/* Subroutine */ int ddrvge_(logical *dotype, integer *nn, integer *nval, integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, doublereal *a, doublereal *afac, doublereal *asav, doublereal *b, doublereal *bsav, doublereal *x, doublereal *xact, doublereal *s, doublereal *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char transs[1*3] = "N" "T" "C"; static char facts[1*3] = "F" "N" "E"; static char equeds[1*4] = "N" "R" "C" "B"; /* Format strings */ static char fmt_9999[] = "(1x,a,\002, N =\002,i5,\002, type \002,i2,\002" ", test(\002,i2,\002) =\002,g12.5)"; static char fmt_9997[] = "(1x,a,\002, FACT='\002,a1,\002', TRANS='\002,a" "1,\002', N=\002,i5,\002, EQUED='\002,a1,\002', type \002,i2,\002" ", test(\002,i1,\002)=\002,g12.5)"; static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', TRANS='\002,a" "1,\002', N=\002,i5,\002, type \002,i2,\002, test(\002,i1,\002)" "=\002,g12.5)"; /* System generated locals */ address a__1[2]; integer i__1, i__2, i__3, i__4, i__5[2]; doublereal d__1; char ch__1[2]; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ extern /* Subroutine */ int debchvxx_(doublereal *, char *); integer i__, k, n; doublereal *errbnds_c__, *errbnds_n__; integer k1, nb, in, kl, ku, nt, n_err_bnds__; extern doublereal dla_rpvgrw__(integer *, integer *, doublereal *, integer *, doublereal *, integer *); integer lda; char fact[1]; integer ioff, mode; doublereal amax; char path[3]; integer imat, info; doublereal *berr; char dist[1]; doublereal rpvgrw_svxx__; char type__[1]; integer nrun; extern /* Subroutine */ int dget01_(integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, doublereal *, doublereal *), dget02_(char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *); integer ifact; extern /* Subroutine */ int dget04_(integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *); integer nfail, iseed[4], nfact; extern doublereal dget06_(doublereal *, doublereal *); extern /* Subroutine */ int dget07_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, logical *, doublereal *, doublereal *); extern logical lsame_(char *, char *); char equed[1]; integer nbmin; doublereal rcond, roldc; integer nimat; doublereal roldi; extern /* Subroutine */ int dgesv_(integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); doublereal anorm; integer itran; logical equil; doublereal roldo; char trans[1]; integer izero, nerrs, lwork; logical zerot; char xtype[1]; extern /* Subroutine */ int dlatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, char *), aladhd_(integer *, char *); extern doublereal dlamch_(char *), dlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *), dlaqge_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, char *); logical prefac; doublereal colcnd, rcondc; logical nofact; integer iequed; extern /* Subroutine */ int dgeequ_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *); doublereal rcondi; extern /* Subroutine */ int dgetrf_(integer *, integer *, doublereal *, integer *, integer *, integer *), dgetri_(integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *), dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), alasvm_(char *, integer *, integer *, integer *, integer *); doublereal cndnum, anormi, rcondo, ainvnm; extern doublereal dlantr_(char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int dlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, integer *); logical trfcon; doublereal anormo, rowcnd; extern /* Subroutine */ int dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), dgesvx_(char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, char *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer * , integer *), dlatms_(integer *, integer * , char *, integer *, char *, doublereal *, integer *, doublereal * , doublereal *, integer *, integer *, char *, doublereal *, integer *, doublereal *, integer *), xlaenv_(integer *, integer *), derrvx_(char *, integer *); doublereal result[7], rpvgrw; extern /* Subroutine */ int dgesvxx_(char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, char *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___55 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___61 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___62 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___63 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___64 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___65 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___66 