/* Subroutine */ int csysvx_(char *fact, char *uplo, integer *n, integer * nrhs, complex *a, integer *lda, complex *af, integer *ldaf, integer * ipiv, complex *b, integer *ldb, complex *x, integer *ldx, real *rcond, real *ferr, real *berr, complex *work, integer *lwork, real *rwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, i__2; /* Local variables */ integer nb; extern logical lsame_(char *, char *); real anorm; extern doublereal slamch_(char *); logical nofact; extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern doublereal clansy_(char *, char *, integer *, complex *, integer *, real *); extern /* Subroutine */ int csycon_(char *, integer *, complex *, integer *, integer *, real *, real *, complex *, integer *), csyrfs_(char *, integer *, integer *, complex *, integer *, complex *, integer *, integer *, complex *, integer *, complex *, integer *, real *, real *, complex *, real *, integer *), csytrf_(char *, integer *, complex *, integer *, integer *, complex *, integer *, integer *); integer lwkopt; logical lquery; extern /* Subroutine */ int csytrs_(char *, integer *, integer *, complex *, integer *, integer *, complex *, integer *, integer *); /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CSYSVX uses the diagonal pivoting factorization to compute the */ /* solution to a complex system of linear equations A * X = B, */ /* where A is an N-by-N symmetric matrix and X and B are N-by-NRHS */ /* matrices. */ /* Error bounds on the solution and a condition estimate are also */ /* provided. */ /* Description */ /* =========== */ /* The following steps are performed: */ /* 1. If FACT = 'N', the diagonal pivoting method is used to factor A. */ /* The form of the factorization is */ /* A = U * D * U**T, if UPLO = 'U', or */ /* A = L * D * L**T, if UPLO = 'L', */ /* where U (or L) is a product of permutation and unit upper (lower) */ /* triangular matrices, and D is symmetric and block diagonal with */ /* 1-by-1 and 2-by-2 diagonal blocks. */ /* 2. If some D(i,i)=0, so that D is exactly singular, then the routine */ /* returns with INFO = i. Otherwise, the factored form of A is used */ /* to estimate the condition number of the matrix A. If the */ /* reciprocal of the condition number is less than machine precision, */ /* INFO = N+1 is returned as a warning, but the routine still goes on */ /* to solve for X and compute error bounds as described below. */ /* 3. The system of equations is solved for X using the factored form */ /* of A. */ /* 4. Iterative refinement is applied to improve the computed solution */ /* matrix and calculate error bounds and backward error estimates */ /* for it. */ /* Arguments */ /* ========= */ /* FACT (input) CHARACTER*1 */ /* Specifies whether or not the factored form of A has been */ /* supplied on entry. */ /* = 'F': On entry, AF and IPIV contain the factored form */ /* of A. A, AF and IPIV will not be modified. */ /* = 'N': The matrix A will be copied to AF and factored. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The number of linear equations, i.e., the order of the */ /* matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrices B and X. NRHS >= 0. */ /* A (input) COMPLEX array, dimension (LDA,N) */ /* The symmetric matrix A. If UPLO = 'U', the leading N-by-N */ /* upper triangular part of A contains the upper triangular part */ /* of the matrix A, and the strictly lower triangular part of A */ /* is not referenced. If UPLO = 'L', the leading N-by-N lower */ /* triangular part of A contains the lower triangular part of */ /* the matrix A, and the strictly upper triangular part of A is */ /* not referenced. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* AF (input or output) COMPLEX array, dimension (LDAF,N) */ /* If FACT = 'F', then AF is an input argument and on entry */ /* contains the block diagonal matrix D and the multipliers used */ /* to obtain the factor U or L from the factorization */ /* A = U*D*U**T or A = L*D*L**T as computed by CSYTRF. */ /* If FACT = 'N', then AF is an output argument and on exit */ /* returns the block diagonal matrix D and the multipliers used */ /* to obtain the factor U or L from the factorization */ /* A = U*D*U**T or A = L*D*L**T. */ /* LDAF (input) INTEGER */ /* The leading dimension of the array AF. LDAF >= max(1,N). */ /* IPIV (input or output) INTEGER array, dimension (N) */ /* If FACT = 'F', then IPIV is an input argument and on entry */ /* contains details of the interchanges and the block structure */ /* of D, as determined by CSYTRF. */ /* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */ /* interchanged and D(k,k) is a 1-by-1 diagonal block. */ /* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */ /* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */ /* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */ /* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */ /* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */ /* If FACT = 'N', then IPIV is an output argument and on exit */ /* contains details of the interchanges and the block structure */ /* of D, as determined by CSYTRF. */ /* B (input) COMPLEX array, dimension (LDB,NRHS) */ /* The N-by-NRHS right hand side matrix B. