示例#1
0
文件: dchkhs.c 项目: zangel/uquad
/* Subroutine */ int dchkhs_(integer *nsizes, integer *nn, integer *ntypes, 
	logical *dotype, integer *iseed, doublereal *thresh, integer *nounit, 
	doublereal *a, integer *lda, doublereal *h__, doublereal *t1, 
	doublereal *t2, doublereal *u, integer *ldu, doublereal *z__, 
	doublereal *uz, doublereal *wr1, doublereal *wi1, doublereal *wr3, 
	doublereal *wi3, doublereal *evectl, doublereal *evectr, doublereal *
	evecty, doublereal *evectx, doublereal *uu, doublereal *tau, 
	doublereal *work, integer *nwork, integer *iwork, logical *select, 
	doublereal *result, integer *info)
{
    /* Initialized data */

    static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 };
    static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 };
    static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 };
    static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 };

    /* Format strings */
    static char fmt_9999[] = "(\002 DCHKHS: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
	    "(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9998[] = "(\002 DCHKHS: \002,a,\002 Eigenvectors from"
	    " \002,a,\002 incorrectly \002,\002normalized.\002,/\002 Bits of "
	    "error=\002,0p,g10.3,\002,\002,9x,\002N=\002,i6,\002, JTYPE=\002,"
	    "i6,\002, ISEED=(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9997[] = "(\002 DCHKHS: Selected \002,a,\002 Eigenvector"
	    "s from \002,a,\002 do not match other eigenvectors \002,9x,\002N="
	    "\002,i6,\002, JTYPE=\002,i6,\002, ISEED=(\002,3(i5,\002,\002),i5,"
	    "\002)\002)";

    /* System generated locals */
    integer a_dim1, a_offset, evectl_dim1, evectl_offset, evectr_dim1, 
	    evectr_offset, evectx_dim1, evectx_offset, evecty_dim1, 
	    evecty_offset, h_dim1, h_offset, t1_dim1, t1_offset, t2_dim1, 
	    t2_offset, u_dim1, u_offset, uu_dim1, uu_offset, uz_dim1, 
	    uz_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
    doublereal d__1, d__2, d__3, d__4, d__5, d__6;

    /* Builtin functions */
    double sqrt(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    static doublereal cond;
    static integer jcol, nmax;
    static doublereal unfl, ovfl, temp1, temp2;
    static integer i__, j, k, n;
    static logical badnn;
    extern /* Subroutine */ int dget10_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *), 
	    dget22_(char *, char *, char *, integer *, doublereal *, integer *
	    , doublereal *, integer *, doublereal *, doublereal *, doublereal 
	    *, doublereal *), dgemm_(char *, char *, 
	    integer *, integer *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *);
    static logical match;
    static integer imode;
    static doublereal dumma[6];
    static integer iinfo, nselc;
    static doublereal conds;
    extern /* Subroutine */ int dhst01_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *);
    static doublereal aninv, anorm;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    static integer nmats, nselr, jsize, nerrs, itype, jtype, ntest, n1;
    static doublereal rtulp;
    extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
    static integer jj, in;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int dgehrd_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *);
    static char adumma[1*1];
    extern /* Subroutine */ int dlatme_(integer *, char *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, char *, char 
	    *, char *, char *, doublereal *, integer *, doublereal *, integer 
	    *, integer *, doublereal *, doublereal *, integer *, doublereal *,
	     integer *), dhsein_(char 
	    *, char *, char *, logical *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *, doublereal *,
	     integer *, integer *, integer *, doublereal *, integer *, 
	    integer *, integer *);
    static integer idumma[1];
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *);
    static integer ioldsd[4];
    extern /* Subroutine */ int dlafts_(char *, integer *, integer *, integer 
	    *, integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *), dlaset_(char *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *), 
	    dlasum_(char *, integer *, integer *, integer *), dhseqr_(
	    char *, char *, integer *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *, integer *), dlatmr_(
	    integer *, integer *, char *, integer *, char *, doublereal *, 
	    integer *, doublereal *, doublereal *, char *, char *, doublereal 
	    *, integer *, doublereal *, doublereal *, integer *, doublereal *,
	     char *, integer *, integer *, integer *, doublereal *, 
	    doublereal *, char *, doublereal *, integer *, integer *, integer 
	    *), dlatms_(
	    integer *, integer *, char *, integer *, char *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, integer *, char 
	    *, doublereal *, integer *, doublereal *, integer *), dorghr_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *), dormhr_(char *, char *, integer *, integer *, integer 
	    *, integer *, doublereal *, integer *, doublereal *, doublereal *,
	     integer *, doublereal *, integer *, integer *), 
	    dtrevc_(char *, char *, logical *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *, integer *, doublereal *, integer *), 
	    xerbla_(char *, integer *);
    static doublereal rtunfl, rtovfl, rtulpi, ulpinv;
    static integer mtypes, ntestt, ihi, ilo;
    static doublereal ulp;

    /* Fortran I/O blocks */
    static cilist io___36 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___39 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___50 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___52 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___56 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___57 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___58 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___59 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___60 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___62 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___63 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___64 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___65 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___66 = { 0, 0, 0, fmt_9999, 0 };



#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define h___ref(a_1,a_2) h__[(a_2)*h_dim1 + a_1]
#define u_ref(a_1,a_2) u[(a_2)*u_dim1 + a_1]
#define uu_ref(a_1,a_2) uu[(a_2)*uu_dim1 + a_1]
#define evectl_ref(a_1,a_2) evectl[(a_2)*evectl_dim1 + a_1]
#define evectr_ref(a_1,a_2) evectr[(a_2)*evectr_dim1 + a_1]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1999   


    Purpose   
    =======   

       DCHKHS  checks the nonsymmetric eigenvalue problem routines.   

               DGEHRD factors A as  U H U' , where ' means transpose,   
               H is hessenberg, and U is an orthogonal matrix.   

               DORGHR generates the orthogonal matrix U.   

               DORMHR multiplies a matrix by the orthogonal matrix U.   

               DHSEQR factors H as  Z T Z' , where Z is orthogonal and   
               T is "quasi-triangular", and the eigenvalue vector W.   

               DTREVC computes the left and right eigenvector matrices   
               L and R for T.   

               DHSEIN computes the left and right eigenvector matrices   
               Y and X for H, using inverse iteration.   

       When DCHKHS is called, a number of matrix "sizes" ("n's") and a   
       number of matrix "types" are specified.  For each size ("n")   
       and each type of matrix, one matrix will be generated and used   
       to test the nonsymmetric eigenroutines.  For each matrix, 14   
       tests will be performed:   

       (1)     | A - U H U**T | / ( |A| n ulp )   

       (2)     | I - UU**T | / ( n ulp )   

       (3)     | H - Z T Z**T | / ( |H| n ulp )   

       (4)     | I - ZZ**T | / ( n ulp )   

       (5)     | A - UZ H (UZ)**T | / ( |A| n ulp )   

       (6)     | I - UZ (UZ)**T | / ( n ulp )   

       (7)     | T(Z computed) - T(Z not computed) | / ( |T| ulp )   

       (8)     | W(Z computed) - W(Z not computed) | / ( |W| ulp )   

       (9)     | TR - RW | / ( |T| |R| ulp )   

       (10)    | L**H T - W**H L | / ( |T| |L| ulp )   

       (11)    | HX - XW | / ( |H| |X| ulp )   

       (12)    | Y**H H - W**H Y | / ( |H| |Y| ulp )   

       (13)    | AX - XW | / ( |A| |X| ulp )   

       (14)    | Y**H A - W**H Y | / ( |A| |Y| ulp )   

       The "sizes" are specified by an array NN(1:NSIZES); the value of   
       each element NN(j) specifies one size.   
       The "types" are specified by a logical array DOTYPE( 1:NTYPES );   
       if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.   
       Currently, the list of possible types is:   

       (1)  The zero matrix.   
       (2)  The identity matrix.   
       (3)  A (transposed) Jordan block, with 1's on the diagonal.   

       (4)  A diagonal matrix with evenly spaced entries   
            1, ..., ULP  and random signs.   
            (ULP = (first number larger than 1) - 1 )   
       (5)  A diagonal matrix with geometrically spaced entries   
            1, ..., ULP  and random signs.   
       (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP   
            and random signs.   

       (7)  Same as (4), but multiplied by SQRT( overflow threshold )   
       (8)  Same as (4), but multiplied by SQRT( underflow threshold )   

       (9)  A matrix of the form  U' T U, where U is orthogonal and   
            T has evenly spaced entries 1, ..., ULP with random signs   
            on the diagonal and random O(1) entries in the upper   
            triangle.   

       (10) A matrix of the form  U' T U, where U is orthogonal and   
            T has geometrically spaced entries 1, ..., ULP with random   
            signs on the diagonal and random O(1) entries in the upper   
            triangle.   

       (11) A matrix of the form  U' T U, where U is orthogonal and   
            T has "clustered" entries 1, ULP,..., ULP with random   
            signs on the diagonal and random O(1) entries in the upper   
            triangle.   

       (12) A matrix of the form  U' T U, where U is orthogonal and   
            T has real or complex conjugate paired eigenvalues randomly   
            chosen from ( ULP, 1 ) and random O(1) entries in the upper   
            triangle.   

       (13) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP   
            with random signs on the diagonal and random O(1) entries   
            in the upper triangle.   

       (14) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has geometrically spaced entries   
            1, ..., ULP with random signs on the diagonal and random   
            O(1) entries in the upper triangle.   

       (15) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP   
            with random signs on the diagonal and random O(1) entries   
            in the upper triangle.   

       (16) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has real or complex conjugate paired   
            eigenvalues randomly chosen from ( ULP, 1 ) and random   
            O(1) entries in the upper triangle.   

       (17) Same as (16), but multiplied by SQRT( overflow threshold )   
       (18) Same as (16), but multiplied by SQRT( underflow threshold )   

       (19) Nonsymmetric matrix with random entries chosen from (-1,1).   
       (20) Same as (19), but multiplied by SQRT( overflow threshold )   
       (21) Same as (19), but multiplied by SQRT( underflow threshold )   

    Arguments   
    ==========   

    NSIZES - INTEGER   
             The number of sizes of matrices to use.  If it is zero,   
             DCHKHS does nothing.  It must be at least zero.   
             Not modified.   

    NN     - INTEGER array, dimension (NSIZES)   
             An array containing the sizes to be used for the matrices.   
             Zero values will be skipped.  The values must be at least   
             zero.   
             Not modified.   

    NTYPES - INTEGER   
             The number of elements in DOTYPE.   If it is zero, DCHKHS   
             does nothing.  It must be at least zero.  If it is MAXTYP+1   
             and NSIZES is 1, then an additional type, MAXTYP+1 is   
             defined, which is to use whatever matrix is in A.  This   
             is only useful if DOTYPE(1:MAXTYP) is .FALSE. and   
             DOTYPE(MAXTYP+1) is .TRUE. .   
             Not modified.   

    DOTYPE - LOGICAL array, dimension (NTYPES)   
             If DOTYPE(j) is .TRUE., then for each size in NN a   
             matrix of that size and of type j will be generated.   
             If NTYPES is smaller than the maximum number of types   
             defined (PARAMETER MAXTYP), then types NTYPES+1 through   
             MAXTYP will not be generated.  If NTYPES is larger   
             than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)   
             will be ignored.   
             Not modified.   

    ISEED  - INTEGER array, dimension (4)   
             On entry ISEED specifies the seed of the random number   
             generator. The array elements should be between 0 and 4095;   
             if not they will be reduced mod 4096.  Also, ISEED(4) must   
             be odd.  The random number generator uses a linear   
             congruential sequence limited to small integers, and so   
             should produce machine independent random numbers. The   
             values of ISEED are changed on exit, and can be used in the   
             next call to DCHKHS to continue the same random number   
             sequence.   
             Modified.   

    THRESH - DOUBLE PRECISION   
             A test will count as "failed" if the "error", computed as   
             described above, exceeds THRESH.  Note that the error   
             is scaled to be O(1), so THRESH should be a reasonably   
             small multiple of 1, e.g., 10 or 100.  In particular,   
             it should not depend on the precision (single vs. double)   
             or the size of the matrix.  It must be at least zero.   
             Not modified.   

    NOUNIT - INTEGER   
             The FORTRAN unit number for printing out error messages   
             (e.g., if a routine returns IINFO not equal to 0.)   
             Not modified.   

    A      - DOUBLE PRECISION array, dimension (LDA,max(NN))   
             Used to hold the matrix whose eigenvalues are to be   
             computed.  On exit, A contains the last matrix actually   
             used.   
             Modified.   

    LDA    - INTEGER   
             The leading dimension of A, H, T1 and T2.  It must be at   
             least 1 and at least max( NN ).   
             Not modified.   

    H      - DOUBLE PRECISION array, dimension (LDA,max(NN))   
             The upper hessenberg matrix computed by DGEHRD.  On exit,   
             H contains the Hessenberg form of the matrix in A.   
             Modified.   