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___67 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___68 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___74 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___75 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___76 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___77 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___78 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___79 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___80 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___81 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DDRVGE tests the driver routines DGESV, -SVX, and -SVXX. */ /* Note that this file is used only when the XBLAS are available, */ /* otherwise ddrvge.f defines this subroutine. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix column dimension N. */ /* NRHS (input) INTEGER */ /* The number of right hand side vectors to be generated for */ /* each linear system. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for N, used in dimensioning the */ /* work arrays. */ /* A (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */ /* AFAC (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */ /* ASAV (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */ /* B (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */ /* BSAV (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */ /* X (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */ /* XACT (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */ /* S (workspace) DOUBLE PRECISION array, dimension (2*NMAX) */ /* WORK (workspace) DOUBLE PRECISION array, dimension */ /* (NMAX*max(3,NRHS)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (2*NRHS+NMAX) */ /* IWORK (workspace) INTEGER array, dimension (2*NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --s; --xact; --x; --bsav; --b; --asav; --afac; --a; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "GE", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { derrvx_(path, nout); } infoc_1.infot = 0; /* Set the block size and minimum block size for testing. */ nb = 1; nbmin = 2; xlaenv_(&c__1, &nb); xlaenv_(&c__2, &nbmin); /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); *(unsigned char *)xtype = 'N'; nimat = 11; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L80; } /* Skip types 5, 6, or 7 if the matrix size is too small. */ zerot = imat >= 5 && imat <= 7; if (zerot && n < imat - 4) { goto L80; } /* Set up parameters with DLATB4 and generate a test matrix */ /* with DLATMS. */ dlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, & cndnum, dist); rcondc = 1. / cndnum; s_copy(srnamc_1.srnamt, "DLATMS", (ftnlen)32, (ftnlen)6); dlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &cndnum, & anorm, &kl, &ku, "No packing", &a[1], &lda, &work[1], & info); /* Check error code from DLATMS. */ if (info != 0) { alaerh_(path, "DLATMS", &info, &c__0, " ", &n, &n, &c_n1, & c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L80; } /* For types 5-7, zero one or more columns of the matrix to */ /* test that INFO is returned correctly. */ if (zerot) { if (imat == 5) { izero = 1; } else if (imat == 6) { izero = n; } else { izero = n / 2 + 1; } ioff = (izero - 1) * lda; if (imat < 7) { i__3 = n; for (i__ = 1; i__ <= i__3; ++i__) { a[ioff + i__] = 0.; /* L20: */ } } else { i__3 = n - izero + 1; dlaset_("Full", &n, &i__3, &c_b20, &c_b20, &a[ioff + 1], & lda); } } else { izero = 0; } /* Save a copy of the matrix A in ASAV. */ dlacpy_("Full", &n, &n, &a[1], &lda, &asav[1], &lda); for (iequed = 1; iequed <= 4; ++iequed) { *(unsigned char *)equed = *(unsigned char *)&equeds[iequed - 1]; if (iequed == 1) { nfact = 3; } else { nfact = 1; } i__3 = nfact; for (ifact = 1; ifact <= i__3; ++ifact) { *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 1]; prefac = lsame_(fact, "F"); nofact = lsame_(fact, "N"); equil = lsame_(fact, "E"); if (zerot) { if (prefac) { goto L60; } rcondo = 0.; rcondi = 0.; } else if (! nofact) { /* Compute the condition number for comparison with */ /* the value returned by DGESVX (FACT = 'N' reuses */ /* the condition number from the previous iteration */ /* with FACT = 'F'). */ dlacpy_("Full", &n, &n, &asav[1], &lda, &afac[1], & lda); if (equil || iequed > 1) { /* Compute row and column scale factors to */ /* equilibrate the matrix A. */ dgeequ_(&n, &n, &afac[1], &lda, &s[1], &s[n + 