示例#1
0
void _cldClipBoxToCylinder(sCylinderBoxData& cData ) 
{
	dVector3 vCylinderCirclePos, vCylinderCircleNormal_Rel;
	// check which circle from cylinder we take for clipping
	if ( dVector3Dot(cData.vCylinderAxis, cData.vNormal) > REAL(0.0) ) 
	{
		// get top circle
		vCylinderCirclePos[0] = cData.vCylinderPos[0] + cData.vCylinderAxis[0]*(cData.fCylinderSize*REAL(0.5));
		vCylinderCirclePos[1] = cData.vCylinderPos[1] + cData.vCylinderAxis[1]*(cData.fCylinderSize*REAL(0.5));
		vCylinderCirclePos[2] = cData.vCylinderPos[2] + cData.vCylinderAxis[2]*(cData.fCylinderSize*REAL(0.5));

		vCylinderCircleNormal_Rel[0] = REAL(0.0);
		vCylinderCircleNormal_Rel[1] = REAL(0.0);
		vCylinderCircleNormal_Rel[2] = REAL(0.0);
		vCylinderCircleNormal_Rel[nCYLINDER_AXIS] = REAL(-1.0);
	}
	else 
	{
		// get bottom circle
		vCylinderCirclePos[0] = cData.vCylinderPos[0] - cData.vCylinderAxis[0]*(cData.fCylinderSize*REAL(0.5));
		vCylinderCirclePos[1] = cData.vCylinderPos[1] - cData.vCylinderAxis[1]*(cData.fCylinderSize*REAL(0.5));
		vCylinderCirclePos[2] = cData.vCylinderPos[2] - cData.vCylinderAxis[2]*(cData.fCylinderSize*REAL(0.5));

		vCylinderCircleNormal_Rel[0] = REAL(0.0);
		vCylinderCircleNormal_Rel[1] = REAL(0.0);
		vCylinderCircleNormal_Rel[2] = REAL(0.0);
		vCylinderCircleNormal_Rel[nCYLINDER_AXIS] = REAL(1.0);
	}

	// vNr is normal in Box frame, pointing from Cylinder to Box
	dVector3 vNr;
	dMatrix3 mBoxInv;

	// Find a way to use quaternion
	dMatrix3Inv(cData.mBoxRot,mBoxInv);
	dMultiplyMat3Vec3(mBoxInv,cData.vNormal,vNr);

	dVector3 vAbsNormal;

	vAbsNormal[0] = dFabs( vNr[0] );
	vAbsNormal[1] = dFabs( vNr[1] );
	vAbsNormal[2] = dFabs( vNr[2] );

	// find which face in box is closest to cylinder
	int iB0, iB1, iB2;

	// Different from Croteam's code
	if (vAbsNormal[1] > vAbsNormal[0]) 
	{
		// 1 > 0
		if (vAbsNormal[0]> vAbsNormal[2]) 
		{
			// 0 > 2 -> 1 > 0 >2
			iB0 = 1; iB1 = 0; iB2 = 2;
		} 
		else 
		{
			// 2 > 0-> Must compare 1 and 2
			if (vAbsNormal[1] > vAbsNormal[2])
			{
				// 1 > 2 -> 1 > 2 > 0
				iB0 = 1; iB1 = 2; iB2 = 0;
			}
			else
			{
				// 2 > 1 -> 2 > 1 > 0;
				iB0 = 2; iB1 = 1; iB2 = 0;
			}			
		}
	} 
	else 
	{
		// 0 > 1
		if (vAbsNormal[1] > vAbsNormal[2]) 
		{
			// 1 > 2 -> 0 > 1 > 2
			iB0 = 0; iB1 = 1; iB2 = 2;
		}
		else 
		{
			// 2 > 1 -> Must compare 0 and 2
			if (vAbsNormal[0] > vAbsNormal[2])
			{
				// 0 > 2 -> 0 > 2 > 1;
				iB0 = 0; iB1 = 2; iB2 = 1;
			}
			else
			{
				// 2 > 0 -> 2 > 0 > 1;
				iB0 = 2; iB1 = 0; iB2 = 1;
			}		
		}
	}

	dVector3 vCenter;
	// find center of box polygon
	dVector3 vTemp;
	if (vNr[iB0] > 0) 
	{
		dMat3GetCol(cData.mBoxRot,iB0,vTemp);
		vCenter[0] = cData.vBoxPos[0] - cData.vBoxHalfSize[iB0]*vTemp[0];
		vCenter[1] = cData.vBoxPos[1] - cData.vBoxHalfSize[iB0]*vTemp[1];
		vCenter[2] = cData.vBoxPos[2] - cData.vBoxHalfSize[iB0]*vTemp[2];
	}
	else 
	{
		dMat3GetCol(cData.mBoxRot,iB0,vTemp);
		vCenter[0] = cData.vBoxPos[0] + cData.vBoxHalfSize[iB0]*vTemp[0];
		vCenter[1] = cData.vBoxPos[1] + cData.vBoxHalfSize[iB0]*vTemp[1];
		vCenter[2] = cData.vBoxPos[2] + cData.vBoxHalfSize[iB0]*vTemp[2];
	}