    T1     - DOUBLE PRECISION array, dimension (LDA,max(NN))   
             The Schur (="quasi-triangular") matrix computed by DHSEQR   
             if Z is computed.  On exit, T1 contains the Schur form of   
             the matrix in A.   
             Modified.   

    T2     - DOUBLE PRECISION array, dimension (LDA,max(NN))   
             The Schur matrix computed by DHSEQR when Z is not computed.   
             This should be identical to T1.   
             Modified.   

    LDU    - INTEGER   
             The leading dimension of U, Z, UZ and UU.  It must be at   
             least 1 and at least max( NN ).   
             Not modified.   

    U      - DOUBLE PRECISION array, dimension (LDU,max(NN))   
             The orthogonal matrix computed by DGEHRD.   
             Modified.   

    Z      - DOUBLE PRECISION array, dimension (LDU,max(NN))   
             The orthogonal matrix computed by DHSEQR.   
             Modified.   

    UZ     - DOUBLE PRECISION array, dimension (LDU,max(NN))   
             The product of U times Z.   
             Modified.   

    WR1    - DOUBLE PRECISION array, dimension (max(NN))   
    WI1    - DOUBLE PRECISION array, dimension (max(NN))   
             The real and imaginary parts of the eigenvalues of A,   
             as computed when Z is computed.   
             On exit, WR1 + WI1*i are the eigenvalues of the matrix in A.   
             Modified.   

    WR3    - DOUBLE PRECISION array, dimension (max(NN))   
    WI3    - DOUBLE PRECISION array, dimension (max(NN))   
             Like WR1, WI1, these arrays contain the eigenvalues of A,   
             but those computed when DHSEQR only computes the   
             eigenvalues, i.e., not the Schur vectors and no more of the   
             Schur form than is necessary for computing the   
             eigenvalues.   
             Modified.   

    EVECTL - DOUBLE PRECISION array, dimension (LDU,max(NN))   
             The (upper triangular) left eigenvector matrix for the   
             matrix in T1.  For complex conjugate pairs, the real part   
             is stored in one row and the imaginary part in the next.   
             Modified.   

    EVEZTR - DOUBLE PRECISION array, dimension (LDU,max(NN))   
             The (upper triangular) right eigenvector matrix for the   
             matrix in T1.  For complex conjugate pairs, the real part   
             is stored in one column and the imaginary part in the next.   
             Modified.   

    EVECTY - DOUBLE PRECISION array, dimension (LDU,max(NN))   
             The left eigenvector matrix for the   
             matrix in H.  For complex conjugate pairs, the real part   
             is stored in one row and the imaginary part in the next.   
             Modified.   

    EVECTX - DOUBLE PRECISION array, dimension (LDU,max(NN))   
             The right eigenvector matrix for the   
             matrix in H.  For complex conjugate pairs, the real part   
             is stored in one column and the imaginary part in the next.   
             Modified.   

    UU     - DOUBLE PRECISION array, dimension (LDU,max(NN))   
             Details of the orthogonal matrix computed by DGEHRD.   
             Modified.   

    TAU    - DOUBLE PRECISION array, dimension(max(NN))   
             Further details of the orthogonal matrix computed by DGEHRD.   
             Modified.   

    WORK   - DOUBLE PRECISION array, dimension (NWORK)   
             Workspace.   
             Modified.   

    NWORK  - INTEGER   
             The number of entries in WORK.  NWORK >= 4*NN(j)*NN(j) + 2.   

    IWORK  - INTEGER array, dimension (max(NN))   
             Workspace.   
             Modified.   

    SELECT - LOGICAL array, dimension (max(NN))   
             Workspace.   
             Modified.   

    RESULT - DOUBLE PRECISION array, dimension (14)   
             The values computed by the fourteen tests described above.   
             The values are currently limited to 1/ulp, to avoid   
             overflow.   
             Modified.   

    INFO   - INTEGER   
             If 0, then everything ran OK.   
              -1: NSIZES < 0   
              -2: Some NN(j) < 0   
              -3: NTYPES < 0   
              -6: THRESH < 0   
              -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).   
             -14: LDU < 1 or LDU < NMAX.   
             -28: NWORK too small.   
             If  DLATMR, SLATMS, or SLATME returns an error code, the   
                 absolute value of it is returned.   
             If 1, then DHSEQR could not find all the shifts.   
             If 2, then the EISPACK code (for small blocks) failed.   
             If >2, then 30*N iterations were not enough to find an   
                 eigenvalue or to decompose the problem.   
             Modified.   

   -----------------------------------------------------------------------   

       Some Local Variables and Parameters:   
       ---- ----- --------- --- ----------   

       ZERO, ONE       Real 0 and 1.   
       MAXTYP          The number of types defined.   
       MTEST           The number of tests defined: care must be taken   
                       that (1) the size of RESULT, (2) the number of   
                       tests actually performed, and (3) MTEST agree.   
       NTEST           The number of tests performed on this matrix   
                       so far.  This should be less than MTEST, and   
                       equal to it by the last test.  It will be less   
                       if any of the routines being tested indicates   
                       that it could not compute the matrices that   
                       would be tested.   
       NMAX            Largest value in NN.   
       NMATS           The number of matrices generated so far.   
       NERRS           The number of tests which have exceeded THRESH   
                       so far (computed by DLAFTS).   
       COND, CONDS,   
       IMODE           Values to be passed to the matrix generators.   
       ANORM           Norm of A; passed to matrix generators.   

       OVFL, UNFL      Overflow and underflow thresholds.   
       ULP, ULPINV     Finest relative precision and its inverse.   
       RTOVFL, RTUNFL,   
       RTULP, RTULPI   Square roots of the previous 4 values.   

               The following four arrays decode JTYPE:   
       KTYPE(j)        The general type (1-10) for type "j".   
       KMODE(j)        The MODE value to be passed to the matrix   
                       generator for type "j".   
       KMAGN(j)        The order of magnitude ( O(1),   
                       O(overflow^(1/2) ), O(underflow^(1/2) )   
       KCONDS(j)       Selects whether CONDS is to be 1 or   
                       1/sqrt(ulp).  (0 means irrelevant.)   

    =====================================================================   

       Parameter adjustments */
    --nn;
    --dotype;
    --iseed;
    t2_dim1 = *lda;
    t2_offset = 1 + t2_dim1 * 1;
    t2 -= t2_offset;
    t1_dim1 = *lda;
    t1_offset = 1 + t1_dim1 * 1;
    t1 -= t1_offset;
    h_dim1 = *lda;
    h_offset = 1 + h_dim1 * 1;
    h__ -= h_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    uu_dim1 = *ldu;
    uu_offset = 1 + uu_dim1 * 1;
    uu -= uu_offset;
    evectx_dim1 = *ldu;
    evectx_offset = 1 + evectx_dim1 * 1;
    evectx -= evectx_offset;
    evecty_dim1 = *ldu;
    evecty_offset = 1 + evecty_dim1 * 1;
    evecty -= evecty_offset;
    evectr_dim1 = *ldu;
    evectr_offset = 1 + evectr_dim1 * 1;
    evectr -= evectr_offset;
    evectl_dim1 = *ldu;
    evectl_offset = 1 + evectl_dim1 * 1;
    evectl -= evectl_offset;
    uz_dim1 = *ldu;
    uz_offset = 1 + uz_dim1 * 1;
    uz -= uz_offset;
    z_dim1 = *ldu;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1 * 1;
    u -= u_offset;
    --wr1;
    --wi1;
    --wr3;
    --wi3;
    --tau;
    --work;
    --iwork;
    --select;
    --result;

    /* Function Body   

       Check for errors */

    ntestt = 0;
    *info = 0;

    badnn = FALSE_;
    nmax = 0;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = nmax, i__3 = nn[j];
	nmax = max(i__2,i__3);
	if (nn[j] < 0) {
	    badnn = TRUE_;
	}
/* L10: */
    }

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badnn) {
	*info = -2;
    } else if (*ntypes < 0) {
	*info = -3;
    } else if (*thresh < 0.) {
	*info = -6;
    } else if (*lda <= 1 || *lda < nmax) {
	*info = -9;
    } else if (*ldu <= 1 || *ldu < nmax) {
	*info = -14;
    } else if ((nmax << 2) * nmax + 2 > *nwork) {
	*info = -28;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DCHKHS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*nsizes == 0 || *ntypes == 0) {
	return 0;
    }

/*     More important constants */

    unfl = dlamch_("Safe minimum");
    ovfl = dlamch_("Overflow");
    dlabad_(&unfl, &ovfl);
    ulp = dlamch_("Epsilon") * dlamch_("Base");
    ulpinv = 1. / ulp;
    rtunfl = sqrt(unfl);
    rtovfl = sqrt(ovfl);
    rtulp = sqrt(ulp);
    rtulpi = 1. / rtulp;

/*     Loop over sizes, types */

    nerrs = 0;
    nmats = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	n = nn[jsize];
	if (n == 0) {
	    goto L270;
	}
	n1 = max(1,n);
	aninv = 1. / (doublereal) n1;

	if (*nsizes != 1) {
	    mtypes = min(21,*ntypes);
	} else {
	    mtypes = min(22,*ntypes);
	}

	i__2 = mtypes;
	for (jtype = 1; jtype <= i__2; ++jtype) {
	    if (! dotype[jtype]) {
		goto L260;
	    }
	    ++nmats;
	    ntest = 0;

/*           Save ISEED in case of an error. */

	    for (j = 1; j <= 4; ++j) {
		ioldsd[j - 1] = iseed[j];
/* L20: */
	    }

/*           Initialize RESULT */

	    for (j = 1; j <= 14; ++j) {
		result[j] = 0.;
/* L30: */
	    }

/*           Compute "A"   

             Control parameters:   

             KMAGN  KCONDS  KMODE        KTYPE   
         =1  O(1)   1       clustered 1  zero   
         =2  large  large   clustered 2  identity   
         =3  small          exponential  Jordan   
         =4                 arithmetic   diagonal, (w/ eigenvalues)   
         =5                 random log   symmetric, w/ eigenvalues   
         =6                 random       general, w/ eigenvalues   
         =7                              random diagonal   
         =8                              random symmetric   
         =9                              random general   
         =10                             random triangular */

	    if (mtypes > 21) {
		goto L100;
	    }

	    itype = ktype[jtype - 1];
	    imode = kmode[jtype - 1];

/*           Compute norm */

	    switch (kmagn[jtype - 1]) {
		case 1:  goto L40;
		case 2:  goto L50;
		case 3:  goto L60;
	    }

L40:
	    anorm = 1.;
	    goto L70;

L50:
	    anorm = rtovfl * ulp * aninv;
	    goto L70;

L60:
	    anorm = rtunfl * n * ulpinv;
	    goto L70;

L70:

	    dlaset_("Full", lda, &n, &c_b18, &c_b18, &a[a_offset], lda);
	    iinfo = 0;
	    cond = ulpinv;

/*           Special Matrices */

	    if (itype == 1) {

/*              Zero */

		iinfo = 0;

	    } else if (itype == 2) {

/*              Identity */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a_ref(jcol, jcol) = anorm;
/* L80: */
		}

	    } else if (itype == 3) {

/*              Jordan Block */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a_ref(jcol, jcol) = anorm;
		    if (jcol > 1) {
			a_ref(jcol, jcol - 1) = 1.;
		    }
/* L90: */
		}

	    } else if (itype == 4) {

/*              Diagonal Matrix, [Eigen]values Specified */

		dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[n 
			+ 1], &iinfo);

	    } else if (itype == 5) {

/*              Symmetric, eigenvalues specified */

		dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], 
			&iinfo);

	    } else if (itype == 6) {

/*              General, eigenvalues specified */

		if (kconds[jtype - 1] == 1) {
		    conds = 1.;
		} else if (kconds[jtype - 1] == 2) {
		    conds = rtulpi;
		} else {
		    conds = 0.;
		}

		*(unsigned char *)&adumma[0] = ' ';
		dlatme_(&n, "S", &iseed[1], &work[1], &imode, &cond, &c_b32, 
			adumma, "T", "T", "T", &work[n + 1], &c__4, &conds, &
			n, &n, &anorm, &a[a_offset], lda, &work[(n << 1) + 1],
			 &iinfo);

	    } else if (itype == 7) {

/*              Diagonal, random eigenvalues */

		dlatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &c__0, &
			c__0, &c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[
			1], &iinfo);

	    } else if (itype == 8) {

/*              Symmetric, random eigenvalues */

		dlatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &n, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else if (itype == 9) {

/*              General, random eigenvalues */

		dlatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &n, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else if (itype == 10) {

/*              Triangular, random eigenvalues */

		dlatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &c__0, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else {

		iinfo = 1;
	    }

	    if (iinfo != 0) {
		io___36.ciunit = *nounit;
		s_wsfe(&io___36);
		do_fio(&c__1, "Generator", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		return 0;
	    }

L100:

/*           Call DGEHRD to compute H and U, do tests. */

	    dlacpy_(" ", &n, &n, &a[a_offset], lda, &h__[h_offset], lda);

	    ntest = 1;

	    ilo = 1;
	    ihi = n;

	    i__3 = *nwork - n;
	    dgehrd_(&n, &ilo, &ihi, &h__[h_offset], lda, &work[1], &work[n + 
		    1], &i__3, &iinfo);

	    if (iinfo != 0) {
		result[1] = ulpinv;
		io___39.ciunit = *nounit;
		s_wsfe(&io___39);
		do_fio(&c__1, "DGEHRD", (ftnlen)6);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L250;
	    }

	    i__3 = n - 1;
	    for (j = 1; j <= i__3; ++j) {
		uu_ref(j + 1, j) = 0.;
		i__4 = n;
		for (i__ = j + 2; i__ <= i__4; ++i__) {
		    u_ref(i__, j) = h___ref(i__, j);
		    uu_ref(i__, j) = h___ref(i__, j);
		    h___ref(i__, j) = 0.;
/* L110: */
		}
/* L120: */
	    }
	    dcopy_(&n, &work[1], &c__1, &tau[1], &c__1);
	    i__3 = *nwork - n;
	    dorghr_(&n, &ilo, &ihi, &u[u_offset], ldu, &work[1], &work[n + 1],
		     &i__3, &iinfo);
	    ntest = 2;

	    dhst01_(&n, &ilo, &ihi, &a[a_offset], lda, &h__[h_offset], lda, &
		    u[u_offset], ldu, &work[1], nwork, &result[1]);

/*           Call DHSEQR to compute T1, T2 and Z, do tests.   