1], &rowcnd, &colcnd, &amax, &info); if (info == 0 && n > 0) { if (lsame_(equed, "R")) { rowcnd = 0.; colcnd = 1.; } else if (lsame_(equed, "C")) { rowcnd = 1.; colcnd = 0.; } else if (lsame_(equed, "B")) { rowcnd = 0.; colcnd = 0.; } /* Equilibrate the matrix. */ dlaqge_(&n, &n, &afac[1], &lda, &s[1], &s[n + 1], &rowcnd, &colcnd, &amax, equed); } } /* Save the condition number of the non-equilibrated */ /* system for use in DGET04. */ if (equil) { roldo = rcondo; roldi = rcondi; } /* Compute the 1-norm and infinity-norm of A. */ anormo = dlange_("1", &n, &n, &afac[1], &lda, &rwork[ 1]); anormi = dlange_("I", &n, &n, &afac[1], &lda, &rwork[ 1]); /* Factor the matrix A. */ dgetrf_(&n, &n, &afac[1], &lda, &iwork[1], &info); /* Form the inverse of A. */ dlacpy_("Full", &n, &n, &afac[1], &lda, &a[1], &lda); lwork = *nmax * max(3,*nrhs); dgetri_(&n, &a[1], &lda, &iwork[1], &work[1], &lwork, &info); /* Compute the 1-norm condition number of A. */ ainvnm = dlange_("1", &n, &n, &a[1], &lda, &rwork[1]); if (anormo <= 0. || ainvnm <= 0.) { rcondo = 1.; } else { rcondo = 1. / anormo / ainvnm; } /* Compute the infinity-norm condition number of A. */ ainvnm = dlange_("I", &n, &n, &a[1], &lda, &rwork[1]); if (anormi <= 0. || ainvnm <= 0.) { rcondi = 1.; } else { rcondi = 1. / anormi / ainvnm; } } for (itran = 1; itran <= 3; ++itran) { for (i__ = 1; i__ <= 7; ++i__) { result[i__ - 1] = 0.; } /* Do for each value of TRANS. */ *(unsigned char *)trans = *(unsigned char *)&transs[ itran - 1]; if (itran == 1) { rcondc = rcondo; } else { rcondc = rcondi; } /* Restore the matrix A. */ dlacpy_("Full", &n, &n, &asav[1], &lda, &a[1], &lda); /* Form an exact solution and set the right hand side. */ s_copy(srnamc_1.srnamt, "DLARHS", (ftnlen)32, (ftnlen) 6); dlarhs_(path, xtype, "Full", trans, &n, &n, &kl, &ku, nrhs, &a[1], &lda, &xact[1], &lda, &b[1], & lda, iseed, &info); *(unsigned char *)xtype = 'C'; dlacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &lda); if (nofact && itran == 1) { /* --- Test DGESV --- */ /* Compute the LU factorization of the matrix and */ /* solve the system. */ dlacpy_("Full", &n, &n, &a[1], &lda, &afac[1], & lda); dlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], & lda); s_copy(srnamc_1.srnamt, "DGESV ", (ftnlen)32, ( ftnlen)6); dgesv_(&n, nrhs, &afac[1], &lda, &iwork[1], &x[1], &lda, &info); /* Check error code from DGESV . */ if (info != izero) { alaerh_(path, "DGESV ", &info, &izero, " ", & n, &n, &c_n1, &c_n1, nrhs, &imat, & nfail, &nerrs, nout); goto L50; } /* Reconstruct matrix from factors and compute */ /* residual. */ dget01_(&n, &n, &a[1], &lda, &afac[1], &lda, & iwork[1], &rwork[1], result); nt = 1; if (izero == 0) { /* Compute residual of the computed solution. */ dlacpy_("Full", &n, nrhs, &b[1], &lda, &work[ 1], &lda); dget02_("No transpose", &n, &n, nrhs, &a[1], & lda, &x[1], &lda, &work[1], &lda, & rwork[1], &result[1]); /* Check solution from generated exact solution. */ dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &result[2]); nt = 3; } /* Print information about the tests that did not */ /* pass the threshold. */ i__4 = nt; for (k = 1; k <= i__4; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___55.ciunit = *nout; s_wsfe(&io___55); do_fio(&c__1, "DGESV ", (ftnlen)6); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } /* L30: */ } nrun += nt; } /* --- Test DGESVX --- */ if (! prefac) { dlaset_("Full", &n, &n, &c_b20, &c_b20, &afac[1], &lda); } dlaset_("Full", &n, nrhs, &c_b20, &c_b20, &x[1], &lda); if (iequed > 1 && n > 0) { /* Equilibrate the matrix if FACT = 'F' and */ /* EQUED = 'R', 'C', or 'B'. */ dlaqge_(&n, &n, &a[1], &lda, &s[1], &s[n + 1], & rowcnd, &colcnd, &amax, equed); } /* Solve the system and compute the condition number */ /* and error bounds using DGESVX. */ s_copy(srnamc_1.srnamt, "DGESVX", (ftnlen)32, (ftnlen) 6); dgesvx_(fact, trans, &n, nrhs, &a[1], &lda, &afac[1], &lda, &iwork[1], equed, &s[1], &s[n + 1], &b[ 1], &lda, &x[1], &lda, &rcond, &rwork[1], & rwork[*nrhs + 1], &work[1], &iwork[n + 1], & info); /* Check the error code from DGESVX. */ if (info == n + 1) { goto L50; } if (info != izero) { /* Writing concatenation */ i__5[0] = 1, a__1[0] = fact; i__5[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2); alaerh_(path, "DGESVX", &info, &izero, ch__1, &n, &n, &c_n1, &c_n1, nrhs, &imat, &nfail, & nerrs, nout); goto L50; } /* Compare WORK(1) from DGESVX with the computed */ /* reciprocal pivot growth factor RPVGRW */ if (info != 0) { rpvgrw = dlantr_("M", "U", "N", &info, &info, & afac[1], &lda, &work[1]); if (rpvgrw == 0.) { rpvgrw = 1.; } else { rpvgrw = dlange_("M", &n, &info, &a[1], &lda, &work[1]) / rpvgrw; } } else { rpvgrw = dlantr_("M", "U", "N", &n, &n, &afac[1], &lda, &work[1]); if (rpvgrw == 0.) { rpvgrw = 1.; } else { rpvgrw = dlange_("M", &n, &n, &a[1], &lda, & work[1]) / rpvgrw; } } result[6] = (d__1 = rpvgrw - work[1], abs(d__1)) / max(work[1],rpvgrw) / dlamch_("E"); if (! prefac) { /* Reconstruct matrix from factors and compute */ /* residual. */ dget01_(&n, &n, &a[1], &lda, &afac[1], &lda, & iwork[1], &rwork[(*nrhs << 1) + 1], result); k1 = 1; } else { k1 = 2; } if (info == 0) { trfcon = FALSE_; /* Compute residual of the computed solution. */ dlacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1] , &lda); dget02_(trans, &n, &n, nrhs, &asav[1], &lda, &x[1] , &lda, &work[1], &lda, &rwork[(*nrhs << 1) + 1], &result[1]); /* Check solution from generated exact solution. */ if (nofact || prefac && lsame_(equed, "N")) { dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &result[2]); } else { if (itran == 1) { roldc = roldo; } else { roldc = roldi; } dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &roldc, &result[2]); } /* Check the error bounds from iterative */ /* refinement. */ dget07_(trans, &n, nrhs, &asav[1], &lda, &b[1], & lda, &x[1], &lda, &xact[1], &lda, &rwork[ 1], &c_true, &rwork[*nrhs + 1], &result[3] ); } else { trfcon = TRUE_; } /* Compare RCOND from DGESVX with the computed value */ /* in RCONDC. */ result[5] = dget06_(&rcond, &rcondc); /* Print information about the tests that did not pass */ /* the threshold. */ if (! trfcon) { for (k = k1; k <= 7; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___61.ciunit = *nout; s_wsfe(&io___61); do_fio(&c__1, "DGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(doublereal)); e_wsfe(); } else { io___62.ciunit = *nout; s_wsfe(&io___62); do_fio(&c__1, "DGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(doublereal)); e_wsfe(); } ++nfail; } /* L40: */ } nrun = nrun + 7 - k1; } else { if (result[0] >= *thresh && ! prefac) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___63.ciunit = *nout; s_wsfe(&io___63); do_fio(&c__1, "DGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__1, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen) sizeof(doublereal)); e_wsfe(); } else { io___64.ciunit = *nout; s_wsfe(&io___64); do_fio(&c__1, "DGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__1, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen) sizeof(doublereal)); e_wsfe(); } ++nfail; ++nrun; } if (result[5] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___65.ciunit = *nout; s_wsfe(&io___65); do_fio(&c__1, "DGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__6, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[5], (ftnlen) sizeof(doublereal)); e_wsfe(); } else { io___66.ciunit = *nout; s_wsfe(&io___66); do_fio(&c__1, "DGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__6, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[5], (ftnlen) sizeof(doublereal)); e_wsfe(); } ++nfail; ++nrun; } if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___67.ciunit = *nout; s_wsfe(&io___67); do_fio(&c__1, "DGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__7, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen) sizeof(doublereal)); e_wsfe(); } else { io___68.ciunit = *nout; s_wsfe(&io___68); do_fio(&c__1, "DGESVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__7, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen) sizeof(doublereal)); e_wsfe(); } ++nfail; ++nrun; } } /* --- Test DGESVXX --- */ /* Restore the matrices A and B. */ dlacpy_("Full", &n, &n, &asav[1], &lda, &a[1], &lda); dlacpy_("Full", &n, nrhs, &bsav[1], &lda, &b[1], &lda); if (! prefac) { dlaset_("Full", &n, &n, &c_b20, &c_b20, &afac[1], &lda); } dlaset_("Full", &n, nrhs, &c_b20, &c_b20, &x[1], &lda); if (iequed > 1 && n > 0) { /* Equilibrate the matrix if FACT = 'F' and */ /* EQUED = 'R', 'C', or 'B'. */ dlaqge_(&n, &n, &a[1], &lda, &s[1], &s[n + 1], & rowcnd, &colcnd, &amax, equed); } /* Solve the system and compute the condition number */ /* and error bounds using DGESVXX. */ s_copy(srnamc_1.srnamt, "DGESVXX", (ftnlen)32, ( ftnlen)7); n_err_bnds__ = 3; dalloc3(); dgesvxx_(fact, trans, &n, nrhs, &a[1], &lda, &afac[1], &lda, &iwork[1], equed, &s[1], &s[n + 1], &b[ 