done_count != 0) ohci->done_count--; /* Do SOF stuff here */ ohci_sof(ohci); /* Writeback HCCA */ cpu_physical_memory_rw(ohci->hcca, (uint8_t *)&hcca, sizeof(hcca), 1); }
void kvm_show_code(CPUState *env) { #define SHOW_CODE_LEN 50 struct kvm_regs regs; struct kvm_sregs sregs; int r, n; int back_offset; unsigned char code; char code_str[SHOW_CODE_LEN * 3 + 1]; unsigned long rip; r = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs); if (r < 0 ) { perror("KVM_GET_SREGS"); return; } r = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); if (r < 0) { perror("KVM_GET_REGS"); return; } rip = sregs.cs.base + regs.rip; back_offset = regs.rip; if (back_offset > 20) back_offset = 20; *code_str = 0; for (n = -back_offset; n < SHOW_CODE_LEN-back_offset; ++n) { if (n == 0) strcat(code_str, " -->"); cpu_physical_memory_rw(rip + n, &code, 1, 1); sprintf(code_str + strlen(code_str), " %02x", code); } fprintf(stderr, "code:%s\n", code_str); }
static inline int ohci_put_hcca(OHCIState *ohci, uint32_t addr, struct ohci_hcca *hcca) { cpu_physical_memory_rw(addr + ohci->localmem_base, (uint8_t *)hcca, sizeof(*hcca), 1); return 1; }
void qmp_pmemsave(int64_t addr, int64_t size, const char *filename, Error **errp) { FILE *f; uint32_t l; uint8_t buf[1024]; f = fopen(filename, "wb"); if (!f) { error_set(errp, QERR_OPEN_FILE_FAILED, filename); return; } while (size != 0) { l = sizeof(buf); if (l > size) l = size; cpu_physical_memory_rw(addr, buf, l, 0); if (fwrite(buf, 1, l, f) != l) { error_set(errp, QERR_IO_ERROR); goto exit; } addr += l; size -= l; } exit: fclose(f); }
/* Read/Write the contents of a TD from/to main memory. */ static void ohci_copy_td(struct ohci_td *td, uint8_t *buf, int len, int write) { uint32_t ptr; uint32_t n; ptr = td->cbp; n = 0x1000 - (ptr & 0xfff); if (n > len) n = len; cpu_physical_memory_rw(ptr, buf, n, write); if (n == len) return; ptr = td->be & ~0xfffu; buf += n; cpu_physical_memory_rw(ptr, buf, len - n, write); }
/* Read/Write the contents of an ISO TD from/to main memory. */ static void ohci_copy_iso_td(uint32_t start_addr, uint32_t end_addr, uint8_t *buf, int len, int write) { uint32_t ptr; uint32_t n; ptr = start_addr; n = 0x1000 - (ptr & 0xfff); if (n > len) n = len; cpu_physical_memory_rw(ptr, buf, n, write); if (n == len) return; ptr = end_addr & ~0xfffu; buf += n; cpu_physical_memory_rw(ptr, buf, len - n, write); }
static HRESULT CALLBACK whpx_emu_mmio_callback( void *ctx, WHV_EMULATOR_MEMORY_ACCESS_INFO *ma) { cpu_physical_memory_rw(ma->GpaAddress, ma->Data, ma->AccessSize, ma->Direction); return S_OK; }
static int hax_handle_fastmmio(CPUArchState *env, struct hax_fastmmio *hft) { if (hft->direction < 2) { cpu_physical_memory_rw(hft->gpa, (uint8_t *) &hft->value, hft->size, hft->direction); } else { /* * HAX API v4 supports transferring data between two MMIO addresses, * hft->gpa and hft->gpa2 (instructions such as MOVS require this): * hft->direction == 2: gpa ==> gpa2 */ uint64_t value; cpu_physical_memory_rw(hft->gpa, (uint8_t *) &value, hft->size, 0); cpu_physical_memory_rw(hft->gpa2, (uint8_t *) &value, hft->size, 1); } return 0; }