             Eigenvalues only (WR3,WI3) */

	    dlacpy_(" ", &n, &n, &h__[h_offset], lda, &t2[t2_offset], lda);
	    ntest = 3;
	    result[3] = ulpinv;

	    dhseqr_("E", "N", &n, &ilo, &ihi, &t2[t2_offset], lda, &wr3[1], &
		    wi3[1], &uz[uz_offset], ldu, &work[1], nwork, &iinfo);
	    if (iinfo != 0) {
		io___41.ciunit = *nounit;
		s_wsfe(&io___41);
		do_fio(&c__1, "DHSEQR(E)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		if (iinfo <= n + 2) {
		    *info = abs(iinfo);
		    goto L250;
		}
	    }

/*           Eigenvalues (WR1,WI1) and Full Schur Form (T2) */

	    dlacpy_(" ", &n, &n, &h__[h_offset], lda, &t2[t2_offset], lda);

	    dhseqr_("S", "N", &n, &ilo, &ihi, &t2[t2_offset], lda, &wr1[1], &
		    wi1[1], &uz[uz_offset], ldu, &work[1], nwork, &iinfo);
	    if (iinfo != 0 && iinfo <= n + 2) {
		io___42.ciunit = *nounit;
		s_wsfe(&io___42);
		do_fio(&c__1, "DHSEQR(S)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L250;
	    }

/*           Eigenvalues (WR1,WI1), Schur Form (T1), and Schur vectors   
             (UZ) */

	    dlacpy_(" ", &n, &n, &h__[h_offset], lda, &t1[t1_offset], lda);
	    dlacpy_(" ", &n, &n, &u[u_offset], ldu, &uz[uz_offset], lda);

	    dhseqr_("S", "V", &n, &ilo, &ihi, &t1[t1_offset], lda, &wr1[1], &
		    wi1[1], &uz[uz_offset], ldu, &work[1], nwork, &iinfo);
	    if (iinfo != 0 && iinfo <= n + 2) {
		io___43.ciunit = *nounit;
		s_wsfe(&io___43);
		do_fio(&c__1, "DHSEQR(V)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L250;
	    }

/*           Compute Z = U' UZ */

	    dgemm_("T", "N", &n, &n, &n, &c_b32, &u[u_offset], ldu, &uz[
		    uz_offset], ldu, &c_b18, &z__[z_offset], ldu);
	    ntest = 8;

/*           Do Tests 3: | H - Z T Z' | / ( |H| n ulp )   
                  and 4: | I - Z Z' | / ( n ulp ) */

	    dhst01_(&n, &ilo, &ihi, &h__[h_offset], lda, &t1[t1_offset], lda, 
		    &z__[z_offset], ldu, &work[1], nwork, &result[3]);

/*           Do Tests 5: | A - UZ T (UZ)' | / ( |A| n ulp )   
                  and 6: | I - UZ (UZ)' | / ( n ulp ) */

	    dhst01_(&n, &ilo, &ihi, &a[a_offset], lda, &t1[t1_offset], lda, &
		    uz[uz_offset], ldu, &work[1], nwork, &result[5]);

/*           Do Test 7: | T2 - T1 | / ( |T| n ulp ) */

	    dget10_(&n, &n, &t2[t2_offset], lda, &t1[t1_offset], lda, &work[1]
		    , &result[7]);

/*           Do Test 8: | W3 - W1 | / ( max(|W1|,|W3|) ulp ) */

	    temp1 = 0.;
	    temp2 = 0.;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
/* Computing MAX */
		d__5 = temp1, d__6 = (d__1 = wr1[j], abs(d__1)) + (d__2 = wi1[
			j], abs(d__2)), d__5 = max(d__5,d__6), d__6 = (d__3 = 
			wr3[j], abs(d__3)) + (d__4 = wi3[j], abs(d__4));
		temp1 = max(d__5,d__6);
/* Computing MAX */
		d__3 = temp2, d__4 = (d__1 = wr1[j] - wr3[j], abs(d__1)) + (
			d__2 = wr1[j] - wr3[j], abs(d__2));
		temp2 = max(d__3,d__4);
/* L130: */
	    }

/* Computing MAX */
	    d__1 = unfl, d__2 = ulp * max(temp1,temp2);
	    result[8] = temp2 / max(d__1,d__2);

/*           Compute the Left and Right Eigenvectors of T   

             Compute the Right eigenvector Matrix: */

	    ntest = 9;
	    result[9] = ulpinv;

/*           Select last max(N/4,1) real, max(N/4,1) complex eigenvectors */

	    nselc = 0;
	    nselr = 0;
	    j = n;
L140:
	    if (wi1[j] == 0.) {
/* Computing MAX */
		i__3 = n / 4;
		if (nselr < max(i__3,1)) {
		    ++nselr;
		    select[j] = TRUE_;
		} else {
		    select[j] = FALSE_;
		}
		--j;
	    } else {
/* Computing MAX */
		i__3 = n / 4;
		if (nselc < max(i__3,1)) {
		    ++nselc;
		    select[j] = TRUE_;
		    select[j - 1] = FALSE_;
		} else {
		    select[j] = FALSE_;
		    select[j - 1] = FALSE_;
		}
		j += -2;
	    }
	    if (j > 0) {
		goto L140;
	    }

	    dtrevc_("Right", "All", &select[1], &n, &t1[t1_offset], lda, 
		    dumma, ldu, &evectr[evectr_offset], ldu, &n, &in, &work[1]
		    , &iinfo);
	    if (iinfo != 0) {
		io___50.ciunit = *nounit;
		s_wsfe(&io___50);
		do_fio(&c__1, "DTREVC(R,A)", (ftnlen)11);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L250;
	    }

/*           Test 9:  | TR - RW | / ( |T| |R| ulp ) */

	    dget22_("N", "N", "N", &n, &t1[t1_offset], lda, &evectr[
		    evectr_offset], ldu, &wr1[1], &wi1[1], &work[1], dumma);
	    result[9] = dumma[0];
	    if (dumma[1] > *thresh) {
		io___51.ciunit = *nounit;
		s_wsfe(&io___51);
		do_fio(&c__1, "Right", (ftnlen)5);
		do_fio(&c__1, "DTREVC", (ftnlen)6);
		do_fio(&c__1, (char *)&dumma[1], (ftnlen)sizeof(doublereal));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Compute selected right eigenvectors and confirm that   
             they agree with previous right eigenvectors */

	    dtrevc_("Right", "Some", &select[1], &n, &t1[t1_offset], lda, 
		    dumma, ldu, &evectl[evectl_offset], ldu, &n, &in, &work[1]
		    , &iinfo);
	    if (iinfo != 0) {
		io___52.ciunit = *nounit;
		s_wsfe(&io___52);
		do_fio(&c__1, "DTREVC(R,S)", (ftnlen)11);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L250;
	    }

	    k = 1;
	    match = TRUE_;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		if (select[j] && wi1[j] == 0.) {
		    i__4 = n;
		    for (jj = 1; jj <= i__4; ++jj) {
			if (evectr_ref(jj, j) != evectl_ref(jj, k)) {
			    match = FALSE_;
			    goto L180;
			}
/* L150: */
		    }
		    ++k;
		} else if (select[j] && wi1[j] != 0.) {
		    i__4 = n;
		    for (jj = 1; jj <= i__4; ++jj) {
			if (evectr_ref(jj, j) != evectl_ref(jj, k) || 
				evectr_ref(jj, j + 1) != evectl_ref(jj, k + 1)
				) {
			    match = FALSE_;
			    goto L180;
			}
/* L160: */
		    }
		    k += 2;
		}
/* L170: */
	    }
L180:
	    if (! match) {
		io___56.ciunit = *nounit;
		s_wsfe(&io___56);
		do_fio(&c__1, "Right", (ftnlen)5);
		do_fio(&c__1, "DTREVC", (ftnlen)6);
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Compute the Left eigenvector Matrix: */

	    ntest = 10;
	    result[10] = ulpinv;
	    dtrevc_("Left", "All", &select[1], &n, &t1[t1_offset], lda, &
		    evectl[evectl_offset], ldu, dumma, ldu, &n, &in, &work[1],
		     &iinfo);
	    if (iinfo != 0) {
		io___57.ciunit = *nounit;
		s_wsfe(&io___57);
		do_fio(&c__1, "DTREVC(L,A)", (ftnlen)11);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L250;
	    }

/*           Test 10:  | LT - WL | / ( |T| |L| ulp ) */

	    dget22_("Trans", "N", "Conj", &n, &t1[t1_offset], lda, &evectl[
		    evectl_offset], ldu, &wr1[1], &wi1[1], &work[1], &dumma[2]
		    );
	    result[10] = dumma[2];
	    if (dumma[3] > *thresh) {
		io___58.ciunit = *nounit;
		s_wsfe(&io___58);
		do_fio(&c__1, "Left", (ftnlen)4);
		do_fio(&c__1, "DTREVC", (ftnlen)6);
		do_fio(&c__1, (char *)&dumma[3], (ftnlen)sizeof(doublereal));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Compute selected left eigenvectors and confirm that   
             they agree with previous left eigenvectors */

	    dtrevc_("Left", "Some", &select[1], &n, &t1[t1_offset], lda, &
		    evectr[evectr_offset], ldu, dumma, ldu, &n, &in, &work[1],
		     &iinfo);
	    if (iinfo != 0) {
		io___59.ciunit = *nounit;
		s_wsfe(&io___59);
		do_fio(&c__1, "DTREVC(L,S)", (ftnlen)11);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L250;
	    }

	    k = 1;
	    match = TRUE_;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		if (select[j] && wi1[j] == 0.) {
		    i__4 = n;
		    for (jj = 1; jj <= i__4; ++jj) {
			if (evectl_ref(jj, j) != evectr_ref(jj, k)) {
			    match = FALSE_;
			    goto L220;
			}
/* L190: */
		    }
		    ++k;
		} else if (select[j] && wi1[j] != 0.) {
		    i__4 = n;
		    for (jj = 1; jj <= i__4; ++jj) {
			if (evectl_ref(jj, j) != evectr_ref(jj, k) || 
				evectl_ref(jj, j + 1) != evectr_ref(jj, k + 1)
				) {
			    match = FALSE_;
			    goto L220;
			}
/* L200: */
		    }
		    k += 2;
		}
/* L210: */
	    }
L220:
	    if (! match) {
		io___60.ciunit = *nounit;
		s_wsfe(&io___60);
		do_fio(&c__1, "Left", (ftnlen)4);
		do_fio(&c__1, "DTREVC", (ftnlen)6);
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Call DHSEIN for Right eigenvectors of H, do test 11 */

	    ntest = 11;
	    result[11] = ulpinv;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		select[j] = TRUE_;
/* L230: */
	    }

	    dhsein_("Right", "Qr", "Ninitv", &select[1], &n, &h__[h_offset], 
		    lda, &wr3[1], &wi3[1], dumma, ldu, &evectx[evectx_offset],
		     ldu, &n1, &in, &work[1], &iwork[1], &iwork[1], &iinfo);
	    if (iinfo != 0) {
		io___61.ciunit = *nounit;
		s_wsfe(&io___61);
		do_fio(&c__1, "DHSEIN(R)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    goto L250;
		}
	    } else {

/*              Test 11:  | HX - XW | / ( |H| |X| ulp )   