	// find the vertices of box polygon
	dVector3 avPoints[4];
	dVector3 avTempArray1[MAX_CYLBOX_CLIP_POINTS];
	dVector3 avTempArray2[MAX_CYLBOX_CLIP_POINTS];

	int i=0;
	for(i=0; i<MAX_CYLBOX_CLIP_POINTS; i++) 
	{
		avTempArray1[i][0] = REAL(0.0);
		avTempArray1[i][1] = REAL(0.0);
		avTempArray1[i][2] = REAL(0.0);

		avTempArray2[i][0] = REAL(0.0);
		avTempArray2[i][1] = REAL(0.0);
		avTempArray2[i][2] = REAL(0.0);
	}

	dVector3 vAxis1, vAxis2;

	dMat3GetCol(cData.mBoxRot,iB1,vAxis1);
	dMat3GetCol(cData.mBoxRot,iB2,vAxis2);

	avPoints[0][0] = vCenter[0] + cData.vBoxHalfSize[iB1] * vAxis1[0] - cData.vBoxHalfSize[iB2] * vAxis2[0];
	avPoints[0][1] = vCenter[1] + cData.vBoxHalfSize[iB1] * vAxis1[1] - cData.vBoxHalfSize[iB2] * vAxis2[1];
	avPoints[0][2] = vCenter[2] + cData.vBoxHalfSize[iB1] * vAxis1[2] - cData.vBoxHalfSize[iB2] * vAxis2[2];

	avPoints[1][0] = vCenter[0] - cData.vBoxHalfSize[iB1] * vAxis1[0] - cData.vBoxHalfSize[iB2] * vAxis2[0];
	avPoints[1][1] = vCenter[1] - cData.vBoxHalfSize[iB1] * vAxis1[1] - cData.vBoxHalfSize[iB2] * vAxis2[1];
	avPoints[1][2] = vCenter[2] - cData.vBoxHalfSize[iB1] * vAxis1[2] - cData.vBoxHalfSize[iB2] * vAxis2[2];

	avPoints[2][0] = vCenter[0] - cData.vBoxHalfSize[iB1] * vAxis1[0] + cData.vBoxHalfSize[iB2] * vAxis2[0];
	avPoints[2][1] = vCenter[1] - cData.vBoxHalfSize[iB1] * vAxis1[1] + cData.vBoxHalfSize[iB2] * vAxis2[1];
	avPoints[2][2] = vCenter[2] - cData.vBoxHalfSize[iB1] * vAxis1[2] + cData.vBoxHalfSize[iB2] * vAxis2[2];

	avPoints[3][0] = vCenter[0] + cData.vBoxHalfSize[iB1] * vAxis1[0] + cData.vBoxHalfSize[iB2] * vAxis2[0];
	avPoints[3][1] = vCenter[1] + cData.vBoxHalfSize[iB1] * vAxis1[1] + cData.vBoxHalfSize[iB2] * vAxis2[1];
	avPoints[3][2] = vCenter[2] + cData.vBoxHalfSize[iB1] * vAxis1[2] + cData.vBoxHalfSize[iB2] * vAxis2[2];

	// transform box points to space of cylinder circle
	dMatrix3 mCylinderInv;
	dMatrix3Inv(cData.mCylinderRot,mCylinderInv);

	for(i=0; i<4; i++) 
	{
		dVector3Subtract(avPoints[i],vCylinderCirclePos,vTemp);
		dMultiplyMat3Vec3(mCylinderInv,vTemp,avPoints[i]);
	}

	int iTmpCounter1 = 0;
	int iTmpCounter2 = 0;
	dVector4 plPlane;

	// plane of cylinder that contains circle for intersection
	dConstructPlane(vCylinderCircleNormal_Rel,REAL(0.0),plPlane);
	dClipPolyToPlane(avPoints, 4, avTempArray1, iTmpCounter1, plPlane);


