int main(){
	long long len, i, j, k, maxi, mini;
	char t;
	while(scanf("%lld", &num)==1){
		sprintf(ini,"%lld",num);
		len=strlen(ini);
		for(i=0; i<len; i++)
			max[i]=min[i]=ini[i];

		dbsort(max,len);
		absort(min,len);
		k=0;
		if(min[0]=='0'){
			while(min[k]=='0')
				k++;
			t=min[k];
			for(j=k;j>0;j--)
				min[j]=min[j-1];
			min[j]=t;
		}
		maxi=mini=0;

		for(i=0;i<len;i++){
			maxi=(maxi*10)+max[i]-'0';
			mini=(mini*10)+min[i]-'0';
		}
		j=maxi-mini;
		printf("%lld - %lld = %lld = 9 * %lld\n",maxi,mini,j,j/9);
	}
	return 0;
}
示例#2
0
int opendb( Dset *dset )
{
 
   char key[256];
   Tbl *sort_sta_ch_tm;
 
   if (dbopen_database ( dset->dbname, "r+", &(dset->db) ) == dbINVALID )
         die (0, "Can't open database %s\n",  dset->dbname );
 
    dset->db = dblookup ( dset->db, 0, "wfdisc", 0, 0);
    if ( dset->db.table == dbINVALID )
       die (0, "Can't open '%s' wfdisc table.\n", dset->dbname );
 
    /* Select specified sta&chan */
 
    sprintf( key,"(chan =~ /%s/ && sta=~ /%s/)\0", dset->chan, dset->sta );
    dset->db = dbsubset(  dset->db, key, 0 );
    sort_sta_ch_tm = strtbl("sta", "chan", "time", 0 ) ;
    dset->db = dbsort ( dset->db, sort_sta_ch_tm, 0, 0 ) ;
 
    dbquery ( dset->db, dbRECORD_COUNT, &(dset->dbrec) );
    if( dset->dbrec <= 0 )
       die( 0, " no record with sta == %s and chan == %s in %s.\n", 
                 dset->sta, dset->chan, dset->dbname );
 
 
    return 1;
 
}  
示例#3
0
int
main (int argc, char **argv)
{
    int             c,
                    verbose = 0,
		    errflg = 0;


	char *dbinname=malloc(1024);
	char *dboutname=malloc(1024);
	Point *poly;
	double lat,lon;
	char *auth=strdup("regions2polygon");
	char *ptype= strdup("rp");
	char *dir=strdup(".");
	char *dfile=strdup("polygons");
	int ftype=polyFLOAT;
	char *name;
	int nregions, nvertices;
	Tbl *sortkeys, *groupkeys;
			
	Dbptr dbin,dbout,dbi,dbo,dbg,dbb;
	int i,from,to,nv;
	int vertex;
	
    elog_init ( argc, argv ) ; 
    while ((c = getopt (argc, argv, "vV")) != -1) {
	switch (c) {

	case 'v':
	    verbose++ ;
	    break;

	case 'V':
	    usage ();
	    break;

	case '?':
	    errflg++;
	    break ;
	}
    }

    if ((errflg) || argc < 3)
	usage ();

	dbinname = argv[optind++];
	dboutname= argv[optind++];

	if (dbopen(dbinname,"r",&dbin)) {
		elog_die(1,"cannot open database %s",dbinname);
	}
	dbi=dblookup(dbin,0,"regions",0,0);

	

	sortkeys=newtbl(2);
	pushtbl(sortkeys,"regname");
	pushtbl(sortkeys,"vertex");
	groupkeys=newtbl(1);
	pushtbl(groupkeys,"regname");
	
	dbi=dbsort(dbi,sortkeys,0,"regions.sorted");
	dbg=dbgroup(dbi,groupkeys,0,0);
	dbquery(dbg,dbRECORD_COUNT,&nregions);
	if (nregions <1) {
		elog_die(0,"table regions seems to be empty (or not present)");
	}
	
	if (verbose) elog_notify(0,"creating database descriptor %s",dboutname);
	
	if (dbcreate(dboutname,"polygon1.2",0,0,0)) {
		elog_die(1,"cannot create database %s",dboutname);
	}
	dbopen(dboutname,"r+",&dbout);
	dbo=dblookup(dbout,0,"polygon",0,0);
	
	for (i=0; i< nregions; i++) {
		dbg.record=i;
		dbgetv(dbg,0,"regname",name,"bundle",&dbb,0);
		dbget_range(dbb,&from,&to);
		nvertices= to - from;
		if (verbose) elog_notify(0,"%s (%i nvertices)",name,nvertices);
		poly=malloc(2 * nvertices * sizeof(double));
		nv=0;

		for (dbi.record=from; dbi.record<to; dbi.record++) {
			dbgetv(dbi,0,
					"regname",name,
					"vertex",&vertex,
					"lat",&lat,"lon",&lon,
					0);
			poly[nv].lat=lat;
			poly[nv].lon=lon;
			nv++;
		}
		writePolygonData(dbo,poly,nv,name,1,0,ptype,auth,dir,dfile,ftype);
		free(poly);
	}
	/*
				*/
    return 0;
}
int
main (int argc, char **argv)
{
    int             c,
                    verbose = 0,
		    errflg = 0;


	char *dbinname=malloc(1024);
	char *dboutname=malloc(1024);
	Point *poly;
	double lat,lon;
	char *subset_expr=NULL;
	char *name=malloc(100);
	long nregions, nvertices;
	Tbl *sortkeys;
			
	Dbptr dbin,dbout,dbi,dbo,dbs;
	long i,from,to,nv;
	long vertex;
	
    elog_init ( argc, argv ) ; 
    while ((c = getopt (argc, argv, "s:vV")) != -1) {
	switch (c) {

	case 's':
	    subset_expr=optarg;
	    break;
	case 'v':
	    verbose++ ;
	    break;

	case 'V':
	    usage ();
	    break;

	case '?':
	    errflg++;
	    break ;
	}
    }

    if ((errflg) || argc < 3)
	usage ();

	dbinname = argv[optind++];
	dboutname= argv[optind++];

	if (dbopen(dbinname,"r",&dbin)) {
		elog_die(1,"cannot open database %s",dbinname);
	}
	dbi=dblookup(dbin,0,"polygon",0,0);
	if (subset_expr) {
		dbi=dbsubset(dbi,subset_expr,NULL);
	}

	

	sortkeys=newtbl(1);
	pushtbl(sortkeys,"pname");
	
	dbs=dbsort(dbi,sortkeys,0,"sorted");
	dbquery(dbs,dbRECORD_COUNT,&nregions);
	if (nregions <1) {
		elog_die(0,"table regions seems to be empty (or not present)");
	}
	
	if (verbose) elog_notify(0,"creating database descriptor %s",dboutname);
	
	if (dbcreate(dboutname,"places1.2",0,0,0)) {
		elog_die(1,"cannot create database %s",dboutname);
	}
	dbopen(dboutname,"r+",&dbout);
	dbo=dblookup(dbout,0,"regions",0,0);
	
	for (i=0; i< nregions; i++) {
		dbs.record=i;
		dbgetv(dbs,0,"pname",name,NULL );
		nvertices=readPolygon(dbs,&poly);
		for (nv=0;nv < nvertices;nv++) {
			lat=poly[nv].lat;
			lon=poly[nv].lon;
			dbaddv(dbo,0,
					"regname",name,
					"vertex",nv,
					"lat",lat,"lon",lon,
					NULL );
		}
		free(poly);
	}
	dbclose(dbo);
	/*
				*/
    return 0;
}
int main(int argc, char **argv)
{
	char *dbin;  /* Input db name */
	char *dbout;  /* output db name */
	Dbptr db;  /* input db pointer */
	Dbptr dbo;  /* base output db pointer */
	Dbptr dbv;  /* set to view formed by join */
	char *pfin=NULL;  /* input parameter file */
	char *sift_exp;  /* sift expression for subset */
	int sift = 0;  /* default is no sift.  */
	Tbl *sortkeys;
	Tbl *joinkey1, *joinkey2;
	/*Pointers to views returned by dbgroup (keyed to origin and event
	respectively */
	Dbptr dborigin_group;
	Tbl *origin_group;  /* relation keys used in grouping*/
	long nevents;
	/* db row variables */
	long evid;
	long nrows, nrows_raw;

	int useold=0;
	Pf *pf;
	Tbl *ta,*tu;
	Tbl *reason_converged, *residual;
	Location_options o;
	Arr *arr_phase;
	int i;
	Tbl *converge_history;

	Hypocenter h0;
	Hypocenter *hypos;
	long niterations;

	char *vmodel;

	int ret_code;  /* ggnloc return code */
	double **C;   /* covariance matrix*/
	float emodel[4];  

	/* entries for S-P feature */
	long nbcs;
	Arr *badclocks;
	/* need global setting of this to handle fixed depth solutions*/
	int global_fix_depth;

	C=dmatrix(0,3,0,3);

	if(argc < 3) usage();
	dbin = argv[1];
	dbout = argv[2];
	for(i=3;i<argc;++i)
	{
		if(!strcmp(argv[i],"-pf"))
		{
			++i;
			if(i>=argc) usage();
			pfin = argv[i];
		}
		else if(!strcmp(argv[i],"-sift"))
		{
			++i;
			if(i>=argc) usage();
			sift_exp = argv[i];
			sift = 1;
		}
		else if(!strcmp(argv[i],"-useold"))
			useold = 1;
		else
			usage();
	}
	/* set default this way*/
	if(pfin == NULL) pfin = strdup("relocate");


	/* Initialize the error log and write a version notice */
	elog_init (argc, argv) ;
	cbanner("Version $Revision$ $Date$\n",
			"relocate inputdb outputdb [-pf pf -sift expression -useold]\n",
			"Gary Pavlis",
                        "Indiana University",
                        "*****@*****.**");

	/* Alway join assoc, arrival, and site.  We join site 
	to make sure station table is properly dynamic to account for
	time changes.  With this setup, the stations can even move
	around and this should still work.*/


	if(dbopen(dbin,"r",&db) == dbINVALID) 
		elog_die(1,"Unable to open input database %s\n",dbin);
	if(dbopen(dbout,"r+",&dbo) == dbINVALID) 
		elog_die(1,"Unable to open output database %s\n",dbout);

	dbv = dbjoin ( dblookup(db,0,"event",0,0),
		dblookup(db,0,"origin",0,0),
		0,0,0,0,0);
	if(dbv.table == dbINVALID)
		elog_die(1,"event->origin join failed\n");
	dbv = dbjoin ( dbv, dblookup(db,0,"assoc",0,0),
			0,0,0,0,0);
	if(dbv.table == dbINVALID)
		elog_die(1,"event->origin->assoc join failed\n");
	dbv = dbjoin ( dbv, dblookup(db,0,"arrival",0,0),
			0,0,0,0,0);
	if(dbv.table == dbINVALID)
		elog_die(1,"event->origin->assoc->arrival join failed\n");
	/* We will explicitly set the keys for this join because it
	was found to fail sometimes */
	joinkey1 = newtbl(0);
	joinkey2 = newtbl(0);
	pushtbl(joinkey1,"arrival.sta");
	pushtbl(joinkey1,"arrival.time");
	pushtbl(joinkey2,"sta");
	pushtbl(joinkey2,"ondate::offdate");
	dbv = dbjoin ( dbv, dblookup(db,0,"site",0,0),
			&joinkey1,&joinkey2,0,0,0);
	if(dbv.table == dbINVALID)
		elog_die(1,"event->origin->assoc->arrival->site join failed\n");

	/* Subset using sift_key if requested */
	if(sift)
	{
		dbv = dbsubset(dbv,sift_exp,0);
		if(dbv.record == dbINVALID)
			elog_die(1,"dbsubset of %s with expression %s failed\n",
				dbin, sift_exp);
	}
	/* This keeps only the prefered origin records intact */
	dbv = dbsubset(dbv,"orid == prefor", 0);
	if(dbv.record == dbINVALID)
			elog_die(1,"Subset to preferred origin records failed\n");

	/* First we have to run a unique key sort in the following order
	to remove redundant picks made on multiple channels.  We will
	issue a warning if the record count changes. */
	dbquery(dbv, dbRECORD_COUNT, &nrows_raw);
	sortkeys = newtbl(0);
	pushtbl(sortkeys,"evid");
	pushtbl(sortkeys,"sta");
	pushtbl(sortkeys,"phase");
	dbv = dbsort(dbv,sortkeys,UNIQUE,0);
	dbquery(dbv, dbRECORD_COUNT, &nrows);
	if(nrows != nrows_raw)
		elog_complain(0,"Input database has duplicate picks of one or more phases on multiple channels\n\
Which picks will be used here is unpredictable\n\
%ld total picks, %ld unique\nContinuing\n", nrows_raw, nrows);

	/* This sort is the required one for the grouping that follows*/

	sortkeys = newtbl(3);
	pushtbl(sortkeys,"evid");
	pushtbl(sortkeys,"orid");
	pushtbl(sortkeys,"arrival.time");
	dbv = dbsort(dbv,sortkeys,0,0);
	if(dbv.record == dbINVALID)
		elog_die(1,"dbsort on evid,orid,arrival.time failed\n");