                          (from inverse iteration) */

		dget22_("N", "N", "N", &n, &h__[h_offset], lda, &evectx[
			evectx_offset], ldu, &wr3[1], &wi3[1], &work[1], 
			dumma);
		if (dumma[0] < ulpinv) {
		    result[11] = dumma[0] * aninv;
		}
		if (dumma[1] > *thresh) {
		    io___62.ciunit = *nounit;
		    s_wsfe(&io___62);
		    do_fio(&c__1, "Right", (ftnlen)5);
		    do_fio(&c__1, "DHSEIN", (ftnlen)6);
		    do_fio(&c__1, (char *)&dumma[1], (ftnlen)sizeof(
			    doublereal));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		}
	    }

/*           Call DHSEIN for Left eigenvectors of H, do test 12 */

	    ntest = 12;
	    result[12] = ulpinv;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		select[j] = TRUE_;
/* L240: */
	    }

	    dhsein_("Left", "Qr", "Ninitv", &select[1], &n, &h__[h_offset], 
		    lda, &wr3[1], &wi3[1], &evecty[evecty_offset], ldu, dumma,
		     ldu, &n1, &in, &work[1], &iwork[1], &iwork[1], &iinfo);
	    if (iinfo != 0) {
		io___63.ciunit = *nounit;
		s_wsfe(&io___63);
		do_fio(&c__1, "DHSEIN(L)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    goto L250;
		}
	    } else {

/*              Test 12:  | YH - WY | / ( |H| |Y| ulp )   

                          (from inverse iteration) */

		dget22_("C", "N", "C", &n, &h__[h_offset], lda, &evecty[
			evecty_offset], ldu, &wr3[1], &wi3[1], &work[1], &
			dumma[2]);
		if (dumma[2] < ulpinv) {
		    result[12] = dumma[2] * aninv;
		}
		if (dumma[3] > *thresh) {
		    io___64.ciunit = *nounit;
		    s_wsfe(&io___64);
		    do_fio(&c__1, "Left", (ftnlen)4);
		    do_fio(&c__1, "DHSEIN", (ftnlen)6);
		    do_fio(&c__1, (char *)&dumma[3], (ftnlen)sizeof(
			    doublereal));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		}
	    }

/*           Call DORMHR for Right eigenvectors of A, do test 13 */

	    ntest = 13;
	    result[13] = ulpinv;

	    dormhr_("Left", "No transpose", &n, &n, &ilo, &ihi, &uu[uu_offset]
		    , ldu, &tau[1], &evectx[evectx_offset], ldu, &work[1], 
		    nwork, &iinfo);
	    if (iinfo != 0) {
		io___65.ciunit = *nounit;
		s_wsfe(&io___65);
		do_fio(&c__1, "DORMHR(R)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    goto L250;
		}
	    } else {

/*              Test 13:  | AX - XW | / ( |A| |X| ulp )   

                          (from inverse iteration) */

		dget22_("N", "N", "N", &n, &a[a_offset], lda, &evectx[
			evectx_offset], ldu, &wr3[1], &wi3[1], &work[1], 
			dumma);
		if (dumma[0] < ulpinv) {
		    result[13] = dumma[0] * aninv;
		}
	    }

/*           Call DORMHR for Left eigenvectors of A, do test 14 */

	    ntest = 14;
	    result[14] = ulpinv;

	    dormhr_("Left", "No transpose", &n, &n, &ilo, &ihi, &uu[uu_offset]
		    , ldu, &tau[1], &evecty[evecty_offset], ldu, &work[1], 
		    nwork, &iinfo);
	    if (iinfo != 0) {
		io___66.ciunit = *nounit;
		s_wsfe(&io___66);
		do_fio(&c__1, "DORMHR(L)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    goto L250;
		}
	    } else {

/*              Test 14:  | YA - WY | / ( |A| |Y| ulp )   

                          (from inverse iteration) */

		dget22_("C", "N", "C", &n, &a[a_offset], lda, &evecty[
			evecty_offset], ldu, &wr3[1], &wi3[1], &work[1], &
			dumma[2]);
		if (dumma[2] < ulpinv) {
		    result[14] = dumma[2] * aninv;
		}
	    }

/*           End of Loop -- Check for RESULT(j) > THRESH */

L250:

	    ntestt += ntest;
	    dlafts_("DHS", &n, &n, &jtype, &ntest, &result[1], ioldsd, thresh,
		     nounit, &nerrs);

L260:
	    ;
	}
L270:
	;
    }

/*     Summary */

    dlasum_("DHS", nounit, &nerrs, &ntestt);

    return 0;


/*     End of DCHKHS */

} /* dchkhs_ */
示例#2
0
文件: ddrvsx.c 项目: zangel/uquad
/* Subroutine */ int ddrvsx_(integer *nsizes, integer *nn, integer *ntypes, 
	logical *dotype, integer *iseed, doublereal *thresh, integer *niunit, 
	integer *nounit, doublereal *a, integer *lda, doublereal *h__, 
	doublereal *ht, doublereal *wr, doublereal *wi, doublereal *wrt, 
	doublereal *wit, doublereal *wrtmp, doublereal *witmp, doublereal *vs,
	 integer *ldvs, doublereal *vs1, doublereal *result, doublereal *work,
	 integer *lwork, integer *iwork, logical *bwork, integer *info)
{
    /* Initialized data */

    static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 };
    static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 };
    static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 };
    static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 };

    /* Format strings */
    static char fmt_9991[] = "(\002 DDRVSX: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
	    "(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9999[] = "(/1x,a3,\002 -- Real Schur Form Decomposition "
	    "Expert \002,\002Driver\002,/\002 Matrix types (see DDRVSX for de"
	    "tails):\002)";
    static char fmt_9998[] = "(/\002 Special Matrices:\002,/\002  1=Zero mat"
	    "rix.             \002,\002           \002,\002  5=Diagonal: geom"
	    "etr. spaced entries.\002,/\002  2=Identity matrix.              "
	    "      \002,\002  6=Diagona\002,\002l: clustered entries.\002,"
	    "/\002  3=Transposed Jordan block.  \002,\002          \002,\002 "
	    " 7=Diagonal: large, evenly spaced.\002,/\002  \002,\0024=Diagona"
	    "l: evenly spaced entries.    \002,\002  8=Diagonal: s\002,\002ma"
	    "ll, evenly spaced.\002)";
    static char fmt_9997[] = "(\002 Dense, Non-Symmetric Matrices:\002,/\002"
	    "  9=Well-cond., ev\002,\002enly spaced eigenvals.\002,\002 14=Il"
	    "l-cond., geomet. spaced e\002,\002igenals.\002,/\002 10=Well-con"
	    "d., geom. spaced eigenvals. \002,\002 15=Ill-conditioned, cluste"
	    "red e.vals.\002,/\002 11=Well-cond\002,\002itioned, clustered e."
	    "vals. \002,\002 16=Ill-cond., random comp\002,\002lex \002,/\002"
	    " 12=Well-cond., random complex \002,\002         \002,\002 17=Il"
	    "l-cond., large rand. complx \002,/\002 13=Ill-condi\002,\002tion"
	    "ed, evenly spaced.     \002,\002 18=Ill-cond., small rand.\002"
	    ",\002 complx \002)";
    static char fmt_9996[] = "(\002 19=Matrix with random O(1) entries.   "
	    " \002,\002 21=Matrix \002,\002with small random entries.\002,"
	    "/\002 20=Matrix with large ran\002,\002dom entries.   \002,/)";
    static char fmt_9995[] = "(\002 Tests performed with test threshold ="
	    "\002,f8.2,/\002 ( A denotes A on input and T denotes A on output)"
	    "\002,//\002 1 = 0 if T in Schur form (no sort), \002,\002  1/ulp"
	    " otherwise\002,/\002 2 = | A - VS T transpose(VS) | / ( n |A| ul"
	    "p ) (no sort)\002,/\002 3 = | I - VS transpose(VS) | / ( n ulp )"
	    " (no sort) \002,/\002 4 = 0 if WR+sqrt(-1)*WI are eigenvalues of"
	    " T (no sort),\002,\002  1/ulp otherwise\002,/\002 5 = 0 if T sam"
	    "e no matter if VS computed (no sort),\002,\002  1/ulp otherwis"
	    "e\002,/\002 6 = 0 if WR, WI same no matter if VS computed (no so"
	    "rt)\002,\002,  1/ulp otherwise\002)";
    static char fmt_9994[] = "(\002 7 = 0 if T in Schur form (sort), \002"
	    ",\002  1/ulp otherwise\002,/\002 8 = | A - VS T transpose(VS) | "
	    "/ ( n |A| ulp ) (sort)\002,/\002 9 = | I - VS transpose(VS) | / "
	    "( n ulp ) (sort) \002,/\002 10 = 0 if WR+sqrt(-1)*WI are eigenva"
	    "lues of T (sort),\002,\002  1/ulp otherwise\002,/\002 11 = 0 if "
	    "T same no matter what else computed (sort),\002,\002  1/ulp othe"
	    "rwise\002,/\002 12 = 0 if WR, WI same no matter what else comput"
	    "ed \002,\002(sort), 1/ulp otherwise\002,/\002 13 = 0 if sorting "
	    "succesful, 1/ulp otherwise\002,/\002 14 = 0 if RCONDE same no ma"
	    "tter what else computed,\002,\002 1/ulp otherwise\002,/\002 15 ="
	    " 0 if RCONDv same no matter what else computed,\002,\002 1/ulp o"
	    "therwise\002,/\002 16 = | RCONDE - RCONDE(precomputed) | / cond("
	    "RCONDE),\002,/\002 17 = | RCONDV - RCONDV(precomputed) | / cond("
	    "RCONDV),\002)";
    static char fmt_9993[] = "(\002 N=\002,i5,\002, IWK=\002,i2,\002, seed"
	    "=\002,4(i4,\002,\002),\002 type \002,i2,\002, test(\002,i2,\002)="
	    "\002,g10.3)";
    static char fmt_9992[] = "(\002 N=\002,i5,\002, input example =\002,i3"
	    ",\002,  test(\002,i2,\002)=\002,g10.3)";

    /* System generated locals */
    integer a_dim1, a_offset, h_dim1, h_offset, ht_dim1, ht_offset, vs_dim1, 
	    vs_offset, vs1_dim1, vs1_offset, i__1, i__2, i__3, i__4;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double sqrt(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void),
	     s_rsle(cilist *), do_lio(integer *, integer *, char *, ftnlen), 
	    e_rsle(void);

    /* Local variables */
    static doublereal cond;
    static integer jcol;
    static char path[3];
    static integer nmax;
    static doublereal unfl, ovfl;
    static integer i__, j, n;
    static logical badnn;
    static integer nfail;
    extern /* Subroutine */ int dget24_(logical *, integer *, doublereal *, 
	    integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *,
	     integer *, integer *, doublereal *, doublereal *, integer *, 
	    integer *, logical *, integer *);
    static integer imode, iinfo;
    static doublereal conds, anorm;
    static integer islct[20], nslct, jsize, nerrs, itype, jtype, ntest;
    static doublereal rtulp;
    extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
    extern doublereal dlamch_(char *);
    static doublereal rcdein;
    static char adumma[1*1];
    extern /* Subroutine */ int dlatme_(integer *, char *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, char *, char 
	    *, char *, char *, doublereal *, integer *, doublereal *, integer 
	    *, integer *, doublereal *, doublereal *, integer *, doublereal *,
	     integer *);
    static integer idumma[1], ioldsd[4];
    extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *), 
	    xerbla_(char *, integer *), dlatmr_(integer *, integer *, 
	    char *, integer *, char *, doublereal *, integer *, doublereal *, 
	    doublereal *, char *, char *, doublereal *, integer *, doublereal 
	    *, doublereal *, integer *, doublereal *, char *, integer *, 
	    integer *, integer *, doublereal *, doublereal *, char *, 
	    doublereal *, integer *, integer *, integer *), dlatms_(integer *, integer *, 
	    char *, integer *, char *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, integer *, char *, doublereal *, integer 
	    *, doublereal *, integer *);
    static doublereal rcdvin;
    extern /* Subroutine */ int dlasum_(char *, integer *, integer *, integer 
	    *);
    static integer ntestf;
    static doublereal ulpinv;
    static integer nnwork;
    static doublereal rtulpi;
    static integer mtypes, ntestt, iwk;
    static doublereal ulp;

    /* Fortran I/O blocks */
    static cilist io___32 = { 0, 0, 0, fmt_9991, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___46 = { 0, 0, 0, fmt_9994, 0 };
    static cilist io___47 = { 0, 0, 0, fmt_9993, 0 };
    static cilist io___48 = { 0, 0, 1, 0, 0 };
    static cilist io___49 = { 0, 0, 0, 0, 0 };
    static cilist io___51 = { 0, 0, 0, 0, 0 };
    static cilist io___52 = { 0, 0, 0, 0, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___54 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___55 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___56 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___57 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___58 = { 0, 0, 0, fmt_9994, 0 };
    static cilist io___59 = { 0, 0, 0, fmt_9992, 0 };



#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

       DDRVSX checks the nonsymmetric eigenvalue (Schur form) problem   
       expert driver DGEESX.   

       DDRVSX uses both test matrices generated randomly depending on   
       data supplied in the calling sequence, as well as on data   
       read from an input file and including precomputed condition   
       numbers to which it compares the ones it computes.   