	// Body of base circle of Cylinder
	int nCircleSegment = 0;
	for (nCircleSegment = 0; nCircleSegment < nCYLINDER_SEGMENT; nCircleSegment++)
	{
		dConstructPlane(cData.avCylinderNormals[nCircleSegment],cData.fCylinderRadius,plPlane);

		if (0 == (nCircleSegment % 2))
		{
			dClipPolyToPlane( avTempArray1 , iTmpCounter1 , avTempArray2, iTmpCounter2, plPlane);
		}
		else
		{
			dClipPolyToPlane( avTempArray2, iTmpCounter2, avTempArray1 , iTmpCounter1 , plPlane );
		}

		dIASSERT( iTmpCounter1 >= 0 && iTmpCounter1 <= MAX_CYLBOX_CLIP_POINTS );
		dIASSERT( iTmpCounter2 >= 0 && iTmpCounter2 <= MAX_CYLBOX_CLIP_POINTS );
	}
	
	// back transform clipped points to absolute space
	dReal ftmpdot;	
	dReal fTempDepth;
	dVector3 vPoint;

	if (nCircleSegment %2)
	{
		for( i=0; i<iTmpCounter2; i++)
		{
			dMULTIPLY0_331(vPoint,cData.mCylinderRot,avTempArray2[i]);
			vPoint[0] += vCylinderCirclePos[0];
			vPoint[1] += vCylinderCirclePos[1];
			vPoint[2] += vCylinderCirclePos[2];

			dVector3Subtract(vPoint,cData.vCylinderPos,vTemp);
			ftmpdot	 = dVector3Dot(vTemp, cData.vNormal);
			fTempDepth = cData.fBestrc - ftmpdot;
			// Depth must be positive
			if (fTempDepth > REAL(0.0))
			{
				// generate contacts
				dContactGeom* Contact0 = SAFECONTACT(cData.iFlags, cData.gContact, cData.nContacts, cData.iSkip);
				Contact0->depth = fTempDepth;
				dVector3Copy(cData.vNormal,Contact0->normal);
				dVector3Copy(vPoint,Contact0->pos);
				Contact0->g1 = cData.gCylinder;
				Contact0->g2 = cData.gBox;
				dVector3Inv(Contact0->normal);
				cData.nContacts++;
			}
		}
	}
	else
	{
		for( i=0; i<iTmpCounter1; i++)
		{
			dMULTIPLY0_331(vPoint,cData.mCylinderRot,avTempArray1[i]);
			vPoint[0] += vCylinderCirclePos[0];
			vPoint[1] += vCylinderCirclePos[1];
			vPoint[2] += vCylinderCirclePos[2];

			dVector3Subtract(vPoint,cData.vCylinderPos,vTemp);
			ftmpdot	 = dVector3Dot(vTemp, cData.vNormal);
			fTempDepth = cData.fBestrc - ftmpdot;
			// Depth must be positive
			if (fTempDepth > REAL(0.0))
			{
				// generate contacts
				dContactGeom* Contact0 = SAFECONTACT(cData.iFlags, cData.gContact, cData.nContacts, cData.iSkip);
				Contact0->depth = fTempDepth;
				dVector3Copy(cData.vNormal,Contact0->normal);
				dVector3Copy(vPoint,Contact0->pos);
				Contact0->g1 = cData.gCylinder;
				Contact0->g2 = cData.gBox;
				dVector3Inv(Contact0->normal);
				cData.nContacts++;
			}
		}
	}
}
示例#2
0
// initialize collision data
void _cldInitCylinderBox(sCylinderBoxData& cData) 
{
	// get cylinder position, orientation
	const dReal* pRotCyc = dGeomGetRotation(cData.gCylinder); 
	dMatrix3Copy(pRotCyc,cData.mCylinderRot);

	const dVector3* pPosCyc = (const dVector3*)dGeomGetPosition(cData.gCylinder);
	dVector3Copy(*pPosCyc,cData.vCylinderPos);

	dMat3GetCol(cData.mCylinderRot,nCYLINDER_AXIS,cData.vCylinderAxis);
	
	// get cylinder radius and size
	dGeomCylinderGetParams(cData.gCylinder,&cData.fCylinderRadius,&cData.fCylinderSize);