	/* Set up grouping by events */
	origin_group = newtbl(0);
	pushtbl(origin_group, "evid");
	dborigin_group = dbgroup(dbv, origin_group, "origin_group",1);
	if(dborigin_group.record == dbINVALID)
		elog_die(1,"dbgroup by origin failed\n");

	dbquery(dborigin_group,dbRECORD_COUNT,&nevents);
	elog_notify(0,"Attempting to relocate %ld events in subsetted database\n",
		nevents);
	

	/* DB is now set up correctly, now we turn to the parameter files */
	i = pfread(pfin,&pf);
	if(i != 0) elog_die(1,"Pfread error\n");

	o = parse_options_pf (pf);
	global_fix_depth=o.fix[2];
 	arr_phase = parse_phase_parameter_file(pf);
	vmodel = pfget_string(pf,"velocity_model_name");

	/* set up minus phase for bad clock problems */
	badclocks = newarr(0);
	if(db_badclock_definition(db,pf,badclocks))
		elog_complain(0,"Warning:  problems in database definitions of bad clock time periods\n");
	pfget_badclocks(pf,badclocks);
	nbcs = cntarr(badclocks);
	if(nbcs>0) fprintf(stdout,"relocate:  bad clock feature enabled\n\n");
        /* Change by JN to output evid and orid. */
        /* fprintf(stdout,"lat lon depth time rms wrms interquartile ndata ndgf iterations\n"); */
	fprintf(stdout,"evid orid lat lon depth time rms wrms interquartile ndata ndgf iterations\n");

	/* Main loop.  We utilize the group views and loop through by 
	events */
	for(dborigin_group.record=0;
		dborigin_group.record< nevents;++dborigin_group.record)
	{
		Dbptr db_bundle;  /* db pointer returned from bundle field 
				of dborigin_group for current event */
		Arr *station_table;
		Arr *array_table;
		long is, ie; 
		long orid;  /* orid assigned relocated event in output db */

		if(dbgetv(dborigin_group,0,"evid", &evid,
			"bundle", &db_bundle,NULL ) == dbINVALID)
			elog_complain(1,"dbgetv error for row %ld of event group\n",
				dborigin_group.record);
		dbget_range(db_bundle,&is,&ie);

		station_table = dbload_station_table(dbv,
						is,ie,pf);
		array_table = dbload_array_table(dbv,
						is,ie,pf);
		ta = dbload_arrival_table(dbv,
				is,ie,station_table, arr_phase);


		tu = dbload_slowness_table(dbv,
				is,ie,array_table, arr_phase);
		/* this actually sets up the minus phase feature for bad clocks*/
		if(nbcs)
		{
			if(minus_phases_arrival_edit(ta,arr_phase,badclocks))
				elog_complain(0,"Warning(relocate):  problems in minus_phase_arrival_edit function\n");
		}
		if(useold)
		{
			char dtype[2];
			h0 = db_load_initial(dbv,is);
			/* keep fixed depth if done before.  
			setting dbv.record here is a bit of
			a potential maintenance problem */
			dbv.record=is;
			dbgetv(dbv,0,"dtype",dtype,NULL );
			if( (!strcmp(dtype,"g")) || (!strcmp(dtype,"r")) )
				o.fix[2]=1;
			
		}
		else
			h0 = initial_locate(ta, tu, o, pf);

		ret_code = ggnloc(h0,ta,tu,o,
			&converge_history,&reason_converged,&residual);
			
		if(ret_code < 0)
		{
			elog_complain(1,"ggnloc failed to produce a solution\n");
		}
		else 
		{
			if(ret_code > 0)
			    elog_complain(1,"%d travel time calculator failures in ggnloc\nSolution ok\n",
				ret_code);
			
			niterations = maxtbl(converge_history);
			hypos = (Hypocenter *)gettbl(converge_history,
								niterations-1);
			predicted_errors(*hypos,ta,tu,o,C,emodel);

                        /* Next 3 calls changed by JN to output evid, orid and number_data */
			orid = save_origin(dbv,is,ie,o.fix[3],*hypos,dbo);
			evid = save_event(dbv,is,ie,orid,dbo);

			fprintf(stdout,"%ld %ld %lf %lf %lf %lf %g %g %g %d %d %ld\n",
					evid,
					orid,
					hypos->lat,hypos->lon,hypos->z,hypos->time,
					hypos->rms_raw, hypos->rms_weighted,
					hypos->interquartile,
					hypos->number_data,
					hypos->degrees_of_freedom,
					niterations);
	
			save_origerr(orid,*hypos,C,dbo);
			save_assoc(dbv,is,ie,orid,vmodel,residual,*hypos,dbo);
			/* These save genloc add on tables */
			save_emodel(orid,emodel,dbo);
			save_predarr(dbo,ta,tu,*hypos,orid,vmodel);
		}
		o.fix[2]=global_fix_depth;
		if(maxtbl(converge_history)>0)freetbl(converge_history,free);
		if(maxtbl(reason_converged)>0)freetbl(reason_converged,free);
		if(maxtbl(residual)>0)freetbl(residual,free);
		destroy_data_tables(tu, ta);
		destroy_network_geometry_tables(station_table,array_table);
	}
	return(0);
}
示例#6
0
int grdb_sc_loadcss (Dbptr dbin, char *net_expr, char *sta_expr,
        char *chan_expr, double tstart, double tend, 
        int coords, int ir, int orient, Dbptr *dbscgr, Dbptr *dbsc)
{
	Dbptr dbout, db, dbout2;
	char string[1024];
	char string2[1024];
	char sta_wfdisc[32], chan_wfdisc[32];
	int i, j, n, sensor=0, ok;
	Tbl *pat1, *pat2;
	Tbl *sortfields, *groupfields;
	FILE *file;
	Response *resp;
	int is_view=0;
	Dbptr db_to_clear;

	/* Subset the wfdisc by station-channel-time sifters. */

	dbout = dblookup (dbin, 0, "wfdisc", 0, 0);
	strcpy (string, "");
	if (sta_expr) {
		strcpy (string, "( ");
        	sprintf (string2, "sta =~ /%s/", sta_expr);
        	strcat (string, string2);
	}
	if (chan_expr) {
		if (string[0]) strcat (string, " && ");
		else strcpy (string, "( ");
        	sprintf (string2, "chan =~ /%s/", chan_expr);
        	strcat (string, string2);
	}
	if (tstart != 0.0 || tend != 0.0) {
		if (string[0]) strcat (string, " && ");
		else strcpy (string, "( ");
        	sprintf (string2, "(time < %.5f && endtime > %.5f)", tend, tstart);
        	strcat (string, string2);
	}
	if (string[0]) {
		strcat (string, " )");
		dbout = dbsubset (dbout, string, 0);
		is_view=1;
	}
        dbquery (dbout, dbRECORD_COUNT, &n);
        if (n < 1) {
		register_error (0, "grdb_sc_loadcss: No wfdisc rows to process.\n");
		return (-1);
        }

        /* Make the necessary joins and check for completeness. */

        if (coords) {
        	db = dblookup (dbin, 0, "site", 0, 0);
		if(is_view)db_to_clear=dbout;
        	dbout = dbjoin (dbout, db, 0, 0, 1, 0, 0);
		if(is_view) dbfree(db_to_clear);
		is_view=1;
		
        	dbquery (dbout, dbRECORD_COUNT, &n);
        	if (n < 1) {
			register_error (0, "grdb_sc_loadcss: No data rows to process.\n");
			return (-1);
        	}
        	for (dbout.record=0; dbout.record<n; dbout.record++) {
        		if (dbgetv (dbout, 0, "wfdisc.sta", sta_wfdisc,
        				"wfdisc.chan", chan_wfdisc,
        				"site.sta", string, 0) == dbINVALID) {
			    register_error (0, "grdb_sc_loadcss: dbgetv() error while checking site.\n");
			    return (-1);
			}
        		if (coords > 1 && strcmp(string, sta_wfdisc)) {
        			register_error (0, "grdb_sc_loadcss: Cannot find site parameters for %s %s.\n", 
        									sta_wfdisc, chan_wfdisc);
        			return (-1);
        		}
        	}
        }
        if (ir) {
        	db = dblookup (dbin, 0, "sensor", 0, 0);
		if(is_view)db_to_clear=dbout;
        	dbout = dbjoin (dbout, db, 0, 0, 1, 0, 0);
		if(is_view) dbfree(db_to_clear);
		is_view=1;
        	dbquery (dbout, dbRECORD_COUNT, &n);
        	if (n < 1) {
			register_error (0, "grdb_sc_loadcss: No data rows to process.\n");
			return (-1);
        	}
        	for (dbout.record=0; dbout.record<n; dbout.record++) {
        		if (dbgetv (dbout, 0, "wfdisc.sta", sta_wfdisc,
        				"wfdisc.chan", chan_wfdisc,
        				"sensor.sta", string, 0) == dbINVALID) {
			    register_error (0, "grdb_sc_loadcss: dbgetv() error while checking sensor.\n");
			    return (-1);
			}
        		if (ir > 1 && strcmp(string, sta_wfdisc)) {
        			register_error (0, "grdb_sc_loadcss: Cannot find sensor parameters for %s %s.\n", 
        									sta_wfdisc, chan_wfdisc);
        			return (-1);
        		}
        	}
        	sensor = 1;
		if(is_view)db_to_clear=dbout;
        	db = dblookup (dbin, 0, "instrument", 0, 0);
        	dbout = dbjoin (dbout, db, 0, 0, 1, 0, 0);
		if(is_view) dbfree(db_to_clear);
		is_view=1;
        	dbquery (dbout, dbRECORD_COUNT, &n);
        	if (n < 1) {
			register_error (0, "grdb_sc_loadcss: No data rows to process.\n");
			return (-1);
        	}
        	for (dbout.record=0; dbout.record<n; dbout.record++) {
        		if (dbgetv (dbout, 0, "wfdisc.sta", sta_wfdisc,
        				"wfdisc.chan", chan_wfdisc,
        				"sensor.inid", &j,
        				"instrument.insname", string2,
        				"instrument.inid", &i, 0) == dbINVALID) {
			    register_error (0, "grdb_sc_loadcss: dbgetv() error while checking instrument.\n");
			    return (-1);
			}
        		if (ir > 1 && (i != j)) {
        			register_error (0, "grdb_sc_loadcss: Cannot find instrument parameters for %s %s.\n", 
        									sta_wfdisc, chan_wfdisc);
        			return (-1);
        		}
        		if (i >= 0) {
				if (resp_arr == NULL) {
					resp_arr = newarr (0);
					if (resp_arr == NULL) {
        					register_error (0, "grdb_sc_loadcss: newarr() error.\n");
        					return (-1);
					}
				}
				dbextfile (dbout, "instrument", string);
				resp = (Response *) getarr (resp_arr, string);
				if (resp == NULL) {
					file = fopen (string, "r");
					if (file == NULL) {
						if (ir > 1) {
        						register_error (1, "grdb_sc_loadcss: fopen('%s') error.\n", string);
        						return (-1);
						}
					} else {
						if (read_response (file, &resp)) {
        						register_error (0, "grdb_sc_loadcss: read_response('%s') error.\n", string);
        						return (-1);
						}
						fclose (file);
						resp->insname = strdup(string2);
					}
					setarr (resp_arr, string, resp);
				}
			}
        	}
        }
        if (orient) {
        	ok = 1;
		if(is_view)db_to_clear=dbout;
        	db = dblookup (dbin, 0, "sitechan", 0, 0);
        	dbout2 = dbjoin (dbout, db, 0, 0, 1, 0, 0);
		is_view=1;
        	dbquery (dbout2, dbRECORD_COUNT, &n);
        	if (n < 1) {
        		ok = 0;
        	} else {
        		for (dbout2.record=0; dbout2.record<n; dbout2.record++) {
        			dbgetv (dbout2, 0, "wfdisc.sta", sta_wfdisc,
        				"wfdisc.chan", chan_wfdisc,
        				"sitechan.sta", string, 0);
        			if (strcmp(string, sta_wfdisc)) {
        				ok = 0;
        				break;
        			}
        		}
		}
		if (ok) {
			dbout = dbout2;
			if(is_view) dbfree(db_to_clear);
		} else {
			if (!sensor) {
        			db = dblookup (dbin, 0, "sensor", 0, 0);
				if(is_view)db_to_clear=dbout;
	       			dbout = dbjoin (dbout, db, 0, 0, 1, 0, 0);
				if(is_view) 
				{
					dbfree(dbout2);
					dbfree(db_to_clear);
				}
				is_view=1;
        			dbquery (dbout, dbRECORD_COUNT, &n);
        			if (n < 1) {
					register_error (0, "grdb_sc_loadcss: No data rows to process.\n");
					return (-1);
        			}
        			for (dbout.record=0; dbout.record<n; dbout.record++) {
        				if (dbgetv (dbout, 0, "wfdisc.sta", sta_wfdisc,
        						"wfdisc.chan", chan_wfdisc,
        						"sensor.sta", string, 0) == dbINVALID) {
			    			register_error (0, "grdb_sc_loadcss: dbgetv() error while checking sensor.\n");
			    			return (-1);
					}
        				if (orient > 1 && strcmp(string, sta_wfdisc)) {
        					register_error (0, "grdb_sc_loadcss: Cannot find sensor parameters for %s %s.\n", 
        											sta_wfdisc, chan_wfdisc);
        					return (-1);
        				}
        			}
			}
        		db = dblookup (dbin, 0, "sitechan", 0, 0);
        		pat1 = newtbl(1);
        		if (pat1 == NULL) {
        			register_error (0, "grdb_sc_loadcss: newtbl() error.\n");
        			return (-1);
        		}
        		pat2 = newtbl(1);
        		if (pat2 == NULL) {
        			register_error (0, "grdb_sc_loadcss: newtbl() error.\n");
        			return (-1);
        		}
			if(is_view)db_to_clear=dbout;
        		settbl (pat1, 0, strdup("sensor.chanid"));
        		settbl (pat2, 0, strdup("sitechan.chanid"));
        		dbout = dbjoin (dbout, db, &pat1, &pat2, 1, 0, 0);
			if(is_view) dbfree(db_to_clear);
			is_view=1;
        		freetbl (pat1, free);
        		freetbl (pat2, free);
        		dbquery (dbout, dbRECORD_COUNT, &n);
        		if (n < 1) {
				register_error (0, "grdb_sc_loadcss: No data rows to process.\n");
				return (-1);
        		} else {
        			for (dbout.record=0; dbout.record<n; dbout.record++) {
        				if (dbgetv (dbout, 0, "wfdisc.sta", sta_wfdisc,
        					"wfdisc.chan", chan_wfdisc,
        					"sitechan.sta", string, 0) == dbINVALID) {
			    		   register_error (0, "grdb_sc_loadcss: dbgetv() error while checking sitechan.\n");
			    		   return (-1);
					}
        				if (orient > 1 && strcmp(string, sta_wfdisc)) {
        					register_error (0, "grdb_sc_loadcss: Cannot find sitechan parameters for %s %s.\n", 
        											sta_wfdisc, chan_wfdisc);
        					return (-1);
        				}
        			}
			}
		}
        }