       When DDRVSX is called, a number of matrix "sizes" ("n's") and a   
       number of matrix "types" are specified.  For each size ("n")   
       and each type of matrix, one matrix will be generated and used   
       to test the nonsymmetric eigenroutines.  For each matrix, 15   
       tests will be performed:   

       (1)     0 if T is in Schur form, 1/ulp otherwise   
              (no sorting of eigenvalues)   

       (2)     | A - VS T VS' | / ( n |A| ulp )   

         Here VS is the matrix of Schur eigenvectors, and T is in Schur   
         form  (no sorting of eigenvalues).   

       (3)     | I - VS VS' | / ( n ulp ) (no sorting of eigenvalues).   

       (4)     0     if WR+sqrt(-1)*WI are eigenvalues of T   
               1/ulp otherwise   
               (no sorting of eigenvalues)   

       (5)     0     if T(with VS) = T(without VS),   
               1/ulp otherwise   
               (no sorting of eigenvalues)   

       (6)     0     if eigenvalues(with VS) = eigenvalues(without VS),   
               1/ulp otherwise   
               (no sorting of eigenvalues)   

       (7)     0 if T is in Schur form, 1/ulp otherwise   
               (with sorting of eigenvalues)   

       (8)     | A - VS T VS' | / ( n |A| ulp )   

         Here VS is the matrix of Schur eigenvectors, and T is in Schur   
         form  (with sorting of eigenvalues).   

       (9)     | I - VS VS' | / ( n ulp ) (with sorting of eigenvalues).   

       (10)    0     if WR+sqrt(-1)*WI are eigenvalues of T   
               1/ulp otherwise   
               If workspace sufficient, also compare WR, WI with and   
               without reciprocal condition numbers   
               (with sorting of eigenvalues)   

       (11)    0     if T(with VS) = T(without VS),   
               1/ulp otherwise   
               If workspace sufficient, also compare T with and without   
               reciprocal condition numbers   
               (with sorting of eigenvalues)   

       (12)    0     if eigenvalues(with VS) = eigenvalues(without VS),   
               1/ulp otherwise   
               If workspace sufficient, also compare VS with and without   
               reciprocal condition numbers   
               (with sorting of eigenvalues)   

       (13)    if sorting worked and SDIM is the number of   
               eigenvalues which were SELECTed   
               If workspace sufficient, also compare SDIM with and   
               without reciprocal condition numbers   

       (14)    if RCONDE the same no matter if VS and/or RCONDV computed   

       (15)    if RCONDV the same no matter if VS and/or RCONDE computed   

       The "sizes" are specified by an array NN(1:NSIZES); the value of   
       each element NN(j) specifies one size.   
       The "types" are specified by a logical array DOTYPE( 1:NTYPES );   
       if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.   
       Currently, the list of possible types is:   

       (1)  The zero matrix.   
       (2)  The identity matrix.   
       (3)  A (transposed) Jordan block, with 1's on the diagonal.   

       (4)  A diagonal matrix with evenly spaced entries   
            1, ..., ULP  and random signs.   
            (ULP = (first number larger than 1) - 1 )   
       (5)  A diagonal matrix with geometrically spaced entries   
            1, ..., ULP  and random signs.   
       (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP   
            and random signs.   

       (7)  Same as (4), but multiplied by a constant near   
            the overflow threshold   
       (8)  Same as (4), but multiplied by a constant near   
            the underflow threshold   

       (9)  A matrix of the form  U' T U, where U is orthogonal and   
            T has evenly spaced entries 1, ..., ULP with random signs   
            on the diagonal and random O(1) entries in the upper   
            triangle.   

       (10) A matrix of the form  U' T U, where U is orthogonal and   
            T has geometrically spaced entries 1, ..., ULP with random   
            signs on the diagonal and random O(1) entries in the upper   
            triangle.   

       (11) A matrix of the form  U' T U, where U is orthogonal and   
            T has "clustered" entries 1, ULP,..., ULP with random   
            signs on the diagonal and random O(1) entries in the upper   
            triangle.   

       (12) A matrix of the form  U' T U, where U is orthogonal and   
            T has real or complex conjugate paired eigenvalues randomly   
            chosen from ( ULP, 1 ) and random O(1) entries in the upper   
            triangle.   

       (13) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP   
            with random signs on the diagonal and random O(1) entries   
            in the upper triangle.   

       (14) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has geometrically spaced entries   
            1, ..., ULP with random signs on the diagonal and random   
            O(1) entries in the upper triangle.   

       (15) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP   
            with random signs on the diagonal and random O(1) entries   
            in the upper triangle.   

       (16) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has real or complex conjugate paired   
            eigenvalues randomly chosen from ( ULP, 1 ) and random   
            O(1) entries in the upper triangle.   

       (17) Same as (16), but multiplied by a constant   
            near the overflow threshold   
       (18) Same as (16), but multiplied by a constant   
            near the underflow threshold   

       (19) Nonsymmetric matrix with random entries chosen from (-1,1).   
            If N is at least 4, all entries in first two rows and last   
            row, and first column and last two columns are zero.   
       (20) Same as (19), but multiplied by a constant   
            near the overflow threshold   
       (21) Same as (19), but multiplied by a constant   
            near the underflow threshold   

       In addition, an input file will be read from logical unit number   
       NIUNIT. The file contains matrices along with precomputed   
       eigenvalues and reciprocal condition numbers for the eigenvalue   
       average and right invariant subspace. For these matrices, in   
       addition to tests (1) to (15) we will compute the following two   
       tests:   

      (16)  |RCONDE - RCDEIN| / cond(RCONDE)   

         RCONDE is the reciprocal average eigenvalue condition number   
         computed by DGEESX and RCDEIN (the precomputed true value)   
         is supplied as input.  cond(RCONDE) is the condition number   
         of RCONDE, and takes errors in computing RCONDE into account,   
         so that the resulting quantity should be O(ULP). cond(RCONDE)   
         is essentially given by norm(A)/RCONDV.   

      (17)  |RCONDV - RCDVIN| / cond(RCONDV)   

         RCONDV is the reciprocal right invariant subspace condition   
         number computed by DGEESX and RCDVIN (the precomputed true   
         value) is supplied as input. cond(RCONDV) is the condition   
         number of RCONDV, and takes errors in computing RCONDV into   
         account, so that the resulting quantity should be O(ULP).   
         cond(RCONDV) is essentially given by norm(A)/RCONDE.   

    Arguments   
    =========   

    NSIZES  (input) INTEGER   
            The number of sizes of matrices to use.  NSIZES must be at   
            least zero. If it is zero, no randomly generated matrices   
            are tested, but any test matrices read from NIUNIT will be   
            tested.   

    NN      (input) INTEGER array, dimension (NSIZES)   
            An array containing the sizes to be used for the matrices.   
            Zero values will be skipped.  The values must be at least   
            zero.   

    NTYPES  (input) INTEGER   
            The number of elements in DOTYPE. NTYPES must be at least   
            zero. If it is zero, no randomly generated test matrices   
            are tested, but and test matrices read from NIUNIT will be   
            tested. If it is MAXTYP+1 and NSIZES is 1, then an   
            additional type, MAXTYP+1 is defined, which is to use   
            whatever matrix is in A.  This is only useful if   
            DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. .   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            If DOTYPE(j) is .TRUE., then for each size in NN a   
            matrix of that size and of type j will be generated.   
            If NTYPES is smaller than the maximum number of types   
            defined (PARAMETER MAXTYP), then types NTYPES+1 through   
            MAXTYP will not be generated.  If NTYPES is larger   
            than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)   
            will be ignored.   

    ISEED   (input/output) INTEGER array, dimension (4)   
            On entry ISEED specifies the seed of the random number   
            generator. The array elements should be between 0 and 4095;   
            if not they will be reduced mod 4096.  Also, ISEED(4) must   
            be odd.  The random number generator uses a linear   
            congruential sequence limited to small integers, and so   
            should produce machine independent random numbers. The   
            values of ISEED are changed on exit, and can be used in the   
            next call to DDRVSX to continue the same random number   
            sequence.   

    THRESH  (input) DOUBLE PRECISION   
            A test will count as "failed" if the "error", computed as   
            described above, exceeds THRESH.  Note that the error   
            is scaled to be O(1), so THRESH should be a reasonably   
            small multiple of 1, e.g., 10 or 100.  In particular,   
            it should not depend on the precision (single vs. double)   
            or the size of the matrix.  It must be at least zero.   

    NIUNIT  (input) INTEGER   
            The FORTRAN unit number for reading in the data file of   
            problems to solve.   

    NOUNIT  (input) INTEGER   
            The FORTRAN unit number for printing out error messages   
            (e.g., if a routine returns INFO not equal to 0.)   

    A       (workspace) DOUBLE PRECISION array, dimension (LDA, max(NN))   
            Used to hold the matrix whose eigenvalues are to be   
            computed.  On exit, A contains the last matrix actually used.   

    LDA     (input) INTEGER   
            The leading dimension of A, and H. LDA must be at   
            least 1 and at least max( NN ).   

    H       (workspace) DOUBLE PRECISION array, dimension (LDA, max(NN))   
            Another copy of the test matrix A, modified by DGEESX.   

    HT      (workspace) DOUBLE PRECISION array, dimension (LDA, max(NN))   
            Yet another copy of the test matrix A, modified by DGEESX.   

    WR      (workspace) DOUBLE PRECISION array, dimension (max(NN))   
    WI      (workspace) DOUBLE PRECISION array, dimension (max(NN))   
            The real and imaginary parts of the eigenvalues of A.   
            On exit, WR + WI*i are the eigenvalues of the matrix in A.   

    WRT     (workspace) DOUBLE PRECISION array, dimension (max(NN))   
    WIT     (workspace) DOUBLE PRECISION array, dimension (max(NN))   
            Like WR, WI, these arrays contain the eigenvalues of A,   
            but those computed when DGEESX only computes a partial   
            eigendecomposition, i.e. not Schur vectors   

    WRTMP   (workspace) DOUBLE PRECISION array, dimension (max(NN))   
    WITMP   (workspace) DOUBLE PRECISION array, dimension (max(NN))   
            More temporary storage for eigenvalues.   

    VS      (workspace) DOUBLE PRECISION array, dimension (LDVS, max(NN))   
            VS holds the computed Schur vectors.   

    LDVS    (input) INTEGER   
            Leading dimension of VS. Must be at least max(1,max(NN)).   

    VS1     (workspace) DOUBLE PRECISION array, dimension (LDVS, max(NN))   
            VS1 holds another copy of the computed Schur vectors.   

    RESULT  (output) DOUBLE PRECISION array, dimension (17)   
            The values computed by the 17 tests described above.   
            The values are currently limited to 1/ulp, to avoid overflow.   

    WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK)   

    LWORK   (input) INTEGER   
            The number of entries in WORK.  This must be at least   
            max(3*NN(j),2*NN(j)**2) for all j.   

    IWORK   (workspace) INTEGER array, dimension (max(NN)*max(NN))   

    INFO    (output) INTEGER   
            If 0,  successful exit.   
              <0,  input parameter -INFO is incorrect   
              >0,  DLATMR, SLATMS, SLATME or DGET24 returned an error   
                   code and INFO is its absolute value   

   -----------------------------------------------------------------------   

       Some Local Variables and Parameters:   
       ---- ----- --------- --- ----------   
       ZERO, ONE       Real 0 and 1.   
       MAXTYP          The number of types defined.   
       NMAX            Largest value in NN.   
       NERRS           The number of tests which have exceeded THRESH   
       COND, CONDS,   
       IMODE           Values to be passed to the matrix generators.   
       ANORM           Norm of A; passed to matrix generators.   

       OVFL, UNFL      Overflow and underflow thresholds.   
       ULP, ULPINV     Finest relative precision and its inverse.   
       RTULP, RTULPI   Square roots of the previous 4 values.   
               The following four arrays decode JTYPE:   
       KTYPE(j)        The general type (1-10) for type "j".   
       KMODE(j)        The MODE value to be passed to the matrix   
                       generator for type "j".   
       KMAGN(j)        The order of magnitude ( O(1),   
                       O(overflow^(1/2) ), O(underflow^(1/2) )   
       KCONDS(j)       Selectw whether CONDS is to be 1 or   
                       1/sqrt(ulp).  (0 means irrelevant.)   