/* Get an array of words from main memory */ static inline int get_words(uint32_t addr, uint16_t *buf, int num) { int i; for (i = 0; i < num; i++, buf++, addr += sizeof(*buf)) { cpu_physical_memory_rw(addr, (uint8_t *)buf, sizeof(*buf), 0); *buf = le16_to_cpu(*buf); } return 1; }
/* Put an array of words in to main memory */ static inline int put_words(uint32_t addr, uint16_t *buf, int num) { int i; for (i = 0; i < num; i++, buf++, addr += sizeof(*buf)) { uint16_t tmp = cpu_to_le16(*buf); cpu_physical_memory_rw(addr, (uint8_t *)&tmp, sizeof(tmp), 1); } return 1; }
/* Put an array of dwords in to main memory */ static inline int put_dwords(OHCIState *ohci, uint32_t addr, uint32_t *buf, int num) { int i; addr += ohci->localmem_base; for (i = 0; i < num; i++, buf++, addr += sizeof(*buf)) { uint32_t tmp = cpu_to_le32(*buf); cpu_physical_memory_rw(addr, (uint8_t *)&tmp, sizeof(tmp), 1); } return 1; }
static int handle_mmio(CPUState *env) { unsigned long addr = env->kvm_run->mmio.phys_addr; struct kvm_run *kvm_run = env->kvm_run; void *data = kvm_run->mmio.data; /* hack: Red Hat 7.1 generates these weird accesses. */ if ((addr > 0xa0000 - 4 && addr <= 0xa0000) && kvm_run->mmio.len == 3) { return 0; } cpu_physical_memory_rw(addr, data, kvm_run->mmio.len, kvm_run->mmio.is_write); return 0; }
/* Get an array of dwords from main memory */ static inline int get_dwords(OHCIState *ohci, uint32_t addr, uint32_t *buf, int num) { int i; addr += ohci->localmem_base; for (i = 0; i < num; i++, buf++, addr += sizeof(*buf)) { cpu_physical_memory_rw(addr, (uint8_t *)buf, sizeof(*buf), 0); *buf = le32_to_cpu(*buf); } return 1; }
static bool blit_kernel(CPUState *env, TranslationBlock *tb) { #if defined(TARGET_I386) if (!blit_kernel_done) { printf ("blitting kernel & setting entry\n"); struct stat s; stat(kernel_filename, &s); uint8_t *kernel = (uint8_t *) malloc(s.st_size); FILE *fp = fopen(kernel_filename, "r"); fread(kernel, 1, s.st_size, fp); cpu_physical_memory_rw(base_addr, kernel, s.st_size, 1, /* <GA> */ NULL); env->segs[R_CS].base = 0; env->eip = entry_addr; tb->pc = entry_addr; env->hflags |= HF_CS32_MASK; blit_kernel_done = true; return true; } return false; #endif }
/* Store System Information */ uint32_t HELPER(stsi)(CPUS390XState *env, uint64_t a0, uint32_t r0, uint32_t r1) { int cc = 0; int sel1, sel2; if ((r0 & STSI_LEVEL_MASK) <= STSI_LEVEL_3 && ((r0 & STSI_R0_RESERVED_MASK) || (r1 & STSI_R1_RESERVED_MASK))) { /* valid function code, invalid reserved bits */ program_interrupt(env, PGM_SPECIFICATION, 2); } sel1 = r0 & STSI_R0_SEL1_MASK; sel2 = r1 & STSI_R1_SEL2_MASK; /* XXX: spec exception if sysib is not 4k-aligned */ switch (r0 & STSI_LEVEL_MASK) { case STSI_LEVEL_1: if ((sel1 == 1) && (sel2 == 1)) { /* Basic Machine Configuration */ struct sysib_111 sysib; memset(&sysib, 0, sizeof(sysib)); ebcdic_put(sysib.manuf, "QEMU ", 16); /* same as machine type number in STORE CPU ID */ ebcdic_put(sysib.type, "QEMU", 4); /* same as model number in STORE CPU ID */ ebcdic_put(sysib.model, "QEMU ", 16); ebcdic_put(sysib.sequence, "QEMU ", 16); ebcdic_put(sysib.plant, "QEMU", 4); cpu_physical_memory_rw(a0, (uint8_t *)&sysib, sizeof(sysib), 1); } else if ((sel1 == 2) && (sel2 == 1)) { /* Basic Machine CPU */ struct sysib_121 sysib; memset(&sysib, 0, sizeof(sysib)); /* XXX make different for different CPUs? */ ebcdic_put(sysib.sequence, "QEMUQEMUQEMUQEMU", 16); ebcdic_put(sysib.plant, "QEMU", 4); stw_p(&sysib.cpu_addr, env->cpu_num); cpu_physical_memory_rw(a0, (uint8_t *)&sysib, sizeof(sysib), 1); } else if ((sel1 == 2) && (sel2 == 2)) { /* Basic Machine CPUs */ struct sysib_122 sysib; memset(&sysib, 0, sizeof(sysib)); stl_p(&sysib.capability, 0x443afc29); /* XXX change when SMP comes */ stw_p(&sysib.total_cpus, 1); stw_p(&sysib.active_cpus, 1); stw_p(&sysib.standby_cpus, 0); stw_p(&sysib.reserved_cpus, 0); cpu_physical_memory_rw(a0, (uint8_t *)&sysib, sizeof(sysib), 1); } else { cc = 3; } break; case STSI_LEVEL_2: { if ((sel1 == 2) && (sel2 == 1)) { /* LPAR CPU */ struct sysib_221 sysib; memset(&sysib, 0, sizeof(sysib)); /* XXX make different for different CPUs? */ ebcdic_put(sysib.sequence, "QEMUQEMUQEMUQEMU", 16); ebcdic_put(sysib.plant, "QEMU", 4); stw_p(&sysib.cpu_addr, env->cpu_num); stw_p(&sysib.cpu_id, 0); cpu_physical_memory_rw(a0, (uint8_t *)&sysib, sizeof(sysib), 1); } else if ((sel1 == 2) && (sel2 == 2)) { /* LPAR CPUs */ struct sysib_222 sysib; memset(&sysib, 0, sizeof(sysib)); stw_p(&sysib.lpar_num, 0); sysib.lcpuc = 0; /* XXX change when SMP comes */ stw_p(&sysib.total_cpus, 1); stw_p(&sysib.conf_cpus, 1); stw_p(&sysib.standby_cpus, 0); stw_p(&sysib.reserved_cpus, 0); ebcdic_put(sysib.name, "QEMU ", 8); stl_p(&sysib.caf, 1000); stw_p(&sysib.dedicated_cpus, 0); stw_p(&sysib.shared_cpus, 0); cpu_physical_memory_rw(a0, (uint8_t *)&sysib, sizeof(sysib), 1); } else { cc = 3; } break; } case STSI_LEVEL_3: { if ((sel1 == 2) && (sel2 == 2)) { /* VM CPUs */ struct sysib_322 sysib; memset(&sysib, 0, sizeof(sysib)); sysib.count = 1; /* XXX change when SMP comes */ stw_p(&sysib.vm[0].total_cpus, 1); stw_p(&sysib.vm[0].conf_cpus, 1); stw_p(&sysib.vm[0].standby_cpus, 0); stw_p(&sysib.vm[0].reserved_cpus, 0); ebcdic_put(sysib.vm[0].name, "KVMguest", 8); stl_p(&sysib.vm[0].caf, 1000); ebcdic_put(sysib.vm[0].cpi, "KVM/Linux ", 16); cpu_physical_memory_rw(a0, (uint8_t *)&sysib, sizeof(sysib), 1); } else { cc = 3; } break; } case STSI_LEVEL_CURRENT: env->regs[0] = STSI_LEVEL_3; break; default: cc = 3; break; } return cc; }
void nvme_dma_mem_write(target_phys_addr_t addr, uint8_t *buf, int len) { cpu_physical_memory_rw(addr, buf, len, 1); }