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* X (output) COMPLEX array, dimension (LDX,NRHS) */ /* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* RCOND (output) REAL */ /* The estimate of the reciprocal condition number of the matrix */ /* A. If RCOND is less than the machine precision (in */ /* particular, if RCOND = 0), the matrix is singular to working */ /* precision. This condition is indicated by a return code of */ /* INFO > 0. */ /* FERR (output) REAL array, dimension (NRHS) */ /* The estimated forward error bound for each solution vector */ /* X(j) (the j-th column of the solution matrix X). */ /* If XTRUE is the true solution corresponding to X(j), FERR(j) */ /* is an estimated upper bound for the magnitude of the largest */ /* element in (X(j) - XTRUE) divided by the magnitude of the */ /* largest element in X(j). The estimate is as reliable as */ /* the estimate for RCOND, and is almost always a slight */ /* overestimate of the true error. */ /* BERR (output) REAL array, dimension (NRHS) */ /* The componentwise relative backward error of each solution */ /* vector X(j) (i.e., the smallest relative change in */ /* any element of A or B that makes X(j) an exact solution). */ /* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The length of WORK. LWORK >= max(1,2*N), and for best */ /* performance, when FACT = 'N', LWORK >= max(1,2*N,N*NB), where */ /* NB is the optimal blocksize for CSYTRF. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* RWORK (workspace) REAL array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, and i is */ /* <= N: D(i,i) is exactly zero. The factorization */ /* has been completed but the factor D is exactly */ /* singular, so the solution and error bounds could */ /* not be computed. RCOND = 0 is returned. */ /* = N+1: D is nonsingular, but RCOND is less than machine */ /* precision, meaning that the matrix is singular */ /* to working precision. Nevertheless, the */ /* solution and error bounds are computed because */ /* there are a number of situations where the */ /* computed solution can be more accurate than the */ /* value of RCOND would suggest. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; af_dim1 = *ldaf; af_offset = 1 + af_dim1; af -= af_offset; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --ferr; --berr; --work; --rwork; /* Function Body */ *info = 0; nofact = lsame_(fact, "N"); lquery = *lwork == -1; if (! nofact && ! lsame_(fact, "F")) { *info = -1; } else if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*nrhs < 0) { *info = -4; } else if (*lda < max(1,*n)) { *info = -6; } else if (*ldaf < max(1,*n)) { *info = -8; } else if (*ldb < max(1,*n)) { *info = -11; } else if (*ldx < max(1,*n)) { *info = -13; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = 1, i__2 = *n << 1; if (*lwork < max(i__1,i__2) && ! lquery) { *info = -18; } } if (*info == 0) { /* Computing MAX */ i__1 = 1, i__2 = *n << 1; lwkopt = max(i__1,i__2); if (nofact) { nb = ilaenv_(&c__1, "CSYTRF", uplo, n, &c_n1, &c_n1, &c_n1); /* Computing MAX */ i__1 = lwkopt, i__2 = *n * nb; lwkopt = max(i__1,i__2); } work[1].r = (real) lwkopt, work[1].i = 0.f; } if (*info != 0) { i__1 = -(*info); xerbla_("CSYSVX", &i__1); return 0; } else if (lquery) { return 0; } if (nofact) { /* Compute the factorization A = U*D*U' or A = L*D*L'. */ clacpy_(uplo, n, n, &a[a_offset], lda, &af[af_offset], ldaf); csytrf_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &work[1], lwork, info); /* Return if INFO is non-zero. */ if (*info > 0) { *rcond = 0.f; return 0; } } /* Compute the norm of the matrix A. */ anorm = clansy_("I", uplo, n, &a[a_offset], lda, &rwork[1]); /* Compute the reciprocal of the condition number of A. */ csycon_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &anorm, rcond, &work[1], info); /* Compute the solution vectors X. */ clacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx); csytrs_(uplo, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx, info); /* Use iterative refinement to improve the computed solutions and */ /* compute error bounds and backward error estimates for them. */ csyrfs_(uplo, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &ipiv[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1] , &rwork[1], info); /* Set INFO = N+1 if the matrix is singular to working precision. */ if (*rcond < slamch_("Epsilon")) { *info = *n + 1; } work[1].r = (real) lwkopt, work[1].i = 0.f; return 0; /* End of CSYSVX */ } /* csysvx_ */