1], &lda, &x[1], &lda, &rcond, &rpvgrw_svxx__, berr, &n_err_bnds__, errbnds_n__, errbnds_c__, &c__0, &c_b20, &work[1], &iwork[ n + 1], &info); free3(); /* Check the error code from DGESVXX. */ if (info == n + 1) { goto L50; } if (info != izero) { /* Writing concatenation */ i__5[0] = 1, a__1[0] = fact; i__5[1] = 1, a__1[1] = trans; s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2); alaerh_(path, "DGESVXX", &info, &izero, ch__1, &n, &n, &c_n1, &c_n1, nrhs, &imat, &nfail, & nerrs, nout); goto L50; } /* Compare rpvgrw_svxx from DGESVXX with the computed */ /* reciprocal pivot growth factor RPVGRW */ if (info > 0 && info < n + 1) { rpvgrw = dla_rpvgrw__(&n, &info, &a[1], &lda, & afac[1], &lda); } else { rpvgrw = dla_rpvgrw__(&n, &n, &a[1], &lda, &afac[ 1], &lda); } result[6] = (d__1 = rpvgrw - rpvgrw_svxx__, abs(d__1)) / max(rpvgrw_svxx__,rpvgrw) / dlamch_("E"); if (! prefac) { /* Reconstruct matrix from factors and compute */ /* residual. */ dget01_(&n, &n, &a[1], &lda, &afac[1], &lda, & iwork[1], &rwork[(*nrhs << 1) + 1], result); k1 = 1; } else { k1 = 2; } if (info == 0) { trfcon = FALSE_; /* Compute residual of the computed solution. */ dlacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1] , &lda); dget02_(trans, &n, &n, nrhs, &asav[1], &lda, &x[1] , &lda, &work[1], &lda, &rwork[(*nrhs << 1) + 1], &result[1]); /* Check solution from generated exact solution. */ if (nofact || prefac && lsame_(equed, "N")) { dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &result[2]); } else { if (itran == 1) { roldc = roldo; } else { roldc = roldi; } dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &roldc, &result[2]); } } else { trfcon = TRUE_; } /* Compare RCOND from DGESVXX with the computed value */ /* in RCONDC. */ result[5] = dget06_(&rcond, &rcondc); /* Print information about the tests that did not pass */ /* the threshold. */ if (! trfcon) { for (k = k1; k <= 7; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___74.ciunit = *nout; s_wsfe(&io___74); do_fio(&c__1, "DGESVXX", (ftnlen)7); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(doublereal)); e_wsfe(); } else { io___75.ciunit = *nout; s_wsfe(&io___75); do_fio(&c__1, "DGESVXX", (ftnlen)7); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(doublereal)); e_wsfe(); } ++nfail; } /* L45: */ } nrun = nrun + 7 - k1; } else { if (result[0] >= *thresh && ! prefac) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___76.ciunit = *nout; s_wsfe(&io___76); do_fio(&c__1, "DGESVXX", (ftnlen)7); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__1, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen) sizeof(doublereal)); e_wsfe(); } else { io___77.ciunit = *nout; s_wsfe(&io___77); do_fio(&c__1, "DGESVXX", (ftnlen)7); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__1, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen) sizeof(doublereal)); e_wsfe(); } ++nfail; ++nrun; } if (result[5] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___78.ciunit = *nout; s_wsfe(&io___78); do_fio(&c__1, "DGESVXX", (ftnlen)7); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__6, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[5], (ftnlen) sizeof(doublereal)); e_wsfe(); } else { io___79.ciunit = *nout; s_wsfe(&io___79); do_fio(&c__1, "DGESVXX", (ftnlen)7); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__6, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[5], (ftnlen) sizeof(doublereal)); e_wsfe(); } ++nfail; ++nrun; } if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___80.ciunit = *nout; s_wsfe(&io___80); do_fio(&c__1, "DGESVXX", (ftnlen)7); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__7, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen) sizeof(doublereal)); e_wsfe(); } else { io___81.ciunit = *nout; s_wsfe(&io___81); do_fio(&c__1, "DGESVXX", (ftnlen)7); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__7, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen) sizeof(doublereal)); e_wsfe(); } ++nfail; ++nrun; } } L50: ; } L60: ; } /* L70: */ } L80: ; } /* L90: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); /* Test Error Bounds from DGESVXX */ debchvxx_(thresh, path); return 0; /* End of DDRVGE */ } /* ddrvge_ */