        /* Sort and group the output view. */

	if(is_view)db_to_clear=dbout;
	sortfields = newtbl (3);
	if (sortfields == NULL) {
		register_error (0, "grdb_sc_loadcss: newtbl() error.\n");
		return (-1);
	}
	settbl (sortfields, 0, strdup("wfdisc.sta"));
	settbl (sortfields, 1, strdup("wfdisc.chan"));
	settbl (sortfields, 2, strdup("wfdisc.time"));
        *dbsc = dbsort (dbout, sortfields, 0, 0);
	if(is_view) dbfree(db_to_clear);
	groupfields = newtbl (2);
	if (groupfields == NULL) {
		register_error (0, "grdb_sc_loadcss: newtbl() error.\n");
		return (-1);
	}
	settbl (groupfields, 0, strdup("sta"));
	settbl (groupfields, 1, strdup("chan"));
	*dbscgr = dbgroup (*dbsc, groupfields, 0, 1);
	freetbl (sortfields, free);
	freetbl (groupfields, free);

	/* Normal exit */

	return (0);
}
示例#7
0
int main(int argc, char **argv)
{
	SEGYBinaryFileHeader reel;
	SEGYTraceHeader *header;
	char *dbin;
	char *outfile;
	FILE *fp;
	Pf *pf;
	Arr *channels;  /* channel order list */
	Arr *table_list;  /* array of valid tables */
	int nchan;
	char *stest;

	float **traces;
	char text_file_header[SEGY_TEXT_HEADER_SIZE];
	Dbptr db, trdb, dbj;
	Dbptr trdbss;
	int nsamp0;
	double time0, endtime0, samprate0;
	long int nsamp;
	double samprate;
	int i,j;
	char stime[30],etime[30];
	char s[128];
	double tlength;
	double phi, theta;
	char *newchan_standard[3]={"X1","X2","X3"};
	char *trsubset="chan=~/X./";
	char *newchan[3]={"R","T","Z"};
	Tbl *sortkeys=newtbl(0);
	char sta[10],chan[10];
	double lat, lon, elev, dnorth, deast, edepth;
	char segtype;
	char refsta[10];
	int total_traces=0;
	char *time_str;
	long int evid,shotid=1;
	int rotate=0;
	long int ntraces;
        int ichan;
	int map_to_cdp;  /* logical switch to output data like cdp stacked data */
	char *fmt="%Y %j %H %M %S %s";
	char *pfname;
	int Verbose=0;
	/* New features added 2009 */
	/* this is a boolean.  If true (nonzero) it is assumed stdin will
	contain four numbers:  time,lat, lon, elev.  If false, only the
	time field is read and remainder of any input on each line is dropped.*/
	int input_source_coordinates;
	/* scale factor for source coordinates.  Needed because segy uses
	an int to store source coordinates.  Sensible choices are
	3600 for arc seconds and 10000 for a pseudodecimal. Note this
	parameter is ignored unless input_source_coordinates is true.*/
	int coordScale;
	/* If true use passcal 32 bit extension num_samps as record length.
	SEGY standard uses a 16 bit entry that easily overflows with large
	shots at long offset.  In this ase assume the 16 bit quantity is
	meaningless. */
	int use_32bit_nsamp;
	/* This is switched on by argument switch.  When set to a nonzero
	(default) the reel headers are written.  When 0 `
	the reel headers will not be written -- used by seismic unix
	and passcal*/
	int write_reel_headers=1;

	/* SEG-Y version to output. Default is original 1975 spec (rev 0) */
	int16_t segy_format = SEGY_FORMAT_REV_0;

	/* dbsubset query string */
	char *substr=NULL;

	/* text_header_description is a buffer holding a user-supplied description
	 * to be placed in the 3200-byte text header block. It is controlled by
	 * the parameter file value text_header_description or by the -d command
	 * line option, with the latter taking precedence */
	char* text_header_description=NULL;

	if(argc < 3) usage();
	dbin = argv[1];
	outfile = argv[2];
	pfname = NULL;
	for(i=3;i<argc;++i)
	{
		if(!strcmp(argv[i],"-pf"))
		{
			++i;
			pfname = argv[i];
		}
		else if(!strcmp(argv[i],"-SU"))
		{
			write_reel_headers=0;
		}
		else if(!strcmp(argv[i],"-v"))
		{
			Verbose=1;
		}
		else if(!strcmp(argv[i],"-d"))
		{
			++i;
			text_header_description = strdup(argv[i]);
		}
		else if(!strcmp(argv[i],"-ss"))
		{
			++i;
			substr=argv[i];
		}
		else if(!strcmp(argv[i],"-V"))
		{
			++i;
			if     (!strcmp(argv[i],"0")) {segy_format = SEGY_FORMAT_REV_0;}
			else if(!strcmp(argv[i],"1")) {segy_format = SEGY_FORMAT_REV_1_0;}
			else if(!strcmp(argv[i],"SU"))
			{
				segy_format = SEGY_FORMAT_SU;
				write_reel_headers=0;
			}
			else
			{
				elog_complain(0, "SEG-Y Version must be either 1 or 0");
				usage();
			}
		}
		else
		{
			usage();
		}
	}
	/* Command-line parameter sanity checking */
	if (write_reel_headers==0 && segy_format != SEGY_FORMAT_SU){
		complain(0, "The SU option cannot be used with the -V option");
		usage();
	}
	if(pfname == NULL) pfname = strdup("db2segy");

	elog_init(argc, argv);

	if(pfread(pfname,&pf)) {
		elog_die(0,"pfread error for pf file %s.pf\n",argv[0]);
	}

	/* Read the text_header_description if we weren't passed the -d option */
	if (!text_header_description) {
		text_header_description=pfget_string(pf, "text_header_description");
	}

	/* rotation parameters */
	rotate=pfget_boolean(pf,"rotate");
	if(rotate)
	{
		phi = pfget_double(pf,"phi");
		theta = pfget_double(pf,"theta");
	}
	/* This function creates the channel order list keyed by
	station channel names */
	channels = build_stachan_list(pf,&nchan,Verbose);

	map_to_cdp = pfget_boolean(pf,"map_to_cdp");
	if(map_to_cdp && Verbose)
		elog_notify(0,"Casting data as CDP stacked section\n");
	if(dbopen(dbin,"r",&db) == dbINVALID)
	{
		elog_complain(1,"Cannot open db %s\n", dbin);
		usage();
	}
	/* We grab the sample rate and trace length (in seconds) and
	use this to define global sample rates for the data.
	SEG-Y REV0 REQUIRES fixed length records and sample rates, so
	irregular sample rates will cause this program to die.
	One could add a decimate/interpolate function, but this
	is not currently implemented */
	samprate0 = pfget_double(pf,"sample_rate");
	tlength = pfget_double(pf,"trace_length");
	nsamp0 = (int)(tlength*samprate0);
	use_32bit_nsamp=pfget_boolean(pf,"use_32bit_nsamp");
	if (ntohs(segy_format) >= 0x0100 && use_32bit_nsamp) {
		elog_complain(0,"The 32-bit extension field is incompatible with SEG-Y REV 1. Ignoring 'use_32bit_nsamp' from the parameter file");
		use_32bit_nsamp=0;
	}

	/* nsamp in segy is a 16 bit field.  Handling depends on
	setting of use_32bit_nsamp boolean */
	if(nsamp0 > SEGY_MAX_NSAMP)
	{
		if(use_32bit_nsamp)
		{
			elog_notify(0,"Warning:  segy uses a 16 bit entity to store number of samples\nThat field is garbage. Using the 32 bit extension field.");
		}
		else
		{
		elog_complain(0,
		  "Warning:  segy uses a 16 bit entity to store number of samples. Requested %d samples per trace.  Trucated to %d", nsamp0, SEGY_MAX_NSAMP);
		nsamp0 = SEGY_MAX_NSAMP;
		}
	}

	/* boolean.  When nonzero set coordinates as geographic arc seconds values */
	int use_geo_coordinates=pfget_boolean(pf,"use_geo_coordinates");

	/* boolean. When nonzero, output decimal degrees instead of arcseconds if
	 * the requested output format supports it (rev1 only) */
	int prefer_decimal_degrees=pfget_boolean(pf, "prefer_decimal_degrees");

	/* We now have enough information to decide the coordUnits for all traces */
	int coordUnits = 0;
	if (!use_geo_coordinates) {
		coordUnits=SEGY_TRACE_COORDUNITS_LENGTH;
	} else if (ntohs(segy_format) >= 0x0100 && prefer_decimal_degrees) {
		coordUnits=SEGY_TRACE_COORDUNITS_DECIMAL_DEGREES;
	} else {
		coordUnits=SEGY_TRACE_COORDUNITS_ARCSECONDS;
	}
	/* We should have set our coordinate units now */
	assert(coordUnits!=0);

	input_source_coordinates=pfget_boolean(pf,"input_source_coordinates");
	if(input_source_coordinates)
	{
		coordScale=pfget_int(pf,"coordinate_scale_factor");
	}
	else if (coordUnits==SEGY_TRACE_COORDUNITS_DECIMAL_DEGREES)
	{
		/* Use a sane scalar for decimal degrees. 10000 gives four decimal
		 * places of accuracy, which matches the CSS3.0 spec for lat and lon */
		coordScale=10000;
	}
	else
	{
		coordScale=1;
	}

	/* Print a diagnostic message if the user gave a sub-optimal value for the
	 * coordScale */
	if (coordUnits == SEGY_TRACE_COORDUNITS_DECIMAL_DEGREES &&
			coordScale < 10000)
	{
		elog_alert(0,
				"The supplied parameter 'coordinate_scale_factor' value of %d is less than 10000, and will cause loss of precision for decimal degree coordinates.",
				coordScale);
	}
    else if (coordUnits == SEGY_TRACE_COORDUNITS_ARCSECONDS)
    {
        if (coordScale > 1000) {
            elog_alert(0,
                    "The supplied parameter 'coordinate_scale_factor' value of %d is greater than 1000, and will cause loss of precision for arcsecond coordinates.",
                    coordScale);
        }
    }

	/* trace_gain_type: signed int */
	int16_t trace_gain_type = pfget_int(pf,"trace_gain_type");
	if (trace_gain_type < 0)
	{
		die(0, "The trace_gain_type must be zero or greater");
	}
	else
	{
		trace_gain_type=htons(trace_gain_type);
	}


	/* check list of tables defined in pf.  Return array of
	logicals that define which tables are valid and join
	tables. */
	table_list = check_tables(db,pf);
	check_for_required_tables(table_list);
	dbj = join_tables(db,pf,table_list);
	if(dbj.record == dbINVALID) elog_die(0,"dbjoin error\n");
	if(substr!=NULL) dbj=dbsubset(dbj,substr,0);
	long int ndbrows;
	dbquery(dbj,dbRECORD_COUNT,&ndbrows);
	if(ndbrows<=0)
	{
		elog_complain(1,"Working database view is empty\n");
		if(substr!=NULL) elog_complain(0,"Subset condtion =%s a likely problem\n",
				substr);
		usage();
	}

	fp = fopen(outfile,"w");
	if(fp == NULL)
	{
		elog_complain(0,"Cannot open output file %s\n",outfile);
		usage();
	}