	// get box position, orientation, size
	const dReal* pRotBox = dGeomGetRotation(cData.gBox);
	dMatrix3Copy(pRotBox,cData.mBoxRot);
	const dVector3* pPosBox  = (const dVector3*)dGeomGetPosition(cData.gBox);
	dVector3Copy(*pPosBox,cData.vBoxPos);

	dGeomBoxGetLengths(cData.gBox, cData.vBoxHalfSize);
	cData.vBoxHalfSize[0] *= REAL(0.5);
	cData.vBoxHalfSize[1] *= REAL(0.5);
	cData.vBoxHalfSize[2] *= REAL(0.5);

	// vertex 0
	cData.avBoxVertices[0][0] = -cData.vBoxHalfSize[0];
	cData.avBoxVertices[0][1] =  cData.vBoxHalfSize[1];
	cData.avBoxVertices[0][2] = -cData.vBoxHalfSize[2];

	// vertex 1
	cData.avBoxVertices[1][0] =  cData.vBoxHalfSize[0];
	cData.avBoxVertices[1][1] =  cData.vBoxHalfSize[1];
	cData.avBoxVertices[1][2] = -cData.vBoxHalfSize[2];

	// vertex 2
	cData.avBoxVertices[2][0] = -cData.vBoxHalfSize[0];
	cData.avBoxVertices[2][1] = -cData.vBoxHalfSize[1];
	cData.avBoxVertices[2][2] = -cData.vBoxHalfSize[2];

	// vertex 3
	cData.avBoxVertices[3][0] =  cData.vBoxHalfSize[0];
	cData.avBoxVertices[3][1] = -cData.vBoxHalfSize[1];
	cData.avBoxVertices[3][2] = -cData.vBoxHalfSize[2];

	// vertex 4
	cData.avBoxVertices[4][0] =  cData.vBoxHalfSize[0];
	cData.avBoxVertices[4][1] =  cData.vBoxHalfSize[1];
	cData.avBoxVertices[4][2] =  cData.vBoxHalfSize[2];

	// vertex 5
	cData.avBoxVertices[5][0] =  cData.vBoxHalfSize[0];
	cData.avBoxVertices[5][1] = -cData.vBoxHalfSize[1];
	cData.avBoxVertices[5][2] =  cData.vBoxHalfSize[2];

	// vertex 6
	cData.avBoxVertices[6][0] = -cData.vBoxHalfSize[0];
	cData.avBoxVertices[6][1] = -cData.vBoxHalfSize[1];
	cData.avBoxVertices[6][2] =  cData.vBoxHalfSize[2];

	// vertex 7
	cData.avBoxVertices[7][0] = -cData.vBoxHalfSize[0];
	cData.avBoxVertices[7][1] =  cData.vBoxHalfSize[1];
	cData.avBoxVertices[7][2] =  cData.vBoxHalfSize[2];

	// temp index
	int i = 0;
	dVector3	vTempBoxVertices[8];
	// transform vertices in absolute space
	for(i=0; i < 8; i++) 
	{
		dMultiplyMat3Vec3(cData.mBoxRot,cData.avBoxVertices[i], vTempBoxVertices[i]);
		dVector3Add(vTempBoxVertices[i], cData.vBoxPos, cData.avBoxVertices[i]);
	}

	// find relative position
	dVector3Subtract(cData.vCylinderPos,cData.vBoxPos,cData.vDiff);
	cData.fBestDepth = MAX_FLOAT;
	cData.vNormal[0] = REAL(0.0);
	cData.vNormal[1] = REAL(0.0);
	cData.vNormal[2] = REAL(0.0);

	// calculate basic angle for nCYLINDER_SEGMENT-gon
	dReal fAngle = M_PI/nCYLINDER_SEGMENT;

	// calculate angle increment
	dReal fAngleIncrement = fAngle * REAL(2.0); 

	// calculate nCYLINDER_SEGMENT-gon points
	for(i = 0; i < nCYLINDER_SEGMENT; i++) 
	{
		cData.avCylinderNormals[i][0] = -dCos(fAngle);
		cData.avCylinderNormals[i][1] = -dSin(fAngle);
		cData.avCylinderNormals[i][2] = 0;

		fAngle += fAngleIncrement;
	}

	cData.fBestrb		= 0;
	cData.fBestrc		= 0;
	cData.iBestAxis		= 0;
	cData.nContacts		= 0;

}
// initialize collision data
void sCylinderBoxData::_cldInitCylinderBox() 
{
	// get cylinder position, orientation
	const dReal* pRotCyc = dGeomGetRotation(m_gCylinder); 
	dMatrix3Copy(pRotCyc,m_mCylinderRot);

	const dVector3* pPosCyc = (const dVector3*)dGeomGetPosition(m_gCylinder);
	dVector3Copy(*pPosCyc,m_vCylinderPos);

	dMat3GetCol(m_mCylinderRot,nCYLINDER_AXIS,m_vCylinderAxis);
	