/* Subroutine */ int cdrvsy_(logical *dotype, integer *nn, integer *nval, integer *nrhs, real *thresh, logical *tsterr, integer *nmax, complex * a, complex *afac, complex *ainv, complex *b, complex *x, complex * xact, complex *work, real *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; static char facts[1*2] = "F" "N"; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002, UPLO='\002,a1,\002', N =\002,i5" ",\002, type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)"; static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', UPLO='\002,a" "1,\002', N =\002,i5,\002, type \002,i2,\002, test \002,i2,\002, " "ratio =\002,g12.5)"; /* System generated locals */ address a__1[2]; integer i__1, i__2, i__3, i__4, i__5, i__6[2]; char ch__1[2]; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ static char fact[1]; static integer ioff, mode, imat, info; static char path[3], dist[1], uplo[1], type__[1]; static integer nrun, i__, j, k, n, ifact; extern /* Subroutine */ int cget04_(integer *, integer *, complex *, integer *, complex *, integer *, real *, real *); static integer nfail, iseed[4], nbmin; static real rcond; static integer nimat; extern doublereal sget06_(real *, real *); extern /* Subroutine */ int cpot05_(char *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *, real *); static real anorm; extern /* Subroutine */ int csyt01_(char *, integer *, complex *, integer *, complex *, integer *, integer *, complex *, integer *, real *, real *), csyt02_(char *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *); static integer iuplo, izero, i1, i2, k1, lwork, nerrs; static logical zerot; extern /* Subroutine */ int csysv_(char *, integer *, integer *, complex * , integer *, integer *, complex *, integer *, complex *, integer * , integer *); static char xtype[1]; extern /* Subroutine */ int clatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, real *, integer *, real *, char * ), aladhd_(integer *, char *); static integer nb, in, kl; extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); static integer ku, nt; static real rcondc; extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), clarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), alasvm_(char *, integer *, integer *, integer *, integer *); static real cndnum; extern /* Subroutine */ int clatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer * , char *, complex *, integer *, complex *, integer *); static real ainvnm; extern doublereal clansy_(char *, char *, integer *, complex *, integer *, real *); extern /* Subroutine */ int xlaenv_(integer *, integer *), clatsy_(char *, integer *, complex *, integer *, integer *), cerrvx_( char *, integer *), csytrf_(char *, integer *, complex *, integer *, integer *, complex *, integer *, integer *), csytri_(char *, integer *, complex *, integer *, integer *, complex *, integer *); static real result[6]; extern /* Subroutine */ int csysvx_(char *, char *, integer *, integer *, complex *, integer *, complex *, integer *, integer *, complex *, integer *, complex *, integer *, real *, real *, real *, complex * , integer *, real *, integer *); static integer lda; /* Fortran I/O blocks */ static cilist io___42 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___45 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= CDRVSY tests the driver routines CSYSV and -SVX. Arguments ========= DOTYPE (input) LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix dimension N. NRHS (input) INTEGER The number of right hand side vectors to be generated for each linear system. THRESH (input) REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. TSTERR (input) LOGICAL Flag that indicates whether error exits are to be tested. NMAX (input) INTEGER The maximum value permitted for N, used in dimensioning the work arrays. A (workspace) COMPLEX array, dimension (NMAX*NMAX) AFAC (workspace) COMPLEX array, dimension (NMAX*NMAX) AINV (workspace) COMPLEX array, dimension (NMAX*NMAX) B (workspace) COMPLEX array, dimension (NMAX*NRHS) X (workspace) COMPLEX array, dimension (NMAX*NRHS) XACT (workspace) COMPLEX array, dimension (NMAX*NRHS) WORK (workspace) COMPLEX array, dimension (NMAX*max(2,NRHS)) RWORK (workspace) REAL array, dimension (NMAX+2*NRHS) IWORK (workspace) INTEGER array, dimension (NMAX) NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --ainv; --afac; --a; --nval; --dotype; /* Function Body Initialize constants and the random number seed. */ s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "SY", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Computing MAX */ i__1 = *nmax << 1, i__2 = *nmax * *nrhs; lwork = max(i__1,i__2); /* Test the error exits */ if (*tsterr) { cerrvx_(path, nout); } infoc_1.infot = 0; /* Set the block size and minimum block size for testing. */ nb = 1; nbmin = 2; xlaenv_(&c__1, &nb); xlaenv_(&c__2, &nbmin); /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); *(unsigned char *)xtype = 'N'; nimat = 11; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L170; } /* Skip types 3, 4, 5, or 6 if the matrix size is too small. */ zerot = imat >= 3 && imat <= 6; if (zerot && n < imat - 2) { goto L170; } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; if (imat != 11) { /* Set up parameters with CLATB4 and generate a test matrix with CLATMS. */ clatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, & mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "CLATMS", (ftnlen)6, (ftnlen)6); clatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, uplo, &a[1], &lda, & work[1], &info); /* Check error code from CLATMS. */ if (info != 0) { alaerh_(path, "CLATMS", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L160; } /* For types 3-6, zero one or more rows and columns of the matrix to test that INFO is returned correctly. */ if (zerot) { if (imat == 3) { izero = 1; } else if (imat == 4) { izero = n; } else { izero = n / 2 + 1; } if (imat < 6) { /* Set row and column IZERO to zero. */ if (iuplo == 1) { ioff = (izero - 1) * lda; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0.f, a[i__4].i = 0.f; /* L20: */ } ioff += izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0.f, a[i__4].i = 0.f; ioff += lda; /* L30: */ } } else { ioff = izero; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0.f, a[i__4].i = 0.f; ioff += lda; /* L40: */ } ioff -= izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0.f, a[i__4].i = 0.f; /* L50: */ } } } else { if (iuplo == 1) { /* Set the first IZERO rows to zero. */ ioff = 0; i__3 = n; for (j = 1; j <= i__3; ++j) { i2 = min(j,izero); i__4 = i2; for (i__ = 1; i__ <= i__4; ++i__) { i__5 = ioff + i__; a[i__5].r = 0.f, a[i__5].i = 0.f; /* L60: */ } ioff += lda; /* L70: */ } } else { /* Set the last IZERO rows to zero. */ ioff = 0; i__3 = n; for (j = 1; j <= i__3; ++j) { i1 = max(j,izero); i__4 = n; for (i__ = i1; i__ <= i__4; ++i__) { i__5 = ioff + i__; a[i__5].r = 0.f, a[i__5].i = 0.f; /* L80: */ } ioff += lda; /* L90: */ } } } } else { izero = 0; } } else { /* IMAT = NTYPES: Use a special block diagonal matrix to test alternate code for the 2-by-2 blocks. */ clatsy_(uplo, &n, &a[1], &lda, iseed); } for (ifact = 1; ifact <= 2; ++ifact) { /* Do first for FACT = 'F', then for other values. */ *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 1]; /* Compute the condition number for comparison with the value returned by CSYSVX. */ if (zerot) { if (ifact == 1) { goto L150; } rcondc = 0.f; } else if (ifact == 1) { /* Compute the 1-norm of A. */ anorm = clansy_("1", uplo, &n, &a[1], &lda, &rwork[1]); /* Factor the matrix A. */ clacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda); csytrf_(uplo, &n, &afac[1], &lda, &iwork[1], &work[1], &lwork, &info); /* Compute inv(A) and take its norm. */ clacpy_(uplo, &n, &n, &afac[1], &lda, &ainv[1], &lda); csytri_(uplo, &n, &ainv[1], &lda, &iwork[1], &work[1], &info); ainvnm = clansy_("1", uplo, &n, &ainv[1], &lda, & rwork[1]); /* Compute the 1-norm condition number of A. */ if (anorm <= 0.f || ainvnm <= 0.f) { rcondc = 1.f; } else { rcondc = 1.f / anorm / ainvnm; } } /* Form an exact solution and set the right hand side. */ s_copy(srnamc_1.srnamt, "CLARHS", (ftnlen)6, (ftnlen)6); clarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, nrhs, & a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, & info); *(unsigned char *)xtype = 'C'; /* --- Test CSYSV --- */ if (ifact == 2) { clacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda); clacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda); /* Factor the matrix and solve the system using CSYSV. */ s_copy(srnamc_1.srnamt, "CSYSV ", (ftnlen)6, (ftnlen) 6); csysv_(uplo, &n, nrhs, &afac[1], &lda, &iwork[1], &x[ 1], &lda, &work[1], &lwork, &info); /* Adjust the expected value of INFO to account for pivoting. */ k = izero; if (k > 0) { L100: if (iwork[k] < 0) { if (iwork[k] != -k) { k = -iwork[k]; goto L100; } } else if (iwork[k] != k) { k = iwork[k]; goto L100; } } /* Check error code from CSYSV . */ if (info != k) { alaerh_(path, "CSYSV ", &info, &k, uplo, &n, &n, & c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, nout); goto L120; } else if (info != 0) { goto L120; } /* Reconstruct matrix from factors and compute residual. */ csyt01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &iwork[ 1], &ainv[1], &lda, &rwork[1], result); /* Compute residual of the computed solution. */ clacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda); csyt02_(uplo, &n, nrhs, &a[1], &lda, &x[1], &lda, & work[1], &lda, &rwork[1], &result[1]); /* Check solution from generated exact solution. */ cget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); nt = 3; /* Print information about the tests that did not pass the threshold. */ i__3 = nt; for (k = 1; k <= i__3; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___42.ciunit = *nout; s_wsfe(&io___42); do_fio(&c__1, "CSYSV ", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(real)); e_wsfe(); ++nfail; } /* L110: */ } nrun += nt; L120: ; } /* --- Test CSYSVX --- */ if (ifact == 