	/* These are needed for sort below */
	pushtbl(sortkeys,"sta");
	pushtbl(sortkeys,"chan");

    /* Set up and write the Textual File Header */
	initialize_text_header(text_file_header, segy_format,
			text_header_description);

	if(write_reel_headers){
		if ( fwrite(text_file_header,1,SEGY_TEXT_HEADER_SIZE,fp) \
				!= SEGY_TEXT_HEADER_SIZE ) {
			elog_die(1,"An error occurred writing the textual file header");
		}
	}

	/* memory allocation for trace data.  This is a large matrix
	that is cleared for each event.  This model works because of
	segy's fixed length format.*/
	traces = calloc(nchan, sizeof(float*));
	if(traces == NULL)
		elog_die(1,"out of memory");
	for (int r = 0; r < nchan; r++)
	{
		traces[r] = calloc(nsamp0, sizeof(float));
		if(traces[r] == NULL)
			elog_die(1,"out of memory");
	}
	header = (SEGYTraceHeader *)calloc((size_t)nchan,sizeof(SEGYTraceHeader));
	if(header == NULL)
			elog_die(0,"Cannot alloc memory for %d segy header workspace\n",nchan);
	if(write_reel_headers)
	{
		if (Verbose) {
			elog_debug(0,"Binary Headers - Using segy_format code 0x%04X\n", ntohs(segy_format));
		}
		initialize_binary_file_header(&reel, segy_format);

		/* now fill in the binary reel header and write it */
		reel.kjob   = htonl(1);
		reel.kline  = htonl(1);
		reel.kreel  = htonl(1);
		reel.kntr   = htons((int16_t)nchan);
		reel.knaux  = htons(0);
		reel.sr     = htons((int16_t)(1000000.0/samprate0));
		reel.kfldsr = reel.sr;
		reel.knsamp = htons((int16_t)nsamp0);
		reel.kfsamp = htons((int16_t)nsamp0);
		reel.dsfc   = htons(5);  /* This is ieee floats*/
		reel.kmfold = htons(0);
		if(map_to_cdp)
			reel.ksort = htons(2);
		else
			reel.ksort = htons(1);
		reel.kunits = htons(1);  /* This sets units to always be meters */

		if(fwrite((void *)(&reel),sizeof(SEGYBinaryFileHeader),1,fp) != 1)
		{
			elog_die(1,"Write error for binary reel header");
		}
	}

	/* Now we enter a loop over stdin reading start times.
	Program will blindly ask for data from each start time to
	time+tlength.  The trace buffer will be initialized to
	zeros at the top of the loop always.  If nothing is found
	only zeros will be written to output.
	*/
	while((stest=fgets(s,80,stdin)) != NULL)
	{
		double slat,slon,selev;  /* Used when reading source location*/
		if(Verbose)
			elog_notify(0,"Processing:  %s\n",s);
		for(i=0;i<nchan;++i)
		{
			initialize_trace_header(&(header[i]), segy_format);
			header[i].gainType = trace_gain_type;
			header[i].lineSeq = htonl(total_traces + i + 1);
			header[i].reelSeq = header[i].lineSeq;
			if(map_to_cdp)
			{
				header[i].cdpEns = htonl(i + 1);
				header[i].traceInEnsemble = htonl(1);/* 1 trace per cdp faked */
			}
			else
			{
				header[i].channel_number = htonl(i + 1);
			}
			header[i].event_number   = htonl(shotid);
			header[i].energySourcePt = htonl(shotid);
			for(j=0;j<nsamp0;++j)  traces[i][j] = htonf((Trsample)0.0);
		}
		if(input_source_coordinates)
		{
			char stmp[40];
			sscanf(s,"%s%ld%lf%lf%lf",stmp,&shotid,&slon,&slat,&selev);
			time0=str2epoch(stmp);
			if(coordUnits == SEGY_TRACE_COORDUNITS_ARCSECONDS) {
				slat*=3600.0;
				slon*=3600.0;
			}
			slat *= (double)coordScale;
			slon *= (double)coordScale;
		}
		else
		{
			time0 = str2epoch(s);
		}
		endtime0 = time0 + tlength;
		sprintf(stime,"%20.4f",time0);
		sprintf(etime,"%20.4f",endtime0);
		trdb.database = -1;
		if(trload_css(dbj,stime,etime,&trdb,0, 0) < 0)
		{
			if(Verbose)
			{
			  elog_notify(0,"trload_css failed for shotid=%ld",shotid);
			  elog_notify(0,"  No data in time range %s to %s\n",
			  	strtime(time0),strtime(endtime0) );
			  elog_notify(0,"No data written for this shotid block.");
			  elog_notify(0,"  Handle this carefully in geometry definitions.\n");
			}

			continue;
		}
		/* This does gap processing */
		repair_gaps(trdb);

		trapply_calib(trdb);

		if(rotate)
		{
			if(rotate_to_standard(trdb,newchan_standard))
				elog_notify(0,"Data loss in rotate_to_standard for event %s to %s\n",
					stime, etime);
			/* This is need to prevent collisions of channel names */
			trdbss = dbsubset(trdb,trsubset,0);
			if(trrotate(trdbss,phi,theta,newchan))
				elog_notify(0,"Data loss in trrotate for event %s to %s\n",
					stime, etime);
		}
		if(Verbose)
			elog_notify(0,"Station  chan_name  chan_number seq_number shotid  evid\n");
		trdb = dbsort(trdb,sortkeys,0,0);
		dbquery(trdb,dbRECORD_COUNT,&ntraces);
		if(Verbose) elog_debug(0,"Read %ld traces for event at time%s\n",
			ntraces,strtime(time0));
		for(trdb.record=0;trdb.record<ntraces;++trdb.record)
		{
			Trsample *trdata;
			if(dbgetv(trdb,0,
			    "evid",&evid,
			    "sta",sta,
			    "chan",chan,
			    "nsamp", &nsamp,
			    "samprate",&samprate,
			    "data",&trdata,
			    "lat", &lat,
			    "lon", &lon,
			    "elev",&elev,
			    "refsta",refsta,
			    "dnorth",&dnorth,
			    "deast",&deast,
			    "edepth",&edepth,
			    "segtype",&segtype,
			    NULL) == dbINVALID)
			{
				elog_complain(0," dbgetv error reading record %ld. Trace will be skipped for station %s and channel %s",
				trdb.record,sta,chan);
				continue;
			}
			/* Allow 1 percent samprate error before killing */
			double fsrskew=fabs((samprate-samprate0)/samprate0);
			double frskewcut=0.01;
			if(fsrskew>frskewcut)
			{
				elog_complain(0,"%s:%s sample rate %f is significantly different from base sample rate of %f. Trace skipped -- segy requires fixed sample rates",
					sta,chan,samprate,samprate0);
				continue;
			}
			if(nsamp > nsamp0)
			{
				elog_complain(0,"%s:%s trace has extra samples=%ld. Truncated to length %d",
					sta, chan, nsamp, nsamp0);
				nsamp = nsamp0;
			}
			else if(nsamp < nsamp0)
			{
				elog_complain(0,"%s:%s trace is shorter than expected %d samples. Zero padded after sample %ld",
					sta, chan, nsamp0, nsamp);
			}

			ichan = get_channel_index(channels,sta,chan);
			if(ichan > nchan)
			{
				elog_die(0,"Channel index %d outside limit of %d. Cannot continue",
					ichan, nchan);
			}
			if(ichan >= 0)
			{
				if(Verbose)
					elog_debug(0,"%s:%s\t%-d\t%-d\t%-ld\t%-ld\n",
					sta,chan,ichan+1,
					ntohl(header[ichan].reelSeq),
					shotid, evid);
				header[ichan].traceID = get_trace_id_code_from_segtype(segtype);
				for(j=0;j<nsamp;++j) {
				   traces[ichan][j] = htonf((float)trdata[j]);
				}
				/* header fields coming from trace table */
				header[ichan].samp_rate = htonl(
						(int32_t) (1000000.0/samprate0));
				/* according to the behavior specified in the man page:
				 * if use_geo_coordinates is false:
				 * - coordUnits is length (meters)
				 * - therefore, we use deast for X and dnorth for Y
				 * if use_geo_coordinates is true:
				 * - we're using either arcseconds or decimal degrees
				 * - and therefore, we use lon for X and lat for Y
				 *
				 * coordUnits is based on use_arcseconds and the requested
				 * version of segY */

				/* set the coordinate units in the trace header */
				header[ichan].coordUnits = coordUnits;

				/* Pick the source db fields for our receiver X and Y */
				double recLongOrX = 0;
				double recLatOrY  = 0;
				if (coordUnits == SEGY_TRACE_COORDUNITS_LENGTH) {
					/* Use deast and dnorth
					 * CSS3.0 Schema specifies deast and dnorth are in KM.
					 * SEG-Y specifies easting and northing as meters,
					 * hence the 1000.0 multiplier here. */
					recLongOrX = deast  * 1000.0;
					recLatOrY  = dnorth * 1000.0;
				} else if (coordUnits == SEGY_TRACE_COORDUNITS_ARCSECONDS){
					/* Use lat and lon, converted to arcseconds */
					recLongOrX = lon * 3600.0;
					recLatOrY  = lat * 3600.0;
				} else {
					/* Default case, which covers decimal degrees */
					recLongOrX = lon;
					recLatOrY  = lat;
				}

				/* Apply our coordScale - the user can specify negative numbers,
				 * but they are treated as inverting the value, not as a divisor
				 * as in the SEG-Y field usage. See below where we always treat
				 * the scalar as a divisor in the SEG-Y field */
				recLongOrX *= (double)coordScale;
				recLatOrY  *= (double)coordScale;

				/* Set the coordScale in the header.
				 * Note negative here.  This is a oddity of segy that - means
				 * divide by this to get actual.  Always make this negative in
				 * case user inputs a negative number.
				 * Don't set it -1 for cosmetic reasons */
				if (abs(coordScale) == 1)
				{
					header[ichan].coordScale = htons(1);
				} else
				{
					header[ichan].coordScale = htons(-abs(coordScale));
				}

				/* Finally, write out the X and Y */
				header[ichan].recLongOrX
					= htonl((int32_t)recLongOrX);
				header[ichan].recLatOrY
					= htonl((int32_t)recLatOrY);

				/* CSS3.0 specfies elev as being in km, SEG-Y wants it in m */
				header[ichan].recElevation = htonl((int32_t)(elev*1000.0));

				header[ichan].deltaSample = htons(
						(int16_t) (1000000.0/samprate0));
				header[ichan].sampleLength = htons((int16_t)nsamp0);
				if (ntohs(segy_format)<0x0100)
				{
					header[ichan].num_samps = htonl((int32_t)nsamp0);
				}
				/* This cracks the time fields */
				time_str = epoch2str(time0,fmt);
				int16_t hyear, hday, hhour, hminute, hsecond, hm_secs;
				hyear=hday=hhour=hminute=hsecond=hm_secs=0;
				sscanf(time_str,"%hd %hd %hd %hd %hd %hd",
						&hyear, &hday, &hhour, &hminute, &hsecond, &hm_secs);
				header[ichan].year   = htons(hyear);
				header[ichan].day    = htons(hday);
				header[ichan].hour   = htons(hhour);
				header[ichan].minute = htons(hminute);
				header[ichan].second = htons(hsecond);
				header[ichan].m_secs = htons(hm_secs);
				if (ntohs(segy_format)<0x0100)
				{
					/* These are IRIS-PASSCAL extensions */
					header[ichan].trigyear   = header[ichan].year;
					header[ichan].trigday    = header[ichan].day;
					header[ichan].trighour   = header[ichan].hour;
					header[ichan].trigminute = header[ichan].minute;
					header[ichan].trigsecond = header[ichan].second;
				}
				free(time_str);
				if(input_source_coordinates)
				{
					/* Write out our pre-scaled and optionally
					 * arcsecond-converted source lat/lon plus our elevation */
					header[ichan].sourceLongOrX = htonl((int32_t)slon);
					header[ichan].sourceLatOrY  = htonl((int32_t)slat);
					header[ichan].sourceSurfaceElevation
						= htonl((int32_t)selev);
					/* No easy way to specify both elev and depth*/
					header[ichan].sourceDepth=htonl(0);
				}
				else if(map_to_cdp)
				{
				/* When faking CDP data we make this look
				like a zero offset, single fold data set */
					header[ichan].sourceLongOrX   = header[ichan].recLongOrX;
					header[ichan].sourceLatOrY    = header[ichan].recLatOrY;
					header[ichan].sourceSurfaceElevation
					                              = header[ichan].recElevation;
					header[ichan].sourceDepth     = htonl(0);
					header[ichan].sourceToRecDist = htonl(0);
				}
				else
				{
				/* This is the mechanism for adding other
				information with added tables.  The one
				table currently supported is a "shot" table
				that holds shot coordinates.  If other tables
				were added new functions could be added with
				a similar calling sequence.  This procedure
				silently does nothing if a shot table is not
				present.*/
					set_shot_variable(db,table_list,
						evid,&header[ichan]);
				}
			}
			else
			{
				if(Verbose)
					elog_notify(0,"Station %s and channel %s skipped\n",
						sta,chan);
			}