    =====================================================================   

       Parameter adjustments */
    --nn;
    --dotype;
    --iseed;
    ht_dim1 = *lda;
    ht_offset = 1 + ht_dim1 * 1;
    ht -= ht_offset;
    h_dim1 = *lda;
    h_offset = 1 + h_dim1 * 1;
    h__ -= h_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --wr;
    --wi;
    --wrt;
    --wit;
    --wrtmp;
    --witmp;
    vs1_dim1 = *ldvs;
    vs1_offset = 1 + vs1_dim1 * 1;
    vs1 -= vs1_offset;
    vs_dim1 = *ldvs;
    vs_offset = 1 + vs_dim1 * 1;
    vs -= vs_offset;
    --result;
    --work;
    --iwork;
    --bwork;

    /* Function Body */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "SX", (ftnlen)2, (ftnlen)2);

/*     Check for errors */

    ntestt = 0;
    ntestf = 0;
    *info = 0;

/*     Important constants */

    badnn = FALSE_;

/*     12 is the largest dimension in the input file of precomputed   
       problems */

    nmax = 12;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = nmax, i__3 = nn[j];
	nmax = max(i__2,i__3);
	if (nn[j] < 0) {
	    badnn = TRUE_;
	}
/* L10: */
    }

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badnn) {
	*info = -2;
    } else if (*ntypes < 0) {
	*info = -3;
    } else if (*thresh < 0.) {
	*info = -6;
    } else if (*niunit <= 0) {
	*info = -7;
    } else if (*nounit <= 0) {
	*info = -8;
    } else if (*lda < 1 || *lda < nmax) {
	*info = -10;
    } else if (*ldvs < 1 || *ldvs < nmax) {
	*info = -20;
    } else /* if(complicated condition) */ {
/* Computing MAX   
   Computing 2nd power */
	i__3 = nmax;
	i__1 = nmax * 3, i__2 = i__3 * i__3 << 1;
	if (max(i__1,i__2) > *lwork) {
	    *info = -24;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DDRVSX", &i__1);
	return 0;
    }

/*     If nothing to do check on NIUNIT */

    if (*nsizes == 0 || *ntypes == 0) {
	goto L150;
    }

/*     More Important constants */

    unfl = dlamch_("Safe minimum");
    ovfl = 1. / unfl;
    dlabad_(&unfl, &ovfl);
    ulp = dlamch_("Precision");
    ulpinv = 1. / ulp;
    rtulp = sqrt(ulp);
    rtulpi = 1. / rtulp;

/*     Loop over sizes, types */

    nerrs = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	n = nn[jsize];
	if (*nsizes != 1) {
	    mtypes = min(21,*ntypes);
	} else {
	    mtypes = min(22,*ntypes);
	}

	i__2 = mtypes;
	for (jtype = 1; jtype <= i__2; ++jtype) {
	    if (! dotype[jtype]) {
		goto L130;
	    }

/*           Save ISEED in case of an error. */

	    for (j = 1; j <= 4; ++j) {
		ioldsd[j - 1] = iseed[j];
/* L20: */
	    }

/*           Compute "A"   

             Control parameters:   

             KMAGN  KCONDS  KMODE        KTYPE   
         =1  O(1)   1       clustered 1  zero   
         =2  large  large   clustered 2  identity   
         =3  small          exponential  Jordan   
         =4                 arithmetic   diagonal, (w/ eigenvalues)   
         =5                 random log   symmetric, w/ eigenvalues   
         =6                 random       general, w/ eigenvalues   
         =7                              random diagonal   
         =8                              random symmetric   
         =9                              random general   
         =10                             random triangular */

	    if (mtypes > 21) {
		goto L90;
	    }

	    itype = ktype[jtype - 1];
	    imode = kmode[jtype - 1];

/*           Compute norm */

	    switch (kmagn[jtype - 1]) {
		case 1:  goto L30;
		case 2:  goto L40;
		case 3:  goto L50;
	    }

L30:
	    anorm = 1.;
	    goto L60;

L40:
	    anorm = ovfl * ulp;
	    goto L60;

L50:
	    anorm = unfl * ulpinv;
	    goto L60;

L60:

	    dlaset_("Full", lda, &n, &c_b18, &c_b18, &a[a_offset], lda);
	    iinfo = 0;
	    cond = ulpinv;

/*           Special Matrices -- Identity & Jordan block   

                Zero */

	    if (itype == 1) {
		iinfo = 0;

	    } else if (itype == 2) {

/*              Identity */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a_ref(jcol, jcol) = anorm;
/* L70: */
		}

	    } else if (itype == 3) {

/*              Jordan Block */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a_ref(jcol, jcol) = anorm;
		    if (jcol > 1) {
			a_ref(jcol, jcol - 1) = 1.;
		    }
/* L80: */
		}

	    } else if (itype == 4) {

/*              Diagonal Matrix, [Eigen]values Specified */

		dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[n 
			+ 1], &iinfo);

	    } else if (itype == 5) {

/*              Symmetric, eigenvalues specified */

		dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], 
			&iinfo);

	    } else if (itype == 6) {

/*              General, eigenvalues specified */

		if (kconds[jtype - 1] == 1) {
		    conds = 1.;
		} else if (kconds[jtype - 1] == 2) {
		    conds = rtulpi;
		} else {
		    conds = 0.;
		}

		*(unsigned char *)&adumma[0] = ' ';
		dlatme_(&n, "S", &iseed[1], &work[1], &imode, &cond, &c_b32, 
			adumma, "T", "T", "T", &work[n + 1], &c__4, &conds, &
			n, &n, &anorm, &a[a_offset], lda, &work[(n << 1) + 1],
			 &iinfo);

	    } else if (itype == 7) {

/*              Diagonal, random eigenvalues */

		dlatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &c__0, &
			c__0, &c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[
			1], &iinfo);

	    } else if (itype == 8) {

/*              Symmetric, random eigenvalues */

		dlatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &n, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else if (itype == 9) {

/*              General, random eigenvalues */

		dlatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &n, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);
		if (n >= 4) {
		    dlaset_("Full", &c__2, &n, &c_b18, &c_b18, &a[a_offset], 
			    lda);
		    i__3 = n - 3;
		    dlaset_("Full", &i__3, &c__1, &c_b18, &c_b18, &a_ref(3, 1)
			    , lda);
		    i__3 = n - 3;
		    dlaset_("Full", &i__3, &c__2, &c_b18, &c_b18, &a_ref(3, n 
			    - 1), lda);
		    dlaset_("Full", &c__1, &n, &c_b18, &c_b18, &a_ref(n, 1), 
			    lda);
		}

	    } else if (itype == 10) {

/*              Triangular, random eigenvalues */

		dlatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &c__0, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else {

		iinfo = 1;
	    }

	    if (iinfo != 0) {
		io___32.ciunit = *nounit;
		s_wsfe(&io___32);
		do_fio(&c__1, "Generator", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		return 0;
	    }

L90:

/*           Test for minimal and generous workspace */

	    for (iwk = 1; iwk <= 2; ++iwk) {
		if (iwk == 1) {
		    nnwork = n * 3;
		} else {
/* Computing MAX */
		    i__3 = n * 3, i__4 = (n << 1) * n;
		    nnwork = max(i__3,i__4);
		}
		nnwork = max(nnwork,1);

		dget24_(&c_false, &jtype, thresh, ioldsd, nounit, &n, &a[
			a_offset], lda, &h__[h_offset], &ht[ht_offset], &wr[1]
			, &wi[1], &wrt[1], &wit[1], &wrtmp[1], &witmp[1], &vs[
			vs_offset], ldvs, &vs1[vs1_offset], &rcdein, &rcdvin, 
			&nslct, islct, &result[1], &work[1], &nnwork, &iwork[
			1], &bwork[1], info);

/*              Check for RESULT(j) > THRESH */

		ntest = 0;
		nfail = 0;
		for (j = 1; j <= 15; ++j) {
		    if (result[j] >= 0.) {
			++ntest;
		    }
		    if (result[j] >= *thresh) {
			++nfail;
		    }
/* L100: */
		}

		if (nfail > 0) {
		    ++ntestf;
		}
		if (ntestf == 1) {
		    io___41.ciunit = *nounit;
		    s_wsfe(&io___41);
		    do_fio(&c__1, path, (ftnlen)3);
		    e_wsfe();
		    io___42.ciunit = *nounit;
		    s_wsfe(&io___42);
		    e_wsfe();
		    io___43.ciunit = *nounit;
		    s_wsfe(&io___43);
		    e_wsfe();
		    io___44.ciunit = *nounit;
		    s_wsfe(&io___44);
		    e_wsfe();
		    io___45.ciunit = *nounit;
		    s_wsfe(&io___45);
		    do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(
			    doublereal));
		    e_wsfe();
		    io___46.ciunit = *nounit;
		    s_wsfe(&io___46);
		    e_wsfe();
		    ntestf = 2;
		}

		for (j = 1; j <= 15; ++j) {
		    if (result[j] >= *thresh) {
			io___47.ciunit = *nounit;
			s_wsfe(&io___47);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&iwk, (ftnlen)sizeof(integer));
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(
				doublereal));
			e_wsfe();
		    }
/* L110: */
		}

		nerrs += nfail;
		ntestt += ntest;

/* L120: */
	    }
L130:
	    ;
	}
/* L140: */
    }

L150:

/*     Read in data from file to check accuracy of condition estimation   
       Read input data until N=0 */

    jtype = 0;
L160:
    io___48.ciunit = *niunit;
    i__1 = s_rsle(&io___48);
    if (i__1 != 0) {
	goto L200;
    }
    i__1 = do_lio(&c__3, &c__1, (char *)&n, (ftnlen)sizeof(integer));
    if (i__1 != 0) {
	goto L200;
    }
    i__1 = do_lio(&c__3, &c__1, (char *)&nslct, (ftnlen)sizeof(integer));
    if (i__1 != 0) {
	goto L200;
    }
    i__1 = e_rsle();
    if (i__1 != 0) {
	goto L200;
    }
    if (n == 0) {
	goto L200;
    }
    ++jtype;
    iseed[1] = jtype;
    if (nslct > 0) {
	io___49.ciunit = *niunit;
	s_rsle(&io___49);
	i__1 = nslct;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    do_lio(&c__3, &c__1, (char *)&islct[i__ - 1], (ftnlen)sizeof(
		    integer));
	}
	e_rsle();
    }
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	io___51.ciunit = *niunit;
	s_rsle(&io___51);
	i__2 = n;
	for (j = 1; j <= i__2; ++j) {
	    do_lio(&c__5, &c__1, (char *)&a_ref(i__, j), (ftnlen)sizeof(
		    doublereal));
	}
	e_rsle();
/* L170: */
    }
    io___52.ciunit = *niunit;
    s_rsle(&io___52);
    do_lio(&c__5, &c__1, (char *)&rcdein, (ftnlen)sizeof(doublereal));
    do_lio(&c__5, &c__1, (char *)&rcdvin, (ftnlen)sizeof(doublereal));
    e_rsle();

    dget24_(&c_true, &c__22, thresh, &iseed[1], nounit, &n, &a[a_offset], lda,
	     &h__[h_offset], &ht[ht_offset], &wr[1], &wi[1], &wrt[1], &wit[1],
	     &wrtmp[1], &witmp[1], &vs[vs_offset], ldvs, &vs1[vs1_offset], &
	    rcdein, &rcdvin, &nslct, islct, &result[1], &work[1], lwork, &
	    iwork[1], &bwork[1], info);

/*     Check for RESULT(j) > THRESH */

    ntest = 0;
    nfail = 0;
    for (j = 1; j <= 17; ++j) {
	if (result[j] >= 0.) {
	    ++ntest;
	}
	if (result[j] >= *thresh) {
	    ++nfail;
	}
/* L180: */
    }

    if (nfail > 0) {
	++ntestf;
    }
    if (ntestf == 1) {
	io___53.ciunit = *nounit;
	s_wsfe(&io___53);
	do_fio(&c__1, path, (ftnlen)3);
	e_wsfe();
	io___54.ciunit = *nounit;
	s_wsfe(&io___54);
	e_wsfe();
	io___55.ciunit = *nounit;
	s_wsfe(&io___55);
	e_wsfe();
	io___56.ciunit = *nounit;
	s_wsfe(&io___56);
	e_wsfe();
	io___57.ciunit = *nounit;
	s_wsfe(&io___57);
	do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(doublereal));
	e_wsfe();
	io___58.ciunit = *nounit;
	s_wsfe(&io___58);
	e_wsfe();
	ntestf = 2;
    }
    for (j = 1; j <= 17; ++j) {
	if (result[j] >= *thresh) {
	    io___59.ciunit = *nounit;
	    s_wsfe(&io___59);
	    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(doublereal));
	    e_wsfe();
	}
/* L190: */
    }

    nerrs += nfail;
    ntestt += ntest;
    goto L160;
L200:

/*     Summary */

    dlasum_(path, nounit, &nerrs, &ntestt);



    return 0;

/*     End of DDRVSX */

} /* ddrvsx_ */
示例#3
0
/* Subroutine */ int dchkbd_(integer *nsizes, integer *mval, integer *nval, 
	integer *ntypes, logical *dotype, integer *nrhs, integer *iseed, 
	doublereal *thresh, doublereal *a, integer *lda, doublereal *bd, 
	doublereal *be, doublereal *s1, doublereal *s2, doublereal *x, 
	integer *ldx, doublereal *y, doublereal *z__, doublereal *q, integer *
	ldq, doublereal *pt, integer *ldpt, doublereal *u, doublereal *vt, 
	doublereal *work, integer *lwork, integer *iwork, integer *nout, 
	integer *info)
{
    /* Initialized data */

    static integer ktype[16] = { 1,2,4,4,4,4,4,6,6,6,6,6,9,9,9,10 };
    static integer kmagn[16] = { 1,1,1,1,1,2,3,1,1,1,2,3,1,2,3,0 };
    static integer kmode[16] = { 0,0,4,3,1,4,4,4,3,1,4,4,0,0,0,0 };