/* PC hardware initialisation */ static void s390_init(ram_addr_t ram_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { CPUState *env = NULL; ram_addr_t ram_addr; ram_addr_t kernel_size = 0; ram_addr_t initrd_offset; ram_addr_t initrd_size = 0; int i; /* XXX we only work on KVM for now */ if (!kvm_enabled()) { fprintf(stderr, "The S390 target only works with KVM enabled\n"); exit(1); } /* get a BUS */ s390_bus = s390_virtio_bus_init(&ram_size); /* allocate RAM */ ram_addr = qemu_ram_alloc(NULL, "s390.ram", ram_size); cpu_register_physical_memory(0, ram_size, ram_addr); /* init CPUs */ if (cpu_model == NULL) { cpu_model = "host"; } ipi_states = qemu_malloc(sizeof(CPUState *) * smp_cpus); for (i = 0; i < smp_cpus; i++) { CPUState *tmp_env; tmp_env = cpu_init(cpu_model); if (!env) { env = tmp_env; } ipi_states[i] = tmp_env; tmp_env->halted = 1; tmp_env->exception_index = EXCP_HLT; } env->halted = 0; env->exception_index = 0; if (kernel_filename) { kernel_size = load_image(kernel_filename, qemu_get_ram_ptr(0)); if (lduw_phys(KERN_IMAGE_START) != 0x0dd0) { fprintf(stderr, "Specified image is not an s390 boot image\n"); exit(1); } env->psw.addr = KERN_IMAGE_START; env->psw.mask = 0x0000000180000000ULL; } else { ram_addr_t bios_size = 0; char *bios_filename; /* Load zipl bootloader */ if (bios_name == NULL) { bios_name = ZIPL_FILENAME; } bios_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); bios_size = load_image(bios_filename, qemu_get_ram_ptr(ZIPL_LOAD_ADDR)); qemu_free(bios_filename); if ((long)bios_size < 0) { hw_error("could not load bootloader '%s'\n", bios_name); } if (bios_size > 4096) { hw_error("stage1 bootloader is > 4k\n"); } env->psw.addr = ZIPL_START; env->psw.mask = 0x0000000180000000ULL; } if (initrd_filename) { initrd_offset = INITRD_START; while (kernel_size + 0x100000 > initrd_offset) { initrd_offset += 0x100000; } initrd_size = load_image(initrd_filename, qemu_get_ram_ptr(initrd_offset)); stq_phys(INITRD_PARM_START, initrd_offset); stq_phys(INITRD_PARM_SIZE, initrd_size); } if (kernel_cmdline) { cpu_physical_memory_rw(KERN_PARM_AREA, (uint8_t *)kernel_cmdline, strlen(kernel_cmdline), 1); } /* Create VirtIO network adapters */ for(i = 0; i < nb_nics; i++) { NICInfo *nd = &nd_table[i]; DeviceState *dev; if (!nd->model) { nd->model = qemu_strdup("virtio"); } if (strcmp(nd->model, "virtio")) { fprintf(stderr, "S390 only supports VirtIO nics\n"); exit(1); } dev = qdev_create((BusState *)s390_bus, "virtio-net-s390"); qdev_set_nic_properties(dev, nd); qdev_init_nofail(dev); } /* Create VirtIO disk drives */ for(i = 0; i < MAX_BLK_DEVS; i++) { DriveInfo *dinfo; DeviceState *dev; dinfo = drive_get(IF_IDE, 0, i); if (!dinfo) { continue; } dev = qdev_create((BusState *)s390_bus, "virtio-blk-s390"); qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv); qdev_init_nofail(dev); } }