		}
		/* Now we write the data */
		for(i=0;i<nchan;++i)
		{
			if(fwrite((void *)(&(header[i])),sizeof(SEGYTraceHeader),1,fp) != 1)
				elog_die(0,"Write error on header for trace %d\n",total_traces+i);
			if(fwrite((void *)traces[i],sizeof(float),
					(size_t)nsamp0,fp) != nsamp0)
				elog_die(0,"Write error while writing data for trace %d\n",
					total_traces+i);
		}
		total_traces += nchan;
		trdestroy(&trdb);
		if(!input_source_coordinates) ++shotid;
	}
	return 0 ;
}
int main(int argc, char **argv)
{
	SegyReel reel;
	SegyHead *header;
	char *dbin;
	char *outfile;
	FILE *fp;
	Pf *pf;  
	Arr *channels;  /* channel order list */
	Arr *table_list;  /* array of valid tables */
	int nchan;
	char *stest;

	float **traces;
	char reel1[3200];
	Dbptr db, trdb, dbj;
	Dbptr trdbss;  
	int nsamp0;
	double time0, endtime0, samprate0;
	long int nsamp;
	double samprate;
	int i,j;
	char stime[30],etime[30];
	char s[128];
	double tlength;
	double phi, theta;
	char *newchan_standard[3]={"X1","X2","X3"};
	char *trsubset="chan=~/X./";
	char *newchan[3]={"R","T","Z"};
	Tbl *sortkeys=newtbl(0);
	char sta[10],chan[10];
	double lat, lon, elev, dnorth, deast, edepth;
	char refsta[10];
	int total_traces=0;
	char *time_str;
	long int evid,shotid=1;
	int rotate=0;
	long int ntraces;
        int ichan;
	int map_to_cdp;  /* logical switch to output data like cdp stacked data */
	char *fmt="%Y %j %H %M %S %s";
	char *pfname;
	int Verbose=0;
	/* New features added 2009 */
	/* this is a boolean.  If true (nonzero) it is assumed stdin will
	contain four numbers:  time,lat, lon, elev.  If false, only the
	time field is read and remainder of any input on each line is dropped.*/
	int input_source_coordinates;
	/* scale factor for source coordinates.  Needed because segy uses
	an int to store source coordinates.  Sensible choices are 
	3600 for arc seconds and 10000 for a pseudodecimal. Note this
	parameter is ignored unless input_source_coordinates is true.*/
	int coordScale;
	/* If true use passcal 32 bit extension num_samps as record length. 
	SEGY standard uses a 16 bit entry that easily overflows with large
	shots at long offset.  In this ase assume the 16 bit quantity is
	meaningless. */
	int use_32bit_nsamp;
	/* This is switched on by argument switch.  When set to a nonzero
	(default) the reel headers are written.  When 0 `
	the reel heades will not be written -- used by seismic unix 
r
	and passcal*/
	int write_reel_headers=1;
	char *substr=NULL;

	if(argc < 3) usage();
	dbin = argv[1];
	outfile = argv[2];
	pfname = NULL;
	for(i=3;i<argc;++i)
	{
		if(!strcmp(argv[i],"-pf"))
		{
			++i;
			pfname = argv[i];
		}
		else if(!strcmp(argv[i],"-SU"))
		{
			write_reel_headers=0;
		}
		else if(!strcmp(argv[i],"-v"))
		{
			Verbose=1;
		}
		else if(!strcmp(argv[i],"-ss"))
		{
			++i;
			substr=argv[i];
		}
		else
		{
			usage();
		}
	}
	if(pfname == NULL) pfname = strdup("db2segy");

	elog_init(argc, argv);

	if(pfread(pfname,&pf)) 
		elog_die(0,"pfread error for pf file %s.pf\n",argv[0]);
	/* rotation parameters */
	rotate=pfget_boolean(pf,"rotate");
	if(rotate)
	{
		phi = pfget_double(pf,"phi");
		theta = pfget_double(pf,"theta");
	}
	/* This function creates the channel order list keyed by
	station channel names */
	channels = build_stachan_list(pf,&nchan,Verbose);

	map_to_cdp = pfget_boolean(pf,"map_to_cdp");
	if(map_to_cdp && Verbose) 
		fprintf(stdout,"Casting data as CDP stacked section\n");
	if(dbopen(dbin,"r",&db) == dbINVALID) 
	{
		fprintf(stderr,"Cannot open db %s\n", dbin);
		usage();
	}
	/* We grab the sample rate and trace length (in seconds) and
	use this to define global sample rates for the data.  
	segy REQUIRES fixed length records and sample rates, so
	irregular sample rates will cause this program to die. 
	One could add a decimate/interpolate function, but this 
	is not currently implemented */
	samprate0 = pfget_double(pf,"sample_rate");
	tlength = pfget_double(pf,"trace_length");
	nsamp0 = (int)(tlength*samprate0);
	use_32bit_nsamp=pfget_boolean(pf,"use_32bit_nsamp");

	/* nsamp in segy is a 16 bit field.  Handling depends on
	setting of use_32bit_nsamp boolean */
	if(nsamp0 > 32767) 
	{
	    if(use_32bit_nsamp)
	    {
	    	elog_notify(0,"Warning:  segy ues a 16 bit entity to store number of samples\nThat field is garbage. Using the 32 bit extension field.\n");
	    }
	    else
	    {
		elog_complain(0,
		  "Warning:  segy uses a 16 bit entity to store number of samples\nRequested %d samples per trace.  Trucated to 32767\n",nsamp0);
		nsamp0 = 32767;
	    }
	}
	input_source_coordinates=pfget_boolean(pf,"input_source_coordinates");
	if(input_source_coordinates)
	{
		coordScale=pfget_int(pf,"coordinate_scale_factor");
	}
	else
	{
		coordScale=1;
	}
	/* boolean.  When nonzero set coordinates as geographic arc seconds values */
	int use_geo_coordinates=pfget_boolean(pf,"use_geo_coordinates");
	/* check list of tables defined in pf.  Return array of
	logicals that define which tables are valid and join 
	tables. */
	table_list = check_tables(db,pf);
	check_for_required_tables(table_list);
	dbj = join_tables(db,pf,table_list);
	if(dbj.record == dbINVALID) elog_die(0,"dbjoin error\n");
	if(substr!=NULL) dbj=dbsubset(dbj,substr,0);
	long int ndbrows;
	dbquery(dbj,dbRECORD_COUNT,&ndbrows);
	if(ndbrows<=0)
	{
		fprintf(stderr,"Working database view is empty\n");
		if(substr!=NULL) fprintf(stderr,"Subset condtion =%s a likely problem\n",
				substr);
		usage();
	}

	fp = fopen(outfile,"w");
	if(fp == NULL) 
	{
		fprintf(stderr,"Cannot open output file %s\n",outfile);
		usage();
	}

	/* These are needed for sort below */
	pushtbl(sortkeys,"sta");
	pushtbl(sortkeys,"chan");

	/*The reel1 header in true blue segy is ebcdic.  We are goingto 
	just fill it with nulls and hope for the best */
	for(i=0;i<3200;i++) reel1[i] = '\0';

	/* Just blindly write this turkey. Bad form, but tough*/
	if(write_reel_headers) fwrite(reel1,1,3200,fp);

	/* memory allocation for trace data.  This is a large matrix
	that is cleared for each event.  This model works because of
	segy's fixed length format.  This routine is a descendent of
	numerical recipes routine found in libgenloc.  This is not
	the most efficient way to do this, but it simplifies the
	algorithm a lot. */
	traces = matrix(0,nchan,0,nsamp0);
	if(traces == NULL) 
		elog_die(0,"Cannot alloc trace data matrix work space of size %d by %d\n",
			nchan, nsamp0);
	header = (SegyHead *)calloc((size_t)nchan,sizeof(SegyHead));
	if(header == NULL)
			elog_die(0,"Cannot alloc memory for %d segy header workspace\n",nchan);
	if(write_reel_headers)
	{

		/* now fill in the binary reel header and write it */
		reel.kjob = 1;
		reel.kline = 1;
		reel.kreel = 1;
		reel.kntr = (int16_t)nchan;
		reel.knaux = 0;
		reel.sr = (int16_t)(1000000.0/samprate0);
		reel.kfldsr = reel.sr;
		reel.knsamp = (int16_t)nsamp0;
		reel.kfsamp = (int16_t)nsamp0;
		reel.dsfc=5;  /* This is ieee floats*/
		reel.kmfold = 0;
		if(map_to_cdp)
			reel.ksort = 2;
		else
			reel.ksort = 1;
		reel.kunits = 1;  /* This sets units to always be meters */
		for(i=0;i<344;++i)reel.unused2[i]='\0';
	
		if(fwrite((void *)(&reel),sizeof(SegyReel),1,fp) != 1) 
		{
			fprintf(stderr,"Write error for binary reel header\n");
			exit(-2);
		}
	}

	/* Now we enter a loop over stdin reading start times.  
	Program will blindly ask for data from each start time to 
	time+tlength.  The trace buffer will be initialized to 
	zeros at the top of the loop always.  If nothing is found
	only zeros will be written to output.  
	*/
	while((stest=fgets(s,80,stdin)) != NULL)
	{
		double slat,slon,selev;  /* Used when reading source location*/
		if(Verbose)
			fprintf(stdout,"Processing:  %s\n",s);
		for(i=0;i<nchan;++i)
		{
			initialize_header(&(header[i]));
			header[i].lineSeq = total_traces + i + 1;
			header[i].reelSeq = header[i].lineSeq;
			if(map_to_cdp)
			{
				header[i].cdpEns = i + 1;
				header[i].traceInEnsemble = 1;  /* 1 trace per cdp faked */
			}
			else
			{
				header[i].channel_number = i + 1;
			}
			header[i].event_number = shotid;
			header[i].energySourcePt=shotid;
			for(j=0;j<nsamp0;++j)  traces[i][j] = (Trsample)0.0;
		}
		if(input_source_coordinates)
		{
			char stmp[40];
			sscanf(s,"%s%ld%lf%lf%lf",stmp,&shotid,&slon,&slat,&selev);
			time0=str2epoch(stmp);
		}
		else
		{
			time0 = str2epoch(s);
		}
		endtime0 = time0 + tlength;
		sprintf(stime,"%20.4f",time0);
		sprintf(etime,"%20.4f",endtime0);
		trdb.database = -1;
		if(trload_css(dbj,stime,etime,&trdb,0, 0) < 0)
		{
			if(Verbose) 
			{
			  fprintf(stdout,"trload_css failed for shotid=%ld",shotid);
			  fprintf(stdout,"  No data in time range %s to %s\n",
			  	strtime(time0),strtime(endtime0) );
			  fprintf(stdout,"No data written for this shotid block.");
			  fprintf(stdout,"  Handle this carefully in geometry definitions.\n");
			}

			continue;
		}
		/* This does gap processing */
		repair_gaps(trdb);
		
		trapply_calib(trdb);
			
		if(rotate)
		{
			if(rotate_to_standard(trdb,newchan_standard))
				elog_notify(0,"Data loss in rotate_to_standard for event %s to %s\n",
					stime, etime);
			/* This is need to prevent collisions of channel 
			names */
			trdbss = dbsubset(trdb,trsubset,0);
			if(trrotate(trdbss,phi,theta,newchan))
				elog_notify(0,"Data loss in trrotate for event %s to %s\n",
					stime, etime);
		}
		if(Verbose)
			fprintf(stdout,"Station  chan_name  chan_number seq_number shotid  evid\n");
		trdb = dbsort(trdb,sortkeys,0,0);
		dbquery(trdb,dbRECORD_COUNT,&ntraces);
		if(Verbose) fprintf(stdout,"Read %ld traces for event at time%s\n",
			ntraces,strtime(time0));
		for(trdb.record=0;trdb.record<ntraces;++trdb.record)
		{
			Trsample *trdata;
			if(dbgetv(trdb,0,
			    "evid",&evid,
			    "sta",sta,
			    "chan",chan,
			    "nsamp", &nsamp,
			    "samprate",&samprate,
			    "data",&trdata,
			    "lat", &lat,
			    "lon", &lon,
			    "elev",&elev,
			    "refsta",refsta,
			    "dnorth",&dnorth,
			    "deast",&deast,
			    "edepth",&edepth,
					NULL) == dbINVALID)
			{
				elog_complain(0," dbgetv error reading record %ld\nTrace will be skipped for station %s and channel %s\n",
				trdb.record,sta,chan);
				continue;
			}
			/* Allow 1 percent samprate error before killing */
			double fsrskew=fabs((samprate-samprate0)/samprate0);
			double frskewcut=0.01;
			if(fsrskew>frskewcut) 
			{
				elog_complain(0,"%s:%s sample rate %f is significantly different from base sample rate of %f\nTrace skipped -- segy requires fixed sample rates\n",
					sta,chan,samprate,samprate0);
				continue;
			}
			if(nsamp > nsamp0)
			{
				elog_complain(0,"%s:%s trace has extra samples=%ld\nTruncated to length %d\n",
					sta, chan, nsamp, nsamp0);
				nsamp = nsamp0;
			}
			else if(nsamp < nsamp0)
			{
				elog_complain(0,"%s:%s trace is shorter than expected %d samples\nZero padded after sample %ld\n",
					sta, chan, nsamp0, nsamp);
			}