    /* Format strings */
    static char fmt_9998[] = "(\002 DCHKBD: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002M=\002,i6,\002, N=\002,i6,\002, JTYPE=\002,i"
	    "6,\002, ISEED=(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9999[] = "(\002 M=\002,i5,\002, N=\002,i5,\002, type "
	    "\002,i2,\002, seed=\002,4(i4,\002,\002),\002 test(\002,i2,\002)"
	    "=\002,g11.4)";

    /* System generated locals */
    integer a_dim1, a_offset, pt_dim1, pt_offset, q_dim1, q_offset, u_dim1, 
	    u_offset, vt_dim1, vt_offset, x_dim1, x_offset, y_dim1, y_offset, 
	    z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7;
    doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double log(doublereal), sqrt(doublereal), exp(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, j, m, n, mq;
    doublereal dum[1], ulp, cond;
    integer jcol;
    char path[3];
    integer idum[1], mmax, nmax;
    doublereal unfl, ovfl;
    char uplo[1];
    doublereal temp1, temp2;
    extern /* Subroutine */ int dbdt01_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, doublereal *)
	    , dbdt02_(integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *);
    logical badmm;
    extern /* Subroutine */ int dbdt03_(char *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *, doublereal *, 
	     doublereal *, integer *, doublereal *, doublereal *);
    logical badnn;
    integer nfail;
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *);
    integer imode;
    doublereal dumma[1];
    integer iinfo;
    extern /* Subroutine */ int dort01_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *);
    doublereal anorm;
    integer mnmin;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    integer mnmax, jsize, itype, jtype, ntest;
    extern /* Subroutine */ int dlahd2_(integer *, char *);
    integer log2ui;
    extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
    logical bidiag;
    extern /* Subroutine */ int dbdsdc_(char *, char *, integer *, doublereal 
	    *, doublereal *, doublereal *, integer *, doublereal *, integer *, 
	     doublereal *, integer *, doublereal *, integer *, integer *), dgebrd_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
	     doublereal *, integer *, integer *);
    extern doublereal dlamch_(char *), dlarnd_(integer *, integer *);
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    dlaset_(char *, integer *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *);
    integer ioldsd[4];
    extern /* Subroutine */ int dbdsqr_(char *, integer *, integer *, integer 
	    *, integer *, doublereal *, doublereal *, doublereal *, integer *, 
	     doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *), dorgbr_(char *, integer *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, doublereal *, integer *, 
	     integer *), xerbla_(char *, integer *), alasum_(
	    char *, integer *, integer *, integer *, integer *), 
	    dlatmr_(integer *, integer *, char *, integer *, char *, 
	    doublereal *, integer *, doublereal *, doublereal *, char *, char 
	    *, doublereal *, integer *, doublereal *, doublereal *, integer *, 
	     doublereal *, char *, integer *, integer *, integer *, 
	    doublereal *, doublereal *, char *, doublereal *, integer *, 
	    integer *, integer *), dlatms_(integer *, integer *, char *, integer *, char *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *, char *, doublereal *, integer *, doublereal *, integer 
	    *);
    doublereal amninv;
    integer minwrk;
    doublereal rtunfl, rtovfl, ulpinv, result[19];
    integer mtypes;

    /* Fortran I/O blocks */
    static cilist io___39 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___40 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___52 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DCHKBD checks the singular value decomposition (SVD) routines. */

/*  DGEBRD reduces a real general m by n matrix A to upper or lower */
/*  bidiagonal form B by an orthogonal transformation:  Q' * A * P = B */
/*  (or A = Q * B * P').  The matrix B is upper bidiagonal if m >= n */
/*  and lower bidiagonal if m < n. */

/*  DORGBR generates the orthogonal matrices Q and P' from DGEBRD. */
/*  Note that Q and P are not necessarily square. */

/*  DBDSQR computes the singular value decomposition of the bidiagonal */
/*  matrix B as B = U S V'.  It is called three times to compute */
/*     1)  B = U S1 V', where S1 is the diagonal matrix of singular */
/*         values and the columns of the matrices U and V are the left */
/*         and right singular vectors, respectively, of B. */
/*     2)  Same as 1), but the singular values are stored in S2 and the */
/*         singular vectors are not computed. */
/*     3)  A = (UQ) S (P'V'), the SVD of the original matrix A. */
/*  In addition, DBDSQR has an option to apply the left orthogonal matrix */
/*  U to a matrix X, useful in least squares applications. */

/*  DBDSDC computes the singular value decomposition of the bidiagonal */
/*  matrix B as B = U S V' using divide-and-conquer. It is called twice */
/*  to compute */
/*     1) B = U S1 V', where S1 is the diagonal matrix of singular */
/*         values and the columns of the matrices U and V are the left */
/*         and right singular vectors, respectively, of B. */
/*     2) Same as 1), but the singular values are stored in S2 and the */
/*         singular vectors are not computed. */

/*  For each pair of matrix dimensions (M,N) and each selected matrix */
/*  type, an M by N matrix A and an M by NRHS matrix X are generated. */
/*  The problem dimensions are as follows */
/*     A:          M x N */
/*     Q:          M x min(M,N) (but M x M if NRHS > 0) */
/*     P:          min(M,N) x N */
/*     B:          min(M,N) x min(M,N) */
/*     U, V:       min(M,N) x min(M,N) */
/*     S1, S2      diagonal, order min(M,N) */
/*     X:          M x NRHS */

/*  For each generated matrix, 14 tests are performed: */

/*  Test DGEBRD and DORGBR */

/*  (1)   | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P' */

/*  (2)   | I - Q' Q | / ( M ulp ) */

/*  (3)   | I - PT PT' | / ( N ulp ) */

/*  Test DBDSQR on bidiagonal matrix B */

/*  (4)   | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V' */

/*  (5)   | Y - U Z | / ( |Y| max(min(M,N),k) ulp ), where Y = Q' X */
/*                                                   and   Z = U' Y. */
/*  (6)   | I - U' U | / ( min(M,N) ulp ) */

/*  (7)   | I - VT VT' | / ( min(M,N) ulp ) */

/*  (8)   S1 contains min(M,N) nonnegative values in decreasing order. */
/*        (Return 0 if true, 1/ULP if false.) */

/*  (9)   | S1 - S2 | / ( |S1| ulp ), where S2 is computed without */
/*                                    computing U and V. */

/*  (10)  0 if the true singular values of B are within THRESH of */
/*        those in S1.  2*THRESH if they are not.  (Tested using */
/*        DSVDCH) */

/*  Test DBDSQR on matrix A */

/*  (11)  | A - (QU) S (VT PT) | / ( |A| max(M,N) ulp ) */

/*  (12)  | X - (QU) Z | / ( |X| max(M,k) ulp ) */

/*  (13)  | I - (QU)'(QU) | / ( M ulp ) */

/*  (14)  | I - (VT PT) (PT'VT') | / ( N ulp ) */

/*  Test DBDSDC on bidiagonal matrix B */

/*  (15)  | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V' */

/*  (16)  | I - U' U | / ( min(M,N) ulp ) */

/*  (17)  | I - VT VT' | / ( min(M,N) ulp ) */

/*  (18)  S1 contains min(M,N) nonnegative values in decreasing order. */
/*        (Return 0 if true, 1/ULP if false.) */

/*  (19)  | S1 - S2 | / ( |S1| ulp ), where S2 is computed without */
/*                                    computing U and V. */
/*  The possible matrix types are */

/*  (1)  The zero matrix. */
/*  (2)  The identity matrix. */

/*  (3)  A diagonal matrix with evenly spaced entries */
/*       1, ..., ULP  and random signs. */
/*       (ULP = (first number larger than 1) - 1 ) */
/*  (4)  A diagonal matrix with geometrically spaced entries */
/*       1, ..., ULP  and random signs. */
/*  (5)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */
/*       and random signs. */

/*  (6)  Same as (3), but multiplied by SQRT( overflow threshold ) */
/*  (7)  Same as (3), but multiplied by SQRT( underflow threshold ) */

/*  (8)  A matrix of the form  U D V, where U and V are orthogonal and */
/*       D has evenly spaced entries 1, ..., ULP with random signs */
/*       on the diagonal. */

/*  (9)  A matrix of the form  U D V, where U and V are orthogonal and */
/*       D has geometrically spaced entries 1, ..., ULP with random */
/*       signs on the diagonal. */

/*  (10) A matrix of the form  U D V, where U and V are orthogonal and */
/*       D has "clustered" entries 1, ULP,..., ULP with random */
/*       signs on the diagonal. */

/*  (11) Same as (8), but multiplied by SQRT( overflow threshold ) */
/*  (12) Same as (8), but multiplied by SQRT( underflow threshold ) */

/*  (13) Rectangular matrix with random entries chosen from (-1,1). */
/*  (14) Same as (13), but multiplied by SQRT( overflow threshold ) */
/*  (15) Same as (13), but multiplied by SQRT( underflow threshold ) */

/*  Special case: */
/*  (16) A bidiagonal matrix with random entries chosen from a */
/*       logarithmic distribution on [ulp^2,ulp^(-2)]  (I.e., each */
/*       entry is  e^x, where x is chosen uniformly on */
/*       [ 2 log(ulp), -2 log(ulp) ] .)  For *this* type: */
/*       (a) DGEBRD is not called to reduce it to bidiagonal form. */
/*       (b) the bidiagonal is  min(M,N) x min(M,N); if M<N, the */
/*           matrix will be lower bidiagonal, otherwise upper. */
/*       (c) only tests 5--8 and 14 are performed. */

/*  A subset of the full set of matrix types may be selected through */
/*  the logical array DOTYPE. */

/*  Arguments */
/*  ========== */

/*  NSIZES  (input) INTEGER */
/*          The number of values of M and N contained in the vectors */
/*          MVAL and NVAL.  The matrix sizes are used in pairs (M,N). */

/*  MVAL    (input) INTEGER array, dimension (NM) */
/*          The values of the matrix row dimension M. */

/*  NVAL    (input) INTEGER array, dimension (NM) */
/*          The values of the matrix column dimension N. */

/*  NTYPES  (input) INTEGER */
/*          The number of elements in DOTYPE.   If it is zero, DCHKBD */
/*          does nothing.  It must be at least zero.  If it is MAXTYP+1 */
/*          and NSIZES is 1, then an additional type, MAXTYP+1 is */
/*          defined, which is to use whatever matrices are in A and B. */
/*          This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and */
/*          DOTYPE(MAXTYP+1) is .TRUE. . */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix */
/*          of type j will be generated.  If NTYPES is smaller than the */
/*          maximum number of types defined (PARAMETER MAXTYP), then */
/*          types NTYPES+1 through MAXTYP will not be generated.  If */
/*          NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through */
/*          DOTYPE(NTYPES) will be ignored. */

/*  NRHS    (input) INTEGER */
/*          The number of columns in the "right-hand side" matrices X, Y, */
/*          and Z, used in testing DBDSQR.  If NRHS = 0, then the */
/*          operations on the right-hand side will not be tested. */
/*          NRHS must be at least 0. */

/*  ISEED   (input/output) INTEGER array, dimension (4) */
/*          On entry ISEED specifies the seed of the random number */
/*          generator. The array elements should be between 0 and 4095; */
/*          if not they will be reduced mod 4096.  Also, ISEED(4) must */
/*          be odd.  The values of ISEED are changed on exit, and can be */
/*          used in the next call to DCHKBD to continue the same random */
/*          number sequence. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0.  Note that the */
/*          expected value of the test ratios is O(1), so THRESH should */
/*          be a reasonably small multiple of 1, e.g., 10 or 100. */

/*  A       (workspace) DOUBLE PRECISION array, dimension (LDA,NMAX) */
/*          where NMAX is the maximum value of N in NVAL. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,MMAX), */
/*          where MMAX is the maximum value of M in MVAL. */

/*  BD      (workspace) DOUBLE PRECISION array, dimension */
/*                      (max(min(MVAL(j),NVAL(j)))) */

/*  BE      (workspace) DOUBLE PRECISION array, dimension */
/*                      (max(min(MVAL(j),NVAL(j)))) */

/*  S1      (workspace) DOUBLE PRECISION array, dimension */
/*                      (max(min(MVAL(j),NVAL(j)))) */

/*  S2      (workspace) DOUBLE PRECISION array, dimension */
/*                      (max(min(MVAL(j),NVAL(j)))) */

/*  X       (workspace) DOUBLE PRECISION array, dimension (LDX,NRHS) */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the arrays X, Y, and Z. */
/*          LDX >= max(1,MMAX) */