2) { claset_(uplo, &n, &n, &c_b49, &c_b49, &afac[1], &lda); } claset_("Full", &n, nrhs, &c_b49, &c_b49, &x[1], &lda); /* Solve the system and compute the condition number and error bounds using CSYSVX. */ s_copy(srnamc_1.srnamt, "CSYSVX", (ftnlen)6, (ftnlen)6); csysvx_(fact, uplo, &n, nrhs, &a[1], &lda, &afac[1], &lda, &iwork[1], &b[1], &lda, &x[1], &lda, &rcond, & rwork[1], &rwork[*nrhs + 1], &work[1], &lwork, & rwork[(*nrhs << 1) + 1], &info); /* Adjust the expected value of INFO to account for pivoting. */ k = izero; if (k > 0) { L130: if (iwork[k] < 0) { if (iwork[k] != -k) { k = -iwork[k]; goto L130; } } else if (iwork[k] != k) { k = iwork[k]; goto L130; } } /* Check the error code from CSYSVX. */ if (info != k) { /* Writing concatenation */ i__6[0] = 1, a__1[0] = fact; i__6[1] = 1, a__1[1] = uplo; s_cat(ch__1, a__1, i__6, &c__2, (ftnlen)2); alaerh_(path, "CSYSVX", &info, &k, ch__1, &n, &n, & c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, nout); goto L150; } if (info == 0) { if (ifact >= 2) { /* Reconstruct matrix from factors and compute residual. */ csyt01_(uplo, &n, &a[1], &lda, &afac[1], &lda, & iwork[1], &ainv[1], &lda, &rwork[(*nrhs << 1) + 1], result); k1 = 1; } else { k1 = 2; } /* Compute residual of the computed solution. */ clacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda); csyt02_(uplo, &n, nrhs, &a[1], &lda, &x[1], &lda, & work[1], &lda, &rwork[(*nrhs << 1) + 1], & result[1]); /* Check solution from generated exact solution. */ cget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); /* Check the error bounds from iterative refinement. */ cpot05_(uplo, &n, nrhs, &a[1], &lda, &b[1], &lda, &x[ 1], &lda, &xact[1], &lda, &rwork[1], &rwork[* nrhs + 1], &result[3]); } else { k1 = 6; } /* Compare RCOND from CSYSVX with the computed value in RCONDC. */ result[5] = sget06_(&rcond, &rcondc); /* Print information about the tests that did not pass the threshold. */ for (k = k1; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___45.ciunit = *nout; s_wsfe(&io___45); do_fio(&c__1, "CSYSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(real)); e_wsfe(); ++nfail; } /* L140: */ } nrun = nrun + 7 - k1; L150: ; } L160: ; } L170: ; } /* L180: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of CDRVSY */ } /* cdrvsy_ */
/* Subroutine */ int csysvx_(char *fact, char *uplo, integer *n, integer * nrhs, complex *a, integer *lda, complex *af, integer *ldaf, integer * ipiv, complex *b, integer *ldb, complex *x, integer *ldx, real *rcond, real *ferr, real *berr, complex *work, integer *lwork, real *rwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, i__2; /* Local variables */ integer nb; extern logical lsame_(char *, char *); real anorm; extern real slamch_(char *); logical nofact; extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern real clansy_(char *, char *, integer *, complex *, integer *, real *); extern /* Subroutine */ int csycon_(char *, integer *, complex *, integer *, integer *, real *, real *, complex *, integer *), csyrfs_(char *, integer *, integer *, complex *, integer *, complex *, integer *, integer *, complex *, integer *, complex *, integer *, real *, real *, complex *, real *, integer *), csytrf_(char *, integer *, complex *, integer *, integer *, complex *, integer *, integer *); integer lwkopt; logical lquery; extern /* Subroutine */ int csytrs_(char *, integer *, integer *, complex *, integer *, integer *, complex *, integer *, integer *); /* -- LAPACK driver routine (version 3.4.1) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* April 2012 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; af_dim1 = *ldaf; af_offset = 1 + af_dim1; af -= af_offset; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --ferr; --berr; --work; --rwork; /* Function Body */ *info = 0; nofact = lsame_(fact, "N"); lquery = *lwork == -1; if (! nofact && ! lsame_(fact, "F")) { *info = -1; } else if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*nrhs < 0) { *info = -4; } else if (*lda < max(1,*n)) { *info = -6; } else if (*ldaf < max(1,*n)) { *info = -8; } else if (*ldb < max(1,*n)) { *info = -11; } else if (*ldx < max(1,*n)) { *info = -13; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = 1; i__2 = *n << 1; // , expr subst if (*lwork < max(i__1,i__2) && ! lquery) { *info = -18; } } if (*info == 0) { /* Computing MAX */ i__1 = 1; i__2 = *n << 1; // , expr subst lwkopt = max(i__1,i__2); if (nofact) { nb = ilaenv_(&c__1, "CSYTRF", uplo, n, &c_n1, &c_n1, &c_n1); /* Computing MAX */ i__1 = lwkopt; i__2 = *n * nb; // , expr subst lwkopt = max(i__1,i__2); } work[1].r = (real) lwkopt; work[1].i = 0.f; // , expr subst } if (*info != 0) { i__1 = -(*info); xerbla_("CSYSVX", &i__1); return 0; } else if (lquery) { return 0; } if (nofact) { /* Compute the factorization A = U*D*U**T or A = L*D*L**T. */ clacpy_(uplo, n, n, &a[a_offset], lda, &af[af_offset], ldaf); csytrf_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &work[1], lwork, info); /* Return