/* Subroutine */ int ddrvpo_(logical *dotype, integer *nn, integer *nval, integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, doublereal *a, doublereal *afac, doublereal *asav, doublereal *b, doublereal *bsav, doublereal *x, doublereal *xact, doublereal *s, doublereal *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; static char facts[1*3] = "F" "N" "E"; static char equeds[1*2] = "N" "Y"; /* Format strings */ static char fmt_9999[] = "(1x,a,\002, UPLO='\002,a1,\002', N =\002,i5" ",\002, type \002,i1,\002, test(\002,i1,\002)=\002,g12.5)"; static char fmt_9997[] = "(1x,a,\002, FACT='\002,a1,\002', UPLO='\002," "a1,\002', N=\002,i5,\002, EQUED='\002,a1,\002', type \002,i1," "\002, test(\002,i1,\002) =\002,g12.5)"; static char fmt_9998[] = "(1x,a,\002, FACT='\002,a1,\002', UPLO='\002," "a1,\002', N=\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)" "=\002,g12.5)"; /* System generated locals */ address a__1[2]; integer i__1, i__2, i__3, i__4, i__5[2]; char ch__1[2]; /* Local variables */ integer i__, k, n; doublereal *errbnds_c__, *errbnds_n__; integer k1, nb, in, kl, ku, nt, n_err_bnds__, lda; char fact[1]; integer ioff, mode; doublereal amax; char path[3]; integer imat, info; doublereal *berr; char dist[1]; doublereal rpvgrw_svxx__; char uplo[1], type__[1]; integer nrun, ifact; integer nfail, iseed[4], nfact; char equed[1]; integer nbmin; doublereal rcond, roldc, scond; integer nimat; doublereal anorm; logical equil; integer iuplo, izero, nerrs; logical zerot; char xtype[1]; logical prefac; doublereal rcondc; logical nofact; integer iequed; doublereal cndnum; doublereal ainvnm; doublereal result[6]; /* Fortran I/O blocks */ static cilist io___48 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___51 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___52 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___58 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___59 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DDRVPO tests the driver routines DPOSV, -SVX, and -SVXX. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* NRHS (input) INTEGER */ /* The number of right hand side vectors to be generated for */ /* each linear system. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for N, used in dimensioning the */ /* work arrays. */ /* A (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */ /* AFAC (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */ /* ASAV (workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX) */ /* B (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */ /* BSAV (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */ /* X (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */ /* XACT (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */ /* S (workspace) DOUBLE PRECISION array, dimension (NMAX) */ /* WORK (workspace) DOUBLE PRECISION array, dimension */ /* (NMAX*max(3,NRHS)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS) */ /* IWORK (workspace) INTEGER array, dimension (NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --s; --xact; --x; --bsav; --b; --asav; --afac; --a; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "PO", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { derrvx_(path, nout); } infoc_1.infot = 0; /* Set the block size and minimum block size for testing. */ nb = 1; nbmin = 2; xlaenv_(&c__1, &nb); xlaenv_(&c__2, &nbmin); /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); *(unsigned char *)xtype = 'N'; nimat = 9; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L120; } /* Skip types 3, 4, or 5 if the matrix size is too small. */ zerot = imat >= 3 && imat <= 5; if (zerot && n < imat - 2) { goto L120; } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; /* Set up parameters with DLATB4 and generate a test matrix */ /* with DLATMS. */ dlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "DLATMS", (ftnlen)32, (ftnlen)6); dlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, uplo, &a[1], &lda, &work[1], &info); /* Check error code from DLATMS. */ if (info != 0) { alaerh_(path, "DLATMS", &info, &c__0, uplo, &n, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L110; } /* For types 3-5, zero one row and column of the matrix to */ /* test that INFO is returned correctly. */ if (zerot) { if (imat == 3) { izero = 1; } else if (imat == 4) { izero = n; } else { izero = n / 2 + 1; } ioff = (izero - 1) * lda; /* Set row and column IZERO of A to 0. */ if (iuplo == 1) { i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { a[ioff + i__] = 0.; /* L20: */ } ioff += izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { a[ioff] = 0.; ioff += lda; /* L30: */ } } else { ioff = izero; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { a[ioff] = 0.; ioff += lda; /* L40: */ } ioff -= izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { a[ioff + i__] = 0.; /* L50: */ } } } else { izero = 0; } /* Save a copy of the matrix A in ASAV. */ dlacpy_(uplo, &n, &n, &a[1], &lda, &asav[1], &lda); for (iequed = 1; iequed <= 2; ++iequed) { *(unsigned char *)equed = *(unsigned char *)&equeds[ iequed - 1]; if (iequed == 1) { nfact = 3; } else { nfact = 1; } i__3 = nfact; for (ifact = 1; ifact <= i__3; ++ifact) { for (i__ = 1; i__ <= 6; ++i__) { result[i__ - 1] = 0.; } *(unsigned char *)fact = *(unsigned char *)&facts[ ifact - 1]; prefac = lsame_(fact, "F"); nofact = lsame_(fact, "N"); equil = lsame_(fact, "E"); if (zerot) { if (prefac) { goto L90; } rcondc = 0.; } else if (! lsame_(fact, "N")) { /* Compute the condition number for comparison with */ /* the value returned by DPOSVX (FACT = 'N' reuses */ /* the condition number from the previous iteration */ /* with FACT = 'F'). */ dlacpy_(uplo, &n, &n, &asav[1], &lda, &afac[1], & lda); if (equil || iequed > 1) { /* Compute row and column scale factors to */ /* equilibrate the matrix A. */ dpoequ_(&n, &afac[1], &lda, &s[1], &scond, & amax, &info); if (info == 0 && n > 0) { if (iequed > 1) { scond = 0.; } /* Equilibrate the matrix. */ dlaqsy_(uplo, &n, &afac[1], &lda, &s[1], & scond, &amax, equed); } } /* Save the condition number of the */ /* non-equilibrated system for use in DGET04. */ if (equil) { roldc = rcondc; } /* Compute the 1-norm of A. */ anorm = dlansy_("1", uplo, &n, &afac[1], &lda, & rwork[1]); /* Factor the matrix A. */ dpotrf_(uplo, &n, &afac[1], &lda, &info); /* Form the inverse of A. */ dlacpy_(uplo, &n, &n, &afac[1], &lda, &a[1], &lda); dpotri_(uplo, &n, &a[1], &lda, &info); /* Compute the 1-norm condition number of A. */ ainvnm = dlansy_("1", uplo, &n, &a[1], &lda, & rwork[1]); if (anorm <= 0. || ainvnm <= 0.) { rcondc = 1.; } else { rcondc = 1. / anorm / ainvnm; } } /* Restore the matrix A. */ dlacpy_(uplo, &n, &n, &asav[1], &lda, &a[1], &lda); /* Form an exact solution and set the right hand side. */ s_copy(srnamc_1.srnamt, "DLARHS", (ftnlen)32, (ftnlen) 6); dlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, nrhs, &a[1], &lda, &xact[1], &lda, &b[1], & lda, iseed, &info); *(unsigned char *)xtype = 'C'; dlacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &lda); if (nofact) { /* --- Test DPOSV --- */ /* Compute the L*L' or U'*U factorization of the */ /* matrix and solve the system. */ dlacpy_(uplo, &n, &n, &a[1], &lda, &afac[1], &lda); dlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], & lda); s_copy(srnamc_1.srnamt, "DPOSV ", (ftnlen)32, ( ftnlen)6); dposv_(uplo, &n, nrhs, &afac[1], &lda, &x[1], & lda, &info); /* Check error code from DPOSV . */ if (info != izero) { alaerh_(path, "DPOSV ", &info, &izero, uplo, & n, &n, &c_n1, &c_n1, nrhs, &imat, & nfail, &nerrs, nout); goto L70; } else if (info != 0) { goto L70; } /* Reconstruct matrix from factors and compute */ /* residual. */ dpot01_(uplo, &n, &a[1], &lda, &afac[1], &lda, & rwork[1], result); /* Compute residual of the computed solution. */ dlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], & lda); dpot02_(uplo, &n, nrhs, &a[1], &lda, &x[1], &lda, &work[1], &lda, &rwork[1], &result[1]); /* Check solution from generated exact solution. */ dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); nt = 3; /* Print information about the tests that did not */ /* pass the threshold. */ i__4 = nt; for (k = 1; k <= i__4; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___48.ciunit = *nout; s_wsfe(&io___48); do_fio(&c__1, "DPOSV ", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } /* L60: */ } nrun += nt; L70: ; } /* --- Test DPOSVX --- */ if (! prefac) { dlaset_(uplo, &n, &n, &c_b50, &c_b50, &afac[1], & lda); } dlaset_("Full", &n, nrhs, &c_b50, &c_b50, &x[1], &lda); if (iequed > 1 && n > 0) { /* Equilibrate the matrix if FACT='F' and */ /* EQUED='Y'. */ dlaqsy_(uplo, &n, &a[1], &lda, &s[1], &scond, & amax, equed); } /* Solve the system and compute the condition number */ /* and error bounds using DPOSVX. */ s_copy(srnamc_1.srnamt, "DPOSVX", (ftnlen)32, (ftnlen) 6); dposvx_(fact, uplo, &n, nrhs, &a[1], &lda, &afac[1], & lda, equed, &s[1], &b[1], &lda, &x[1], &lda, & rcond, &rwork[1], &rwork[*nrhs + 1], &work[1], &iwork[1], &info); /* Check the error code from DPOSVX. */ if (info == n + 1) { goto L90; } if (info != izero) { /* Writing concatenation */ i__5[0] = 1, a__1[0] = fact; i__5[1] = 