			ichan = get_channel_index(channels,sta,chan);
			if(ichan > nchan) elog_die(0,"Channel index %d outside limit of %d\nCannot continue\n",
					ichan, nchan);
			if(ichan >= 0)
			{
				if(Verbose) 
				   fprintf(stdout,"%s:%s\t%-d\t%-d\t%-ld\t%-ld\n",
					sta,chan,ichan+1,
                                        header[ichan].reelSeq,
					shotid, evid);
				header[ichan].traceID = 1;
				for(j=0;j<nsamp;++j) 
				   traces[ichan][j] = (float)trdata[j];
				/* header fields coming from trace table */
				header[ichan].samp_rate = (int32_t)
						(1000000.0/samprate0);
				if(!use_geo_coordinates && ( coordScale==1))
				{
				  header[ichan].recLongOrX = (int32_t)(deast*1000.0);
				  header[ichan].recLatOrY = (int32_t)(dnorth*1000.0);
				}
				else
				{
				/* Note negative here.  This is a oddity
				of segy that - means divide by this to
				get actual.  Always make this negative in case 
				user inputs a negative number. */
				  header[ichan].coordScale=-abs(coordScale);
				  /* Force 2 = geographic coordinates.  Standard says when this is
				  so units are arc seconds, hence we multiply deg by 3600*coordScale */
				  if(use_geo_coordinates)
				  {
				    header[ichan].coordUnits=2;
				    header[ichan].recLongOrX
				     =(int32_t)(lon*3600.0*(double)coordScale);
				    header[ichan].recLatOrY
				     =(int32_t)(lat*3600.0*(double)coordScale);
				  }
				  else
				  {
				    header[ichan].recLongOrX
				     =(int32_t)(lon*(double)coordScale);
				    header[ichan].recLatOrY
				     =(int32_t)(lat*(double)coordScale);
				  }
				}
				header[ichan].recElevation = (int32_t)(elev*1000.0);
				header[ichan].deltaSample = (int16_t) 
						(1000000.0/samprate0);
				header[ichan].sampleLength = (int16_t)nsamp0;
				header[ichan].num_samps = (int32_t)nsamp0;
				/* This cracks the time fields */
				time_str = epoch2str(time0,fmt);
				sscanf(time_str,"%hd %hd %hd %hd %hd %hd",
					&header[ichan].year,
					&header[ichan].day,
					&header[ichan].hour,
					&header[ichan].minute,
					&header[ichan].second,
					&header[ichan].m_secs);
				/* These are PASSCAL extensions, but we'll
				go ahead and set them anyway.*/
				header[ichan].trigyear = header[ichan].year;
				header[ichan].trigday = header[ichan].day;
				header[ichan].trighour = header[ichan].hour;
				header[ichan].trigminute = header[ichan].minute;
				header[ichan].trigsecond = header[ichan].second;
				free(time_str);
				if(input_source_coordinates)
				{
				  if(use_geo_coordinates)
				  {
					slat*=3600.0;
					slon*=3600.0;
				  }
				  header[ichan].sourceLongOrX
				    =(int32_t)(slon*(double)coordScale);
				  header[ichan].sourceLatOrY
				    =(int32_t)(slat*(double)coordScale);
				  header[ichan].sourceSurfaceElevation
				             =(int32_t)selev;
				  /* No easy way to specify both elev and depth*/
				  header[ichan].sourceDepth=0;
				}
				else if(map_to_cdp)
				{
				/* When faking CDP data we make this look 
				like a zero offset, single fold data set */
				  header[ichan].sourceLongOrX = header[ichan].recLongOrX;
				  header[ichan].sourceLatOrY = header[ichan].recLatOrY;
				  header[ichan].sourceSurfaceElevation = header[ichan].recElevation;
				  header[ichan].sourceDepth = 0;
				  header[ichan].sourceToRecDist = 0;
				}
				else
				{
				/* This is the mechanism for adding other
				information with added tables.  The one
				table currently supported is a "shot" table 
				that holds shot coordinates.  If other tables
				were added new functions could be added with
				a similar calling sequence.  This procedure
				silently does nothing if a shot table is not
				present.*/
					set_shot_variable(db,table_list,
						evid,&header[ichan]);
				}
			}			
			else
			{
				if(Verbose)
					fprintf(stdout,"Station %s and channel %s skipped\n",
						sta,chan);
			}

		}
		/* Now we write the data */
		for(i=0;i<nchan;++i)
		{
			if(fwrite((void *)(&(header[i])),sizeof(SegyHead),1,fp) != 1)
				elog_die(0,"Write error on header for trace %d\n",total_traces+i);		
			if(fwrite((void *)traces[i],sizeof(float),
					(size_t)nsamp0,fp) != nsamp0)
				elog_die(0,"Write error while writing data for trace %d\n",
					total_traces+i);
		}
		total_traces += nchan;
		trdestroy(&trdb);		
		if(!input_source_coordinates) ++shotid;
	}
	return 0 ;
}
示例#9
0
void mexFunction ( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[] )
{
	Dbptr	db;
	Tbl	*tbl;
	char	**sortfields;
	char	errmsg[STRSZ];
	int	i, arg_index, nvarargs;
	int	flags = 0;
	int	rc;

	if( nrhs < 1 )
	{
		antelope_mexUsageMsgTxt ( USAGE );
		return;
	}
        else if( ! get_dbptr( prhs[0], &db ) )
        {
                antelope_mexUsageMsgTxt ( USAGE );
		return;
        }

	nvarargs = nrhs - 1;
	for( i = 0; i<nvarargs; i++) 
	{
		arg_index = i + 1;
		if( mxGetClassID( prhs[arg_index] ) != mxCHAR_CLASS )
		{
			antelope_mexUsageMsgTxt ( USAGE );
			return;
		}
	}

	if( nvarargs > 0 )
	{
		tbl = newtbl( nvarargs );
		sortfields = (char **) mxCalloc( nvarargs, sizeof( char * ) );
		for( i = 0; i < nvarargs; i++ )
		{
			arg_index = i + 1;
			get_malloced_string( prhs[arg_index], &sortfields[i] );

			if( STREQ( sortfields[i], "dbSORT_UNIQUE" ) ) {

				flags |= dbSORT_UNIQUE;

			} else if( STREQ( sortfields[i], "dbSORT_REVERSE" ) ) {

				flags |= dbSORT_REVERSE;

			} else {

				pushtbl( tbl, sortfields[i] );
			}
		}
	}
	else
	{
		rc = dbquery ( db, dbPRIMARY_KEY, &tbl );
		antelope_mex_clear_register( 1 );
		if( rc == dbINVALID ) 
		{
			mexErrMsgTxt( "dbsort: query for primary keys failed" );
		}
	}

	db = dbsort ( db, tbl, flags, 0) ;
	antelope_mex_clear_register( 1 );

	if( nvarargs > 0 )
	{
		for( i = 0; i < nvarargs; i++ )
		{
			mxFree( sortfields[i] );
		}
		mxFree( sortfields );
		freetbl( tbl, 0 );
	}

	if( db.table == dbINVALID )
	{
		mexErrMsgTxt( "dbsort failed" );
	}

	plhs[0] = CreateDbptrStructFromDbptr( db );

	if( plhs[0] == NULL )
	{
		sprintf( errmsg, "dbsort: failed to create database-pointer " );
		strcat( errmsg, "structure for result" );
		mexErrMsgTxt( errmsg );
	}
}
/* This is the main processing function for this program.  

Arguments:
	dbv - db pointer to a complex view of the database to be 
		processed.  That is, it has these properties:
		1.  It is a join of:
			event->origin->assoc->arrival
		2.  subset to single arrival name AND orid==prefor
		3.  sorted by evid/sta

	pf - input parameter space

The main processing loop here keys on the grouping defined in the view
passed as dbgrp.  That is, seismograms for each event group are processed
as a complete gather.  After that, are nested loops to do the multiwavelet
processing as described in Bear and Pavlis (1999a,b).  

Author:  Gary Pavlis
Date:  March 1999+
*/
#define LAG_ERROR -100000 /* Computed lags smaller than this returned
			by compute_optimal_lag are treated as an error
			condition.  Should probably be in an include file*/
void mwap_process(Dbptr dbv,char *phase,  Pf *pf) 
{
	int nevents;  /* number of events=number of groups in dbgrp */
	MWbasis *mw;  /* Multiwavelet basis functions */
	Tbl **decimators;  /* List of loaded decimators used to construct
				multiwavelet transforms in lower bands */
        Tbl **dec_objects;  /*Actual decimation filter objects */
	/* Note:  mw and dec_objects define the multiwavelet transform */
	int nwavelets,nbands;

	/* sets coherence mode used to determine optimal lag */
	int coherence_type;
	
	Arr *stations;  /* This associative array holds MWstation objects
			that contain header like data that is station 
			dependent */
	Arr *badclocks;  /* associative array keyed by sta name holding
			list of time intervals with bad timing */
	char *refsta;  /* Name of reference station */
	double refelev;  /* reference elevation from parameter file */
	int nsta;  /* number of stations */
	int ntest;
	Dbptr db;  /* generic db lookup parameter */
	Dbptr dbgrp;  /* evid group db pointer */
	Dbptr tr;  /* trace database */
	Dbptr dbmps;  /* mwpredslow table */
	Tbl *sortkeys,*sortkeys2;  /* used because different tr routines require
				different sort orders */

	int *pad;  /* vector of length nbands holding computed time padding
			lengths for each band in samples */
	int tpad;  /*time pad actually used  (max of *pad) */
	Time_Window *swin, *nwin;  /* arrays defining time windows
		for signal and noise respectively (relative to arrival)*/
	Time_Window swinall, nwinall;  /*define read time intervals (extracted
			from swin and nwin arrays */
	int *decfac;  /* array of decimation factors needed at times */
	Arr *mwarr;  /* Holds indexed multiwavelet transformed trace objects*/
	/* We keep three copies of arrival time information.  
		arrival0 = original times read from db (never altered)
		arrivals = current working copy
		arrival_new = new estimate obtained from "arrivals" 
	*/
	Arr *arrival0,*arrivals,*arrival_new;
	Arr *static_result;  /* Holds error statistics for static estimates */
	MWSlowness_vector u0,u;
	int i,j;
	double avgamp, amperr;
	int ampndgf;
	int iterations;
	double ucovariance[9];
	char *array_name;
	int accumulate;

	/* These are channel code names used in trace library rotation
	functions rotate_to_standard and trrotate.  */
	char *stdchans[3]={ EW, NS , VERTICAL };
	char *pcchans[3]={"R","T","ZL"};

	Arr *mwsig_arr,*mwnoise_arr;  /* these index pointers to mw transformed
			signal and noise series */
	Arr **sn_ratios;  /* vector of Arr pointers of length nbands indexing
		signal to noise ratio estimates (stored in a structure) for
		every station */
	Spherical_Coordinate polarization0,polarization;
	Spherical_Coordinate polarz={1.0,0.0,0.0};
	Arr *model_times=NULL;
	MWSlowness_vector model_slow;
	double rctm[9];  /*ray coordinate transformation matrix*/
	double timeref;  /* time reference at reference station */
	double time;
	double t0,twin;
	double si;
	double fc,fwin;
	int evid;
	int lag;  /* optimal lab computed by coherence measure */
	double peakcm;  /*Peak value of coherence measure */
	/* For a given gather we set moveout computed moveout time in
	seconds relative to the reference station.  This time includes
	the combined current static estimates.  This is a vector workspace
	that is recycled for every gather.  It is alloced soon as we
	know the number of stations in the site table.  */
	double *moveout;
	MWgather **gathers;
	Particle_Motion_Ellipse *avgpm;
	Particle_Motion_Error *avgerr;
	char *pmtype_to_use;  /* type of particle motion estimate to use
				for polarization */
	Arr *pm_arr,*pmerr_arr;
	Arr *pmarray,*errarray;
	/* This vector defines the "up" direction.  For P waves this
	initialization is correct.  For S it may not be appropriate, but
	this is something to repair later */
	double up[3]={0.0,0.0,1.0};
	int bankid;  /* mutliwavelet group id */
	int band_exit = 0;
	/* name of parameter file produced by GUI to control this program */
	char *guipf;
	int stack_alignment;
	Pf *pfcontrol;
	int loopback;
	int numberpasses=0;
	/* These define the relative time window used for stack and
	particle motion.  s denotes stack, ts0 etc are pm */
	double sts0,ste0;  /* we don't need the equivalent of ts1 and te1 */
	double ts0,ts1,te1,te0;