if INFO is non-zero. */ if (*info > 0) { *rcond = 0.f; return 0; } } /* Compute the norm of the matrix A. */ anorm = clansy_("I", uplo, n, &a[a_offset], lda, &rwork[1]); /* Compute the reciprocal of the condition number of A. */ csycon_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &anorm, rcond, &work[1], info); /* Compute the solution vectors X. */ clacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx); csytrs_(uplo, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx, info); /* Use iterative refinement to improve the computed solutions and */ /* compute error bounds and backward error estimates for them. */ csyrfs_(uplo, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &ipiv[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1] , &rwork[1], info); /* Set INFO = N+1 if the matrix is singular to working precision. */ if (*rcond < slamch_("Epsilon")) { *info = *n + 1; } work[1].r = (real) lwkopt; work[1].i = 0.f; // , expr subst return 0; /* End of CSYSVX */ }
/* Subroutine */ int csysv_(char *uplo, integer *n, integer *nrhs, complex *a, integer *lda, integer *ipiv, complex *b, integer *ldb, complex *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1; /* Local variables */ extern logical lsame_(char *, char *); extern /* Subroutine */ int xerbla_(char *, integer *), csytrf_( char *, integer *, complex *, integer *, integer *, complex *, integer *, integer *); integer lwkopt; logical lquery; extern /* Subroutine */ int csytrs_(char *, integer *, integer *, complex *, integer *, integer *, complex *, integer *, integer *), csytrs2_(char *, integer *, integer *, complex *, integer *, integer *, complex *, integer *, complex *, integer *); /* -- LAPACK driver routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --work; /* Function Body */ *info = 0; lquery = *lwork == -1; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -8; } else if (*lwork < 1 && ! lquery) { *info = -10; } if (*info == 0) { if (*n == 0) { lwkopt = 1; } else { csytrf_(uplo, n, &a[a_offset], lda, &ipiv[1], &work[1], &c_n1, info); lwkopt = work[1].r; } work[1].r = (real) lwkopt; work[1].i = 0.f; // , expr subst } if (*info != 0) { i__1 = -(*info); xerbla_("CSYSV ", &i__1); return 0; } else if (lquery) { return 0; } /* Compute the factorization A = U*D*U**T or A = L*D*L**T. */ csytrf_(uplo, n, &a[a_offset], lda, &ipiv[1], &work[1], lwork, info); if (*info == 0) { /* Solve the system A*X = B, overwriting B with X. */ if (*lwork < *n) { /* Solve with TRS ( Use Level BLAS 2) */ csytrs_(uplo, n, nrhs, &a[a_offset], lda, &ipiv[1], &b[b_offset], ldb, info); } else { /* Solve with TRS2 ( Use Level BLAS 3) */ csytrs2_(uplo, n, nrhs, &a[a_offset], lda, &ipiv[1], &b[b_offset], ldb, &work[1], info); } } work[1].r = (real) lwkopt; work[1].i = 0.f; // , expr subst return 0; /* End of CSYSV */ }
/* Subroutine */ int cchksy_(logical *dotype, integer *nn, integer *nval, integer *nnb, integer *nbval, integer *nns, integer *nsval, real * thresh, logical *tsterr, integer *nmax, complex *a, complex *afac, complex *ainv, complex *b, complex *x, complex *xact, complex *work, real *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; /* Format strings */ static char fmt_9999[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, " "NB =\002,i4,\002, type \002,i2,\002, test \002,i2,\002, ratio " "=\002,g12.5)"; static char fmt_9998[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, " "NRHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g" "12.5)"; static char fmt_9997[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002" ",\002,10x,\002 type \002,i2,\002, test(\002,i2,\002) =\002,g12.5)" ; /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, j, k, n, i1, i2, nb, in, kl, ku, nt, lda, inb, ioff, mode, imat, info; char path[3], dist[1]; integer irhs, nrhs; char uplo[1], type__[1]; integer nrun; extern /* Subroutine */ int alahd_(integer *, char *), cget04_( integer *, integer *, complex *, integer *, complex *, integer *, real *, real *); integer nfail, iseed[4]; real rcond; integer nimat; extern doublereal sget06_(real *, real *); extern /* Subroutine */ int cpot05_(char *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *, real *); real anorm; extern /* Subroutine */ int csyt01_(char *, integer *, complex *, integer *, complex *, integer *, integer *, complex *, integer *, real *, real *), csyt02_(char *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *), csyt03_(char *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *, real * ); integer iuplo, izero, nerrs, lwork; logical zerot; char xtype[1]; extern /* Subroutine */ int clatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, real *, integer *, real *, char * ), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); real rcondc; extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), clarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *, integer *), alasum_(char *, integer *, integer *, integer *, integer *); real cndnum; extern /* Subroutine */ int clatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer * , char *, complex *, integer *, complex *, integer *); extern doublereal clansy_(char *, char *, integer *, complex *, integer *, real *); logical trfcon; extern /* Subroutine */ int csycon_(char *, integer *, complex *, integer *, integer *, real *, real *, complex *, integer *), clatsy_(char *, integer *, complex *, integer *, integer *), xlaenv_(integer *, integer *), cerrsy_(char *, integer *), csyrfs_(char *, integer *, integer *, complex *, integer *, complex *, integer *, integer *, complex *, integer *, complex *, integer *, real *, real *, complex *, real *, integer * ), csytrf_(char *, integer *, complex *, integer *, integer *, complex *, integer *, integer *), csytri_(char *, integer *, complex *, integer *, integer *, complex *, integer *); real result[8]; extern /* Subroutine */ int csytrs_(char *, integer *, integer *, complex *, integer *, integer *, complex *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___39 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___42 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___44 = { 0, 0, 0, fmt_9997, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CCHKSY tests CSYTRF, -TRI, -TRS, -RFS, and -CON. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* NNB (input) INTEGER */ /* The number of values of NB contained in the vector NBVAL. */ /* NBVAL (input) INTEGER array, dimension (NBVAL) */ /* The values of the blocksize NB. */ /* NNS (input) INTEGER */ /* The number of values of NRHS contained in the vector NSVAL. */ /* NSVAL (input) INTEGER array, dimension (NNS) */ /* The values of the number of right hand sides NRHS. */ /* THRESH (input) REAL */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for N, used in dimensioning the */ /* work arrays. */ /* A (workspace) COMPLEX array, dimension (NMAX*NMAX) */ /* AFAC (workspace) COMPLEX array, dimension (NMAX*NMAX) */ /* AINV (workspace) COMPLEX array, dimension (NMAX*NMAX) */ /* B (workspace) COMPLEX array, dimension (NMAX*NSMAX) */ /* where NSMAX is the largest entry in NSVAL. */ /* X (workspace) COMPLEX array, dimension (NMAX*NSMAX) */ /* XACT (workspace) COMPLEX array, dimension (NMAX*NSMAX) */ /* WORK (workspace) COMPLEX array, dimension */ /* (NMAX*max(2,NSMAX)) */ /* RWORK (workspace) REAL array, */ /* dimension (NMAX+2*NSMAX) */ /* IWORK (workspace) INTEGER array, dimension (NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --ainv; --afac; --a; --nsval; --nbval; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "SY", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { cerrsy_(path, nout); } infoc_1.infot = 0; /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); *(unsigned char *)xtype = 'N'; nimat = 11; if (n <= 0) { nimat = 1; } izero = 0; i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L170; } /* Skip types 3, 4, 5, or 6 if the matrix size is too small. */ zerot = imat >= 3 && imat <= 6; if (zerot && n < imat - 2) { goto L170; } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; if (imat != 11) { /* Set up parameters with CLATB4 and generate a test */ /* matrix with CLATMS. */ clatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, & mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "CLATMS", (ftnlen)6, (ftnlen)6); clatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, "N", &a[1], &lda, &work[ 1], &info); /* Check error code from CLATMS. */ if (info != 0) { alaerh_(path, "CLATMS", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L160; } /* For types 3-6, zero one or more rows and columns of */ /* the matrix to test that INFO is returned correctly. */ if (zerot) { if (imat == 3) { izero = 1; } else if (imat == 4) { izero = n; } else { izero = n / 2 + 1; } if (imat < 6) { /* Set row and column IZERO to zero. */ if (iuplo == 1) { ioff = (izero - 1) * lda; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0.f, a[i__4].i = 0.f; /* L20: */ } ioff += izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0.f, a[i__4].i = 0.f; ioff += lda; /* L30: */ } } else { ioff = izero; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0.f, a[i__4].i = 0.f; ioff += lda; /* L40: */ } ioff -= izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0.f, a[i__4].i = 0.f; /* L50: */ } } } else { if (iuplo == 1) { /* Set the first IZERO rows to zero. */ ioff = 0; i__3 = n; for (j = 1; j <= i__3; ++j) { i2 = min(j,izero); i__4 = i2; for (i__ = 1; i__ <= i__4; ++i__) { i__5 = ioff + i__; a[i__5].r = 0.f, a[i__5].i = 0.f; /* L60: */ } ioff += lda; /* L70: */ } } else { /* Set the last IZERO rows to zero. */ ioff = 0; i__3 = n; for (j = 1; j <= i__3; ++j) { i1 = max(j,izero); i__4 = n; for (i__ = i1; i__ <= i__4; ++i__) { i__5 = ioff + i__; a[i__5].r = 0.f, a[i__5].i = 0.f; /* L80: */ } ioff += lda; /* L90: */ } } } } else { izero = 0; } } else { /* Use a special block diagonal