1, a__1[1] = uplo; s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2); alaerh_(path, "DPOSVX", &info, &izero, ch__1, &n, &n, &c_n1, &c_n1, nrhs, &imat, &nfail, & nerrs, nout); goto L90; } if (info == 0) { if (! prefac) { /* Reconstruct matrix from factors and compute */ /* residual. */ dpot01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &rwork[(*nrhs << 1) + 1], result); k1 = 1; } else { k1 = 2; } /* Compute residual of the computed solution. */ dlacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1] , &lda); dpot02_(uplo, &n, nrhs, &asav[1], &lda, &x[1], & lda, &work[1], &lda, &rwork[(*nrhs << 1) + 1], &result[1]); /* Check solution from generated exact solution. */ if (nofact || prefac && lsame_(equed, "N")) { dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &result[2]); } else { dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &roldc, &result[2]); } /* Check the error bounds from iterative */ /* refinement. */ dpot05_(uplo, &n, nrhs, &asav[1], &lda, &b[1], & lda, &x[1], &lda, &xact[1], &lda, &rwork[ 1], &rwork[*nrhs + 1], &result[3]); } else { k1 = 6; } /* Compare RCOND from DPOSVX with the computed value */ /* in RCONDC. */ result[5] = dget06_(&rcond, &rcondc); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = k1; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___51.ciunit = *nout; s_wsfe(&io___51); do_fio(&c__1, "DPOSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); } else { io___52.ciunit = *nout; s_wsfe(&io___52); do_fio(&c__1, "DPOSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); } ++nfail; } /* L80: */ } nrun = nrun + 7 - k1; /* --- Test DPOSVXX --- */ /* Restore the matrices A and B. */ dlacpy_("Full", &n, &n, &asav[1], &lda, &a[1], &lda); dlacpy_("Full", &n, nrhs, &bsav[1], &lda, &b[1], &lda); if (! prefac) { dlaset_(uplo, &n, &n, &c_b50, &c_b50, &afac[1], & lda); } dlaset_("Full", &n, nrhs, &c_b50, &c_b50, &x[1], &lda); if (iequed > 1 && n > 0) { /* Equilibrate the matrix if FACT='F' and */ /* EQUED='Y'. */ dlaqsy_(uplo, &n, &a[1], &lda, &s[1], &scond, & amax, equed); } /* Solve the system and compute the condition number */ /* and error bounds using DPOSVXX. */ s_copy(srnamc_1.srnamt, "DPOSVXX", (ftnlen)32, ( ftnlen)7); dalloc3(); dposvxx_(fact, uplo, &n, nrhs, &a[1], &lda, &afac[1], &lda, equed, &s[1], &b[1], &lda, &x[1], &lda, &rcond, &rpvgrw_svxx__, berr, &n_err_bnds__, errbnds_n__, errbnds_c__, &c__0, &c_b50, & work[1], &iwork[1], &info); free3(); /* Check the error code from DPOSVXX. */ if (info == n + 1) { goto L90; } if (info != izero) { /* Writing concatenation */ i__5[0] = 1, a__1[0] = fact; i__5[1] = 1, a__1[1] = uplo; s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2); alaerh_(path, "DPOSVXX", &info, &izero, ch__1, &n, &n, &c_n1, &c_n1, nrhs, &imat, &nfail, & nerrs, nout); goto L90; } if (info == 0) { if (! prefac) { /* Reconstruct matrix from factors and compute */ /* residual. */ dpot01_(uplo, &n, &a[1], &lda, &afac[1], &lda, &rwork[(*nrhs << 1) + 1], result); k1 = 1; } else { k1 = 2; } /* Compute residual of the computed solution. */ dlacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1] , &lda); dpot02_(uplo, &n, nrhs, &asav[1], &lda, &x[1], & lda, &work[1], &lda, &rwork[(*nrhs << 1) + 1], &result[1]); /* Check solution from generated exact solution. */ if (nofact || prefac && lsame_(equed, "N")) { dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &result[2]); } else { dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &roldc, &result[2]); } /* Check the error bounds from iterative */ /* refinement. */ dpot05_(uplo, &n, nrhs, &asav[1], &lda, &b[1], & lda, &x[1], &lda, &xact[1], &lda, &rwork[ 1], &rwork[*nrhs + 1], &result[3]); } else { k1 = 6; } /* Compare RCOND from DPOSVXX with the computed value */ /* in RCONDC. */ result[5] = dget06_(&rcond, &rcondc); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = k1; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___58.ciunit = *nout; s_wsfe(&io___58); do_fio(&c__1, "DPOSVXX", (ftnlen)7); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); } else { io___59.ciunit = *nout; s_wsfe(&io___59); do_fio(&c__1, "DPOSVXX", (ftnlen)7); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); } ++nfail; } /* L85: */ } nrun = nrun + 7 - k1; L90: ; } /* L100: */ } L110: ; } L120: ; } /* L130: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); /* Test Error Bounds from DPOSVXX */ debchvxx_(thresh, path); return 0; /* End of DDRVPO */ } /* ddrvpo_ */