	// get cylinder radius and size
	dGeomCylinderGetParams(m_gCylinder,&m_fCylinderRadius,&m_fCylinderSize);

	// get box position, orientation, size
	const dReal* pRotBox = dGeomGetRotation(m_gBox);
	dMatrix3Copy(pRotBox,m_mBoxRot);
	const dVector3* pPosBox  = (const dVector3*)dGeomGetPosition(m_gBox);
	dVector3Copy(*pPosBox,m_vBoxPos);

	dGeomBoxGetLengths(m_gBox, m_vBoxHalfSize);
	m_vBoxHalfSize[0] *= REAL(0.5);
	m_vBoxHalfSize[1] *= REAL(0.5);
	m_vBoxHalfSize[2] *= REAL(0.5);

	// vertex 0
	m_avBoxVertices[0][0] = -m_vBoxHalfSize[0];
	m_avBoxVertices[0][1] =  m_vBoxHalfSize[1];
	m_avBoxVertices[0][2] = -m_vBoxHalfSize[2];

	// vertex 1
	m_avBoxVertices[1][0] =  m_vBoxHalfSize[0];
	m_avBoxVertices[1][1] =  m_vBoxHalfSize[1];
	m_avBoxVertices[1][2] = -m_vBoxHalfSize[2];

	// vertex 2
	m_avBoxVertices[2][0] = -m_vBoxHalfSize[0];
	m_avBoxVertices[2][1] = -m_vBoxHalfSize[1];
	m_avBoxVertices[2][2] = -m_vBoxHalfSize[2];

	// vertex 3
	m_avBoxVertices[3][0] =  m_vBoxHalfSize[0];
	m_avBoxVertices[3][1] = -m_vBoxHalfSize[1];
	m_avBoxVertices[3][2] = -m_vBoxHalfSize[2];

	// vertex 4
	m_avBoxVertices[4][0] =  m_vBoxHalfSize[0];
	m_avBoxVertices[4][1] =  m_vBoxHalfSize[1];
	m_avBoxVertices[4][2] =  m_vBoxHalfSize[2];

	// vertex 5
	m_avBoxVertices[5][0] =  m_vBoxHalfSize[0];
	m_avBoxVertices[5][1] = -m_vBoxHalfSize[1];
	m_avBoxVertices[5][2] =  m_vBoxHalfSize[2];

	// vertex 6
	m_avBoxVertices[6][0] = -m_vBoxHalfSize[0];
	m_avBoxVertices[6][1] = -m_vBoxHalfSize[1];
	m_avBoxVertices[6][2] =  m_vBoxHalfSize[2];

	// vertex 7
	m_avBoxVertices[7][0] = -m_vBoxHalfSize[0];
	m_avBoxVertices[7][1] =  m_vBoxHalfSize[1];
	m_avBoxVertices[7][2] =  m_vBoxHalfSize[2];

	// temp index
	int i = 0;
	dVector3	vTempBoxVertices[8];
	// transform vertices in absolute space
	for(i=0; i < 8; i++) 
	{
		dMultiplyMat3Vec3(m_mBoxRot,m_avBoxVertices[i], vTempBoxVertices[i]);
		dVector3Add(vTempBoxVertices[i], m_vBoxPos, m_avBoxVertices[i]);
	}

	// find relative position
	dVector3Subtract(m_vCylinderPos,m_vBoxPos,m_vDiff);
	m_fBestDepth = MAX_FLOAT;
	m_vNormal[0] = REAL(0.0);
	m_vNormal[1] = REAL(0.0);
	m_vNormal[2] = REAL(0.0);

	// calculate basic angle for nCYLINDER_SEGMENT-gon
	dReal fAngle = (dReal) (M_PI/nCYLINDER_SEGMENT);

	// calculate angle increment
	dReal fAngleIncrement = fAngle * REAL(2.0); 

	// calculate nCYLINDER_SEGMENT-gon points
	for(i = 0; i < nCYLINDER_SEGMENT; i++) 
	{
		m_avCylinderNormals[i][0] = -dCos(fAngle);
		m_avCylinderNormals[i][1] = -dSin(fAngle);
		m_avCylinderNormals[i][2] = 0;

		fAngle += fAngleIncrement;
	}

	m_fBestrb		= 0;
	m_fBestrc		= 0;
	m_iBestAxis		= 0;
	m_nContacts		= 0;

}