matrix to test alternate */ /* code for the 2 x 2 blocks. */ clatsy_(uplo, &n, &a[1], &lda, iseed); } /* Do for each value of NB in NBVAL */ i__3 = *nnb; for (inb = 1; inb <= i__3; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); /* Compute the L*D*L' or U*D*U' factorization of the */ /* matrix. */ clacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda); lwork = max(2,nb) * lda; s_copy(srnamc_1.srnamt, "CSYTRF", (ftnlen)6, (ftnlen)6); csytrf_(uplo, &n, &afac[1], &lda, &iwork[1], &ainv[1], & lwork, &info); /* Adjust the expected value of INFO to account for */ /* pivoting. */ k = izero; if (k > 0) { L100: if (iwork[k] < 0) { if (iwork[k] != -k) { k = -iwork[k]; goto L100; } } else if (iwork[k] != k) { k = iwork[k]; goto L100; } } /* Check error code from CSYTRF. */ if (info != k) { alaerh_(path, "CSYTRF", &info, &k, uplo, &n, &n, & c_n1, &c_n1, &nb, &imat, &nfail, &nerrs, nout); } if (info != 0) { trfcon = TRUE_; } else { trfcon = FALSE_; } /* + TEST 1 */ /* Reconstruct matrix from factors and compute residual. */ csyt01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &iwork[1], &ainv[1], &lda, &rwork[1], result); nt = 1; /* + TEST 2 */ /* Form the inverse and compute the residual. */ if (inb == 1 && ! trfcon) { clacpy_(uplo, &n, &n, &afac[1], &lda, &ainv[1], &lda); s_copy(srnamc_1.srnamt, "CSYTRI", (ftnlen)6, (ftnlen) 6); csytri_(uplo, &n, &ainv[1], &lda, &iwork[1], &work[1], &info); /* Check error code from CSYTRI. */ if (info != 0) { alaerh_(path, "CSYTRI", &info, &c__0, uplo, &n, & n, &c_n1, &c_n1, &c_n1, &imat, &nfail, & nerrs, nout); } csyt03_(uplo, &n, &a[1], &lda, &ainv[1], &lda, &work[ 1], &lda, &rwork[1], &rcondc, &result[1]); nt = 2; } /* Print information about the tests that did not pass */ /* the threshold. */ i__4 = nt; for (k = 1; k <= i__4; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___39.ciunit = *nout; s_wsfe(&io___39); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&nb, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(real)); e_wsfe(); ++nfail; } /* L110: */ } nrun += nt; /* Skip the other tests if this is not the first block */ /* size. */ if (inb > 1) { goto L150; } /* Do only the condition estimate if INFO is not 0. */ if (trfcon) { rcondc = 0.f; goto L140; } i__4 = *nns; for (irhs = 1; irhs <= i__4; ++irhs) { nrhs = nsval[irhs]; /* + TEST 3 */ /* Solve and compute residual for A * X = B. */ s_copy(srnamc_1.srnamt, "CLARHS", (ftnlen)6, (ftnlen) 6); clarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, & nrhs, &a[1], &lda, &xact[1], &lda, &b[1], & lda, iseed, &info); clacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "CSYTRS", (ftnlen)6, (ftnlen) 6); csytrs_(uplo, &n, &nrhs, &afac[1], &lda, &iwork[1], & x[1], &lda, &info); /* Check error code from CSYTRS. */ if (info != 0) { alaerh_(path, "CSYTRS", &info, &c__0, uplo, &n, & n, &c_n1, &c_n1, &nrhs, &imat, &nfail, & nerrs, nout); } clacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], & lda); csyt02_(uplo, &n, &nrhs, &a[1], &lda, &x[1], &lda, & work[1], &lda, &rwork[1], &result[2]); /* + TEST 4 */ /* Check solution from generated exact solution. */ cget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[3]); /* + TESTS 5, 6, and 7 */ /* Use iterative refinement to improve the solution. */ s_copy(srnamc_1.srnamt, "CSYRFS", (ftnlen)6, (ftnlen) 6); csyrfs_(uplo, &n, &nrhs, &a[1], &lda, &afac[1], &lda, &iwork[1], &b[1], &lda, &x[1], &lda, &rwork[1] , &rwork[nrhs + 1], &work[1], &rwork[(nrhs << 1) + 1], &info); /* Check error code from CSYRFS. */ if (info != 0) { alaerh_(path, "CSYRFS", &info, &c__0, uplo, &n, & n, &c_n1, &c_n1, &nrhs, &imat, &nfail, & nerrs, nout); } cget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[4]); cpot05_(uplo, &n, &nrhs, &a[1], &lda, &b[1], &lda, &x[ 1], &lda, &xact[1], &lda, &rwork[1], &rwork[ nrhs + 1], &result[5]); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = 3; k <= 7; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___42.ciunit = *nout; s_wsfe(&io___42); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(real)); e_wsfe(); ++nfail; } /* L120: */ } nrun += 5; /* L130: */ } /* + TEST 8 */ /* Get an estimate of RCOND = 1/CNDNUM. */ L140: anorm = clansy_("1", uplo, &n, &a[1], &lda, &rwork[1]); s_copy(srnamc_1.srnamt, "CSYCON", (ftnlen)6, (ftnlen)6); csycon_(uplo, &n, &afac[1], &lda, &iwork[1], &anorm, & rcond, &work[1], &info); /* Check error code from CSYCON. */ if (info != 0) { alaerh_(path, "CSYCON", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } result[7] = sget06_(&rcond, &rcondc); /* Print information about the tests that did not pass */ /* the threshold. */ if (result[7] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___44.ciunit = *nout; s_wsfe(&io___44); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof(real) ); e_wsfe(); ++nfail; } ++nrun; L150: ; } L160: ; } L170: ; } /* L180: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of CCHKSY */ } /* cchksy_ */