	/* This is essential or copy_arrival_array can produce garbage */
	arrival0=NULL;
	arrivals = NULL;
	arrival_new=NULL;
	pm_arr = NULL;
	pmerr_arr = NULL;
	pmarray = NULL;
	errarray = NULL;
	si = pfget_double(pf,"sample_interval");
	/* First we need to load the multiwavelet functions and the 
	associated decimators for the transform.  Each of these
	routines will die if serious problems occur and have no
	error returns.  Wavelet functions can be loaded from a parameter
	file or a db.  */
	if(pfget_boolean(pf,"get_wavelets_from_database"))
	{	
		mw = load_multiwavelets_db(dbv,pf,&nwavelets,&bankid);
	}
	else
	{
        	mw = load_multiwavelets_pf(pf,&nwavelets);
		bankid = pfget_int(pf,"bankid");
	}
        decimators = define_decimation(pf,&nbands);
	allot(int *,decfac,nbands);
        dec_objects = build_decimation_objects(decimators,nbands,decfac);

	print_band_info(mw,decfac,pf);

	/* This creates the station objects.  The time extracted here
	is needed to sort out the ontime:endtime key in the site table.
	This is done is a less than bombproof fashion by randomly 
	grabbing the time in the first record view.
	Because of the way the site table works this will always work
	in some fashion.  It will only matter if a station ever moves
	and then we have a bad problem anyway.  */
	dbv.record = 0;
	dbgetv(dbv,0,"time",&time,0);
	stations = build_station_objects(dbv,pf,time);
	refsta = get_refsta(stations);
	array_name = pfget_string(pf,"array_name");
	if(array_name == NULL)
	{
		elog_complain(0,"WARNING:  array_name not defined in parameter file.  Set to default of ARRAY\n");
		array_name = strdup("ARRAY");

	}
	refelev = pfget_double(pf,"reference_elevation");
	/* This loads a definition of bad clocks from an extension
	table called timing.  This comes from libgenloc where it
	is used to handle automatic switching to S-P times. */
	badclocks=newarr(0);
	if(db_badclock_definition(dbv,pf,badclocks))
	{
		elog_notify(0,"Problems in setting up table of stations with timing problems\n");
	}
	/* This function can define stations as always having bad timing
	based on a parameter Tbl list of station names keyed by bad_clock.*/
	pfget_badclocks(pf,badclocks);

	pmtype_to_use = pfget_string(pf,"array_particle_motion_to_use");
	if(pmtype_to_use==NULL) pmtype_to_use=strdup(PMOTION_BEAM);
	/* this used to be a variable, but we no longer have a choice.*/
	coherence_type=USE_COHERENCE;
	
	/* This variable sets if we should reset the arrival estimates
	to starting values for each band.  When true the results accumulate
	from band to band.  That is we keep adding corrections from previous
	band to progressively higher frequency.*/
	accumulate = pfget_boolean(pf,"accumulate_statics");
	/* compute time pad lengths for each band of the mw transforms */
	pad = compute_tpad(dec_objects, mw, stations,pf);

	/* These routine parses the parameter file for noise and
	analysis time window information respectively returning
	arrays of Time_Window structures of length nbands*/
	decfac = get_decimation_factors(dec_objects, pf);
	swin = get_signal_windows(decfac,pad,pf);
	nwin = get_noise_windows(decfac,pad,pf);
	print_window_data(decfac,nbands,swin,nwin,pf);	

	/* This gets time windows for signal and noise needed for
	reading data (i.e. largest time ranges needed) */
	swinall = compute_time_window(swin,decfac,nbands);
	nwinall = compute_time_window(nwin,decfac,nbands);

	guipf = pfget_string(pf,"mwapcontrol");
	/* better safe than sorry */
	if(guipf==NULL)
	{
		elog_die(0,"Missing required parameter mwapcontrol");
	}

	/* We can create these works spaces now for efficiency so 
	we don't have to constantly recreate them dynamically below */
	allot(double *,moveout,cntarr(stations));
	allot(MWgather **,gathers,nwavelets);

	/* This associative array holds indexed pointers to multiwavelet
	transformed traces.  We create it here, but it is repeatedly
	freed and cleared below */
	mwarr = newarr(0);
	/* This one has to be initialized*/
	static_result=newarr(0);

	/* We need this table repeatedly below so we avoid constant 
	lookups */
	dbmps = dblookup(dbv,0,"mwpredslow",0,0);
	if(dbmps.record == dbINVALID)
		elog_die(0,"db lookup failed for mwpredslow table\nMWavelet schema extensions are required\n");

	/* Now we loop through the outer loop event by event.  
	This is structured here by using a dbgroup defined db pointer
	that is passed through the argument list.  The db pointer 
	is incremented and then the bundle is taken apart to crack
	apart each group of traces (the gather).  Note we use
	a defined name to look up the evid grouped table. */
	dbgrp = dblookup(dbv,0,EVIDBDLNAME,0,0);
	if (dbgrp.record == dbINVALID)
		elog_die(0,"Error in dblookup for named evid group table = %s\n",
			EVIDBDLNAME);
        dbquery(dbgrp,dbRECORD_COUNT,&nevents);
        fprintf(stdout,"Processing begins for %d events\n",nevents);

	sortkeys = newtbl(0);
	pushtbl(sortkeys,"sta");
	pushtbl(sortkeys,"chan");
	pushtbl(sortkeys,"time");
	sortkeys2 = newtbl(0);
	pushtbl(sortkeys2,"time");
	pushtbl(sortkeys2,"sta");
	pushtbl(sortkeys2,"chan");

	for(dbgrp.record=0;dbgrp.record<nevents;++dbgrp.record)
	{
		Dbptr db_bundle;
		int evid; 
		int is, ie; 
		int ierr;
		double modaz;

		if(dbgetv(dbgrp,0,"evid", &evid,
                        "bundle", &db_bundle,0) == dbINVALID)
		{
                        elog_complain(1,"dbgetv error for row %d of event group\nAttempting to continue by skipping to next event\n",
                                dbgrp.record);
			continue;
		}

                dbget_range(db_bundle,&is,&ie);

		if(ie-is<3)
		{
			elog_complain(0,"Insufficient data to process for evid %d\nNeed at least three station -- found only %d\n",
				evid,ie-is);
			continue;
		}
		/* We utilize what we call plane wave statics here
		to approximately correct for wavefront curvature.
		We set the record number to is so we can access 
		the correct origin information from the db.  Because
		we used a join allrows of this group should have the
		same origin data.  */
		ierr = set_pwstatics(stations,refsta,phase,db_bundle,pf);
		if(ierr)elog_complain(0,"%d errors computing %d plane wave statics for evid %d\n",
			ierr,ie-is,evid);

		/* This routine loads an Arr of arrival times from 
		the input db to be used to compute initial slowness
		vector and initial statics.  */
		arrival0 = get_arrivals(db_bundle);

		/* We edit the MWstation array to flag stations
		with bad timing in this function */
		MWcheck_timing(arrival0,stations,badclocks);

		/* Save these times */
		copy_arrival_array(arrival0,&arrivals);


		/* Initialize slowness vector to 0 and then estimate
		it from data using current arrival times */
		u0.ux = 0.0;  u0.uy = 0.0;  u0.refsta = refsta;
		timeref = compute_time_reference(stations,arrivals,refsta,u0);
		/* for the first pass we use weights defined for the 
		lowest frequency band.  This is done because it asssumed
		that if frequency dependent weighting is actually used
		the lowest band would have the widest effective aperture. */
		ierr = estimate_slowness_vector(u0,arrivals,stations,
			refsta, refelev, timeref, phase, nbands-1,&u);
		/* It is necessary to reset the time reference to handle 
		the case correctly when the reference station does not
		actually record this event.  This function uses a moveout
		correction that depends upon the slowness vector, so it can
		float about a bit in that situation */
		if(ierr>0)
			elog_notify(0,"%d nonfatal errors in estimate_slowness_vetor for evid %d\n",ierr,evid);
		else if(ierr < 0)
		{
			elog_complain(0,"estimate_slowness_vector failed for initial slowness estimate for evid %d\nData for this event will be skipped\n",
				evid);
			continue;
		}
		/* This routine returns the slowness vector and an arr of 
		estimated arrival times.  The slowness vector is saved
		in the mwpredslow table immediately below.  Arrival times
		are used to compute residuals later. */
		ierr = MWget_model_tt_slow(stations, refsta, phase,
			db_bundle, pf, &model_times, &model_slow);

		timeref = compute_time_reference(stations,arrivals,refsta,u);
		polarization0=estimate_initial_polarization(model_slow,stations,
			refsta,phase);

		modaz = atan2(model_slow.ux,model_slow.uy);

		if(dbaddv(dbmps,0,"sta",array_name,
			"evid",evid,
			"phase",phase,
			"time",timeref,
			"slo",hypot(model_slow.ux,model_slow.uy),
			"azimuth",deg(modaz),
			"majoraz",deg(polarization0.phi),
			"majorema",deg(polarization0.theta),
			"vmodel",pfget_string(pf,"TTmodel"),0) == dbINVALID)
		{
			elog_complain(0,"dbaddv error for evid %d on mwpredslow table\n",
				evid);
		}

		/* This function reads in the trace data for this event
		using time windows defined above */
		tr = mwap_readdata(dbgrp,arrivals,swinall, nwinall);
		if(tr.record == dbINVALID)
		{
			elog_complain(0,"Serious problems reading data for evid %d -- no data processed for this event\n",evid);
			continue;
		}
		tr = dblookup(tr,0,"trace",0,0);
		/* We first glue together any possible recording break
		generated entries -- common with continuous data.
		This also seems to require a resort because of the
		way data was read in.   */
/*
		tr = dbsort(tr,sortkeys,0,0);
*/
		trsplice(tr,0.1,0,0);

		/* We run trsplit to break up waveform segments at real gaps.
		I'm not sure later code will work correctly if it isn't an 
		all or nothing situations (e.g. gap in Z component, but 
		not in N or E).  In any case, we have to deal with 
		potential multiple segments later.  */
		trsplit(tr,0,0);

		trapply_calib(tr);
		trdemean_seg(tr);
		/* Now we have reorder the traces or this will not work
		correctly*/
		tr = dbsort(tr,sortkeys2,0,0);
		ierr = rotate_to_standard(tr,stdchans);
		if(ierr<0)
		{
			elog_complain(0,"rotate_to_standard failed processing evid %d -- no data processed for this event\n",
				evid);
			continue;
		}
		if(ierr>0)elog_complain(0,"rotate_to_standard failed for %d stations\n",
				ierr);

		/* This releases the space held by the raw data traces
		keeping only the rotate_to_standard outputs */
		free_noncardinal_traces(tr);

		elog_log(0,"Computing multiwavelet transform:  be\
 patient as this can take a while with many channels\n");
		/* This function computes the multiwavelet transform
		of all traces currently in tr for signals around arrival*/
		mwsig_arr = tr_mwtransform(tr,arrivals,swin,decfac,dec_objects,
				nbands,mw,nwavelets);

		/* We repeat the same thing for noise windows */
		mwnoise_arr = tr_mwtransform(tr,arrivals,nwin,decfac,
				dec_objects,nbands,mw,nwavelets);
		/* Now compute signal to noise ratio figures for all
		nbands storing the structures that define the results
		in an Arr keyed by station. Note this is actually 
		a vector of Arr pointers of length nbands.  Further
		note the following function creates this complicated
		object, and it must be freed after each event is 
		processed. */
		sn_ratios=compute_signal_to_noise(mwsig_arr,mwnoise_arr,
					stations,arrivals,swin,nwin,
					nbands,nwavelets);

		/* Now we get to the heart of this program.  This is
		the outer loop over frequency.  Note the loop goes
		backward because the lowest frequencies are the final
		row of the mw transform matrices of pointers */

		copy_MWslowness_vector(&u,&u0);
		if(numberpasses>0)
		{
			fprintf(MWpout,"NEWEVENT %d\n",evid);
		}
		for(i=nbands-1;i>=0;--i)
		{
			if(!accumulate)
				copy_arrival_array(arrival0,&arrivals);

			copy_arrival_array(arrivals,&arrival_new);
			fc = (mw[i].f0)/(2.0*si*decfac[i]);
			fwin = (mw[i].fw)/(2.0*si*decfac[i]);

			fprintf(stdout,"Processing begins on band %d with center frequency %lf\nWait for -Hit Accept button when ready- prompt\n",
				i,fc);

			/* This builds the basic working gathers for
			each wavelet and builds a shortcut of pointers
			to MWtraces that are related */
			for(j=0;j<nwavelets;++j)
			{
				gathers[j] = build_MWgather(i,j,
						mwsig_arr,stations,
						sn_ratios[i],pf);
			}
			fprintf(stdout,"Working gather for this band has %d stations\n",
				gathers[0]->nsta);
			/* Testing band 0 should be sufficient.  The
			signal-to-noise is averaged overall wavelets so
			the same stations should be deleted in all
			wavelet of the group */
			if(gathers[0]->nsta < 3)
			{
				elog_notify(0,"Insufficient data in band %d to passed signal-to-noise cutoff defined for this band for evid %d\nSkipping to next frequency band\n",
					i,evid);
				continue;
			}
			/* This may not be necessary, but it is certainly 
			important for debugging.  We check that all
			the gathers in the group have the same length.  
			If they aren't, we are in trouble because we use
			a single vector to hold moveout information */
			check_gather_consistency(gathers,nwavelets);

			/* Now we compute the moveout information assuming
			stations are in the same order in the gather for
			each wavelet */
			if(compute_total_moveout(*gathers,stations,refsta,
				u,refelev,phase,moveout))
			{
				elog_die(0,"Cannot find reference station to compute moveout:  Should not happen unless program overwrites itself\n");
			}

			if(numberpasses>0)
			{
				fprintf(MWpout,"NEWBAND %d\n",i);
				fflush(MWpout);
			}
			else
			{
				char ctmp[40];
				fprintf(stdout,"Starting processing of first event\nSelect and options and press the Start button when ready\n");
				fprintf(MWpout,"STARTUP %d %d\n", 
					evid,i);
				fflush(MWpout);
				fgets(ctmp,40,MWpin);
			}
			++numberpasses;

			/* This is placed here to allow changing the
			alignment options on the fly.  Choice may
			depend on data. */
			pfread(guipf,&pfcontrol);
			stack_alignment=get_stack_align_mode(pfcontrol);
			pffree(pfcontrol);
			
			/* kind of a odd loop construct here made 
			necessary by differences in stackalignment
			options.  If we align with theoretical value
			or use the vertical we do not need to repeat
			this loop and we fall out the bottom.  If we
			use the pm estimate, however, we have to 
			realign the stack rotated to the new major
			ellipse estimate.  In that case we have to
			repeat the whole procedure.*/
			loopback=2;
			do {
				MWstack *stack;
				switch(stack_alignment)
				{
				case PMTHEORY:
					copy_polarization(&polarization0,&polarization);
					loopback=0;
					break;
				case PMZ:
					copy_polarization(&polarz,&polarization);
					loopback=0;
					break;
				case PMESTIMATE:
				default:
				/* This uses theoretical version for the
				first pass then the estimate on the 
				second */
					if(loopback==2)
					  copy_polarization(&polarization0,
						&polarization);
				}
				stack=MWcompute_arrival_times(gathers,
    					   nwavelets,timeref,moveout,
    					   polarization,swin[i],
					   sn_ratios[i],guipf,
    					   &arrival_new,&static_result,
                                            &avgamp, &amperr, &ampndgf);
				if(stack==NULL)
				{
					/* I use a flag to avoid an
					evil goto here */
					band_exit = 1;
					/* This is strange but necessary
					to stop string of bogus errors from
					copy_arrival_array function when
					this loops back */
					if(arrival_new!=NULL)
						freearr(arrival_new,free);
					arrival_new = NULL;

					break;
				}
					
					
				/* Note this routine updates residual
				static values to new values relative to
				the new slowness vector estimate */
	                	ierr = estimate_slowness_vector(u0,
					arrival_new,stations,
                        		refsta, refelev, timeref, 
					phase, i, &u);
				/* We need to recompute the moveout to 
				now be relative to the new slowness vector
				estimate.  We then use this for particle 
				motion analysis which can change the 
				polarization vector */
				compute_total_moveout(*gathers,stations,refsta,
				u,refelev,phase,moveout);
				/* This segment converts particle motions
				for 3-c arrays.  */
				if(gathers[0]->ncomponents==3)
				{
					MWstack *spm; 
					Time_Window pmtwindow;
					double *timeweight;
					
					/* We extract the time window
					from a control parameter file which
					is assumed to be created by a GUI
					with tcl/tk */
					pfread(guipf,&pfcontrol);
					ts0=pfget_double(pfcontrol,"pm_ts0");
					ts1=pfget_double(pfcontrol,"pm_ts1");
					te1=pfget_double(pfcontrol,"pm_te1");
					te0=pfget_double(pfcontrol,"pm_te0");
					/* we need these below, not here */
					sts0=pfget_double(pfcontrol,"stack_ts0");
					ste0=pfget_double(pfcontrol,"stack_te0");
					twin = ste0-sts0;
					pffree(pfcontrol);
					pmtwindow.tstart = nint(ts0/(stack->dt));
					pmtwindow.tend = nint(te0/(stack->dt));

					spm = MWextract_stack_window(stack,
						&pmtwindow);
					if(spm==NULL)
						elog_die(0,
						  "Fatal error in MWextract_stack_window\n");
					/* Sets time weight function for 
					a trapezoidal window */
					timeweight=MWstack_set_trapezoidal_window(spm->tstart,
						spm->dt,spm->nt,
						ts0,ts1,te1,te0);
					dcopy(spm->nt,timeweight,1,spm->timeweight,1);
					free(timeweight);
					MWstack_apply_timeweight(spm);

					if(MWcompute_array_particle_motion(gathers,
					  nwavelets,spm,timeref,moveout,
					  up,&pmarray,&errarray, &pm_arr,&pmerr_arr) )
					{
					  elog_complain(0,"Errors in MWcompute_array_particle_motion\n");
					}
					avgpm = (Particle_Motion_Ellipse *)getarr(pmarray,pmtype_to_use);
					avgerr = (Particle_Motion_Error *)getarr(pmarray,pmtype_to_use);

					polarization
					  =unit_vector_to_spherical(avgpm->major);
					destroy_MWstack(spm);
				}
				peakcm=stack->coherence[idamax(
					stack->nt,
					stack->coherence,1)];
				copy_arrival_array(arrival_new,&arrivals);
				freearr(arrival_new,free);
				arrival_new = NULL;
				destroy_MWstack(stack);
				if(stack_alignment==PMESTIMATE)
						--loopback;
			}while(loopback>0);
			if(band_exit)
			{
				band_exit = 0;
				continue;
			}

			/* This routine computes the covariance of
			the estimated slowness vector */
			if(compute_slowness_covariance(stations,static_result,
				ucovariance) )
				elog_complain(0,"Problems computing slowness vector covariance estimate for evid %d and band %d\n",
					evid, i);
			/* routines below save a time window.  We compute
			the lag corrected start time at the reference station
			here as t0 to simplify this in functions that
			need this.*/
			t0 = timeref + sts0;
			/* This series of functions save results in a set
			of css3.0 extension tables.  */

			/* ampndgf+1 here is a cheap solution to the
			number of stations used in a solution.  This 
			confusion is necessary because autoediting reduces
			the data set.  Poor planning caused me to not
			force this to be saved explicitly, but ampndgf is
			an exact surrogate.  The +1 is needed because the
			calculation uses number_used - 1 since the average
			amplitude is extracted as a free parameter.
			*/
			if(MWdb_save_slowness_vector(phase,&u,t0,twin,
				array_name,evid,bankid,fc,fwin,
				ucovariance,ampndgf+1,3,
				coherence_type,peakcm,dbv))
					dbsave_error("mwslow",evid,i);
			if(MWdb_save_avgamp(array_name, evid, bankid, phase,
				fc, t0, twin, avgamp,amperr,ampndgf,
				dbv) )
					dbsave_error("mwavgamp",evid,i);
			if(MWdb_save_statics(evid, bankid, phase, fc, t0,
				twin,refelev,*gathers,moveout,static_result,
				stations,sn_ratios[i],
				arrivals, model_times,dbv))
					dbsave_error("mwtstatic:mwastatic:mwsnr",evid,i);
			t0=timeref+ts0;
			twin = te0-ts0;
			if(MWdb_save_pm(array_name,evid,bankid,phase,fc,t0,
				twin,*gathers,moveout,pm_arr,pmerr_arr,
				avgpm,avgerr,dbv)  )
					dbsave_error("mwpm",evid,i);
			/* We have to release the memory held in these
			associative arrays.  In the earlier loop the 
			function that creates them always clears them
			before continuing when they are not null.  
			The explicit NULL set after the free is done
			to make sure in looping back the particle
			motion routine clears these correctly.  */
			freearr(pm_arr,free);
			pm_arr = NULL;
			freearr(pmerr_arr,free);
			pmerr_arr = NULL;
			/* same for static arr */
			freearr(static_result,free);
			static_result = NULL;
		}
		/*release main work spaces with this series of complicated free routines.
		Here is where you really wish C had garbage collection */
		free_sn_ratios_arr(sn_ratios,nbands);
		free_MWtransform_arr(mwsig_arr,nbands,nwavelets);
		free_MWtransform_arr(mwnoise_arr,nbands,nwavelets);
		trdestroy(&tr);
		freearr(arrival0,free);
		freearr(arrivals,free);
		/* This may not be necessary, but better safe than sorry */
		arrivals = NULL;   arrival0 = NULL;   arrival_new = NULL;
	}
	free(moveout);
	free(swin);
	free(nwin);
	free(refsta);
}
示例#11
0
/* main for dbpmel*/	
int
main(int argc, char **argv)
{
	char *dbin;  /* Input db name */
	Tbl *gridlist;
	Dbptr db;  /* input db pointer */
	Dbptr dbv;  /* set to view formed by join */
	char *pfin=NULL;  /* input parameter file */
	char *sift_exp;  /* sift expression for subset */
	int sift = 0;  /* default is no sift.  */
	Tbl *sortkeys;
	/* db row variables */
	int nrows, nrows_raw;

	Pf *pf;
	char *version="1.0";
	int i;
	int gmin,gmax;
	char sstring[128];
	char *gridname;
	Tbl *proctbl;


	/* Initialize the error log and write a version notice */
	elog_init (argc, argv) ;
	fprintf (stdout, "%s version %s\n", argv[0], version) ;

	if(argc < 3) usage();
	dbin = argv[1];
	gridlist = parse_gridlist_string(argv[2]);
	get_gridid_range(gridlist,&gmin,&gmax);
	
	for(i=3;i<argc;++i)
	{
		if(!strcmp(argv[i],"-pf"))
		{
			++i;
			if(i>=argc) usage();
			pfin = argv[i];
		}
		else if(!strcmp(argv[i],"-sift"))
		{
			++i;
			if(i>=argc) usage();
			sift_exp = argv[i];
			sift = 1;
		}
		else
			usage();
	}
	/* set default this way*/
	if(pfin == NULL) pfin = (char *)strdup("dbpmel");
	i = pfread(pfin,&pf);
	if(i != 0) die(1,"Pfread error\n");
	check_required_pf(pf);


	/* Set up main database view.  This is a derived from code
	in the related genloc program called relocate.
	Always join assoc, arrival, and site.  We join site 
	to make sure station table is properly dynamic to account for
	time changes.  With this setup, the stations can even move
	around and this should still work.*/
	gridname = pfget_string(pf,"gridname");
	if(dbopen(dbin,"r+",&db) == dbINVALID) 
		elog_die(1,"Unable to open input database %s\n",dbin);
	
	/* We save the pf object into archive files that document the
	complex state of this program.  This small function does this
	and saves the results in a special db table */
	save_run_parameters(db,pf);	
		
	db = dblookup(db,0,"hypocentroid",0,0);
	sprintf(sstring,"gridid>=%d && gridid<=%d && (gridname=~/%s/)",gmin,gmax,gridname);
	db = dbsubset(db,sstring,0);
	dbquery(db, dbRECORD_COUNT, &nrows);
	if(nrows<=0) 
		elog_die(0,"No hypocentroid records in requested gridid range of %d to %d for grid called %s\n",
				gmin,gmax,gridname);
	/* This forms the working view for this program */
	proctbl = strtbl("dbjoin cluster",
		"dbjoin event",
		"dbjoin origin",
		"dbsubset orid==prefor",
		"dbjoin assoc",
		"dbjoin arrival",0);
	dbv = dbprocess(db,proctbl,0);
	dbquery(dbv, dbRECORD_COUNT, &nrows);
	fprintf(stdout,"Raw working database view has %d rows\n",nrows);

	/* Subset using sift_key if requested */
	if(sift)
	{
		dbv = dbsubset(dbv,sift_exp,0);
		if(dbv.record == dbINVALID)
			die(1,"dbsubset of %s with expression %s failed\n",
				dbin, sift_exp);
	}

	/* First we have to run a unique key sort in the following order
	to remove redundant picks made on multiple channels.  We will
	issue a warning if the record count changes.  This was found
	to be a common problem that had to be repaired automatically.*/
	dbquery(dbv, dbRECORD_COUNT, &nrows_raw);
	sortkeys = newtbl(0);
	pushtbl(sortkeys,"gridid");
	pushtbl(sortkeys,"evid");
	pushtbl(sortkeys,"sta");
	pushtbl(sortkeys,"phase");
	dbv = dbsort(dbv,sortkeys,dbSORT_UNIQUE,0);
	dbquery(dbv, dbRECORD_COUNT, &nrows);

	if(nrows != nrows_raw)
		complain(0,"Input database has duplicate picks of one or more phases on multiple channels\n\
Which picks will be used here is unpredictable\n\
%d total picks, %d unique\nContinuing\n", nrows_raw, nrows);

	fprintf(stdout,"Final working view has %d rows\n",nrows);

	if(dbpmel_process(dbv,gridlist,pf))
	{
		elog_complain(0,"Errors in dbpmel_process\n");
		exit(-1);
	}
	exit(0);
}