/*  Y       (workspace) DOUBLE PRECISION array, dimension (LDX,NRHS) */

/*  Z       (workspace) DOUBLE PRECISION array, dimension (LDX,NRHS) */

/*  Q       (workspace) DOUBLE PRECISION array, dimension (LDQ,MMAX) */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of the array Q.  LDQ >= max(1,MMAX). */

/*  PT      (workspace) DOUBLE PRECISION array, dimension (LDPT,NMAX) */

/*  LDPT    (input) INTEGER */
/*          The leading dimension of the arrays PT, U, and V. */
/*          LDPT >= max(1, max(min(MVAL(j),NVAL(j)))). */

/*  U       (workspace) DOUBLE PRECISION array, dimension */
/*                      (LDPT,max(min(MVAL(j),NVAL(j)))) */

/*  V       (workspace) DOUBLE PRECISION array, dimension */
/*                      (LDPT,max(min(MVAL(j),NVAL(j)))) */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK) */

/*  LWORK   (input) INTEGER */
/*          The number of entries in WORK.  This must be at least */
/*          3(M+N) and  M(M + max(M,N,k) + 1) + N*min(M,N)  for all */
/*          pairs  (M,N)=(MM(j),NN(j)) */

/*  IWORK   (workspace) INTEGER array, dimension at least 8*min(M,N) */

/*  NOUT    (input) INTEGER */
/*          The FORTRAN unit number for printing out error messages */
/*          (e.g., if a routine returns IINFO not equal to 0.) */

/*  INFO    (output) INTEGER */
/*          If 0, then everything ran OK. */
/*           -1: NSIZES < 0 */
/*           -2: Some MM(j) < 0 */
/*           -3: Some NN(j) < 0 */
/*           -4: NTYPES < 0 */
/*           -6: NRHS  < 0 */
/*           -8: THRESH < 0 */
/*          -11: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ). */
/*          -17: LDB < 1 or LDB < MMAX. */
/*          -21: LDQ < 1 or LDQ < MMAX. */
/*          -23: LDPT< 1 or LDPT< MNMAX. */
/*          -27: LWORK too small. */
/*          If  DLATMR, SLATMS, DGEBRD, DORGBR, or DBDSQR, */
/*              returns an error code, the */
/*              absolute value of it is returned. */

/* ----------------------------------------------------------------------- */

/*     Some Local Variables and Parameters: */
/*     ---- ----- --------- --- ---------- */

/*     ZERO, ONE       Real 0 and 1. */
/*     MAXTYP          The number of types defined. */
/*     NTEST           The number of tests performed, or which can */
/*                     be performed so far, for the current matrix. */
/*     MMAX            Largest value in NN. */
/*     NMAX            Largest value in NN. */
/*     MNMIN           min(MM(j), NN(j)) (the dimension of the bidiagonal */
/*                     matrix.) */
/*     MNMAX           The maximum value of MNMIN for j=1,...,NSIZES. */
/*     NFAIL           The number of tests which have exceeded THRESH */
/*     COND, IMODE     Values to be passed to the matrix generators. */
/*     ANORM           Norm of A; passed to matrix generators. */

/*     OVFL, UNFL      Overflow and underflow thresholds. */
/*     RTOVFL, RTUNFL  Square roots of the previous 2 values. */
/*     ULP, ULPINV     Finest relative precision and its inverse. */

/*             The following four arrays decode JTYPE: */
/*     KTYPE(j)        The general type (1-10) for type "j". */
/*     KMODE(j)        The MODE value to be passed to the matrix */
/*                     generator for type "j". */
/*     KMAGN(j)        The order of magnitude ( O(1), */
/*                     O(overflow^(1/2) ), O(underflow^(1/2) ) */

/* ====================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --mval;
    --nval;
    --dotype;
    --iseed;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --bd;
    --be;
    --s1;
    --s2;
    z_dim1 = *ldx;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    y_dim1 = *ldx;
    y_offset = 1 + y_dim1;
    y -= y_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    vt_dim1 = *ldpt;
    vt_offset = 1 + vt_dim1;
    vt -= vt_offset;
    u_dim1 = *ldpt;
    u_offset = 1 + u_dim1;
    u -= u_offset;
    pt_dim1 = *ldpt;
    pt_offset = 1 + pt_dim1;
    pt -= pt_offset;
    --work;
    --iwork;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Check for errors */

    *info = 0;

    badmm = FALSE_;
    badnn = FALSE_;
    mmax = 1;
    nmax = 1;
    mnmax = 1;
    minwrk = 1;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = mmax, i__3 = mval[j];
	mmax = max(i__2,i__3);
	if (mval[j] < 0) {
	    badmm = TRUE_;
	}
/* Computing MAX */
	i__2 = nmax, i__3 = nval[j];
	nmax = max(i__2,i__3);
	if (nval[j] < 0) {
	    badnn = TRUE_;
	}
/* Computing MAX */
/* Computing MIN */
	i__4 = mval[j], i__5 = nval[j];
	i__2 = mnmax, i__3 = min(i__4,i__5);
	mnmax = max(i__2,i__3);
/* Computing MAX */
/* Computing MAX */
	i__4 = mval[j], i__5 = nval[j], i__4 = max(i__4,i__5);
/* Computing MIN */
	i__6 = nval[j], i__7 = mval[j];
	i__2 = minwrk, i__3 = (mval[j] + nval[j]) * 3, i__2 = max(i__2,i__3), 
		i__3 = mval[j] * (mval[j] + max(i__4,*nrhs) + 1) + nval[j] * 
		min(i__6,i__7);
	minwrk = max(i__2,i__3);
/* L10: */
    }

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badmm) {
	*info = -2;
    } else if (badnn) {
	*info = -3;
    } else if (*ntypes < 0) {
	*info = -4;
    } else if (*nrhs < 0) {
	*info = -6;
    } else if (*lda < mmax) {
	*info = -11;
    } else if (*ldx < mmax) {
	*info = -17;
    } else if (*ldq < mmax) {
	*info = -21;
    } else if (*ldpt < mnmax) {
	*info = -23;
    } else if (minwrk > *lwork) {
	*info = -27;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DCHKBD", &i__1);
	return 0;
    }

/*     Initialize constants */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "BD", (ftnlen)2, (ftnlen)2);
    nfail = 0;
    ntest = 0;
    unfl = dlamch_("Safe minimum");
    ovfl = dlamch_("Overflow");
    dlabad_(&unfl, &ovfl);
    ulp = dlamch_("Precision");
    ulpinv = 1. / ulp;
    log2ui = (integer) (log(ulpinv) / log(2.));
    rtunfl = sqrt(unfl);
    rtovfl = sqrt(ovfl);
    infoc_1.infot = 0;

/*     Loop over sizes, types */

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	m = mval[jsize];
	n = nval[jsize];
	mnmin = min(m,n);
/* Computing MAX */
	i__2 = max(m,n);
	amninv = 1. / max(i__2,1);

	if (*nsizes != 1) {
	    mtypes = min(16,*ntypes);
	} else {
	    mtypes = min(17,*ntypes);
	}

	i__2 = mtypes;
	for (jtype = 1; jtype <= i__2; ++jtype) {
	    if (! dotype[jtype]) {
		goto L190;
	    }

	    for (j = 1; j <= 4; ++j) {
		ioldsd[j - 1] = iseed[j];
/* L20: */
	    }

	    for (j = 1; j <= 14; ++j) {
		result[j - 1] = -1.;
/* L30: */
	    }

	    *(unsigned char *)uplo = ' ';

/*           Compute "A" */

/*           Control parameters: */

/*           KMAGN  KMODE        KTYPE */
/*       =1  O(1)   clustered 1  zero */
/*       =2  large  clustered 2  identity */
/*       =3  small  exponential  (none) */
/*       =4         arithmetic   diagonal, (w/ eigenvalues) */
/*       =5         random       symmetric, w/ eigenvalues */
/*       =6                      nonsymmetric, w/ singular values */
/*       =7                      random diagonal */
/*       =8                      random symmetric */
/*       =9                      random nonsymmetric */
/*       =10                     random bidiagonal (log. distrib.) */

	    if (mtypes > 16) {
		goto L100;
	    }

	    itype = ktype[jtype - 1];
	    imode = kmode[jtype - 1];

/*           Compute norm */

	    switch (kmagn[jtype - 1]) {
		case 1:  goto L40;
		case 2:  goto L50;
		case 3:  goto L60;
	    }

L40:
	    anorm = 1.;
	    goto L70;

L50:
	    anorm = rtovfl * ulp * amninv;
	    goto L70;

L60:
	    anorm = rtunfl * max(m,n) * ulpinv;
	    goto L70;

L70:

	    dlaset_("Full", lda, &n, &c_b20, &c_b20, &a[a_offset], lda);
	    iinfo = 0;
	    cond = ulpinv;

	    bidiag = FALSE_;
	    if (itype == 1) {

/*              Zero matrix */

		iinfo = 0;

	    } else if (itype == 2) {

/*              Identity */

		i__3 = mnmin;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a[jcol + jcol * a_dim1] = anorm;
/* L80: */
		}

	    } else if (itype == 4) {

/*              Diagonal Matrix, [Eigen]values Specified */

		dlatms_(&mnmin, &mnmin, "S", &iseed[1], "N", &work[1], &imode, 
			 &cond, &anorm, &c__0, &c__0, "N", &a[a_offset], lda, 
			&work[mnmin + 1], &iinfo);

	    } else if (itype == 5) {

/*              Symmetric, eigenvalues specified */

		dlatms_(&mnmin, &mnmin, "S", &iseed[1], "S", &work[1], &imode, 
			 &cond, &anorm, &m, &n, "N", &a[a_offset], lda, &work[
			mnmin + 1], &iinfo);

	    } else if (itype == 6) {

/*              Nonsymmetric, singular values specified */

		dlatms_(&m, &n, "S", &iseed[1], "N", &work[1], &imode, &cond, 
			&anorm, &m, &n, "N", &a[a_offset], lda, &work[mnmin + 
			1], &iinfo);

	    } else if (itype == 7) {

/*              Diagonal, random entries */

		dlatmr_(&mnmin, &mnmin, "S", &iseed[1], "N", &work[1], &c__6, 
			&c_b37, &c_b37, "T", "N", &work[mnmin + 1], &c__1, &
			c_b37, &work[(mnmin << 1) + 1], &c__1, &c_b37, "N", &
			iwork[1], &c__0, &c__0, &c_b20, &anorm, "NO", &a[
			a_offset], lda, &iwork[1], &iinfo);

	    } else if (itype == 8) {

/*              Symmetric, random entries */

		dlatmr_(&mnmin, &mnmin, "S", &iseed[1], "S", &work[1], &c__6, 
			&c_b37, &c_b37, "T", "N", &work[mnmin + 1], &c__1, &
			c_b37, &work[m + mnmin + 1], &c__1, &c_b37, "N", &
			iwork[1], &m, &n, &c_b20, &anorm, "NO", &a[a_offset], 
			lda, &iwork[1], &iinfo);

	    } else if (itype == 9) {

/*              Nonsymmetric, random entries */

		dlatmr_(&m, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b37, 
			&c_b37, "T", "N", &work[mnmin + 1], &c__1, &c_b37, &
			work[m + mnmin + 1], &c__1, &c_b37, "N", &iwork[1], &
			m, &n, &c_b20, &anorm, "NO", &a[a_offset], lda, &
			iwork[1], &iinfo);

	    } else if (itype == 10) {

/*              Bidiagonal, random entries */

		temp1 = log(ulp) * -2.;
		i__3 = mnmin;
		for (j = 1; j <= i__3; ++j) {
		    bd[j] = exp(temp1 * dlarnd_(&c__2, &iseed[1]));
		    if (j < mnmin) {
			be[j] = exp(temp1 * dlarnd_(&c__2, &iseed[1]));
		    }
/* L90: */
		}

		iinfo = 0;
		bidiag = TRUE_;
		if (m >= n) {
		    *(unsigned char *)uplo = 'U';
		} else {
		    *(unsigned char *)uplo = 'L';
		}
	    } else {
		iinfo = 1;
	    }

	    if (iinfo == 0) {

/*              Generate Right-Hand Side */

		if (bidiag) {
		    dlatmr_(&mnmin, nrhs, "S", &iseed[1], "N", &work[1], &
			    c__6, &c_b37, &c_b37, "T", "N", &work[mnmin + 1], 
			    &c__1, &c_b37, &work[(mnmin << 1) + 1], &c__1, &
			    c_b37, "N", &iwork[1], &mnmin, nrhs, &c_b20, &
			    c_b37, "NO", &y[y_offset], ldx, &iwork[1], &iinfo);
		} else {
		    dlatmr_(&m, nrhs, "S", &iseed[1], "N", &work[1], &c__6, &
			    c_b37, &c_b37, "T", "N", &work[m + 1], &c__1, &
			    c_b37, &work[(m << 1) + 1], &c__1, &c_b37, "N", &
			    iwork[1], &m, nrhs, &c_b20, &c_b37, "NO", &x[
			    x_offset], ldx, &iwork[1], &iinfo);
		}
	    }

/*           Error Exit */

	    if (iinfo != 0) {
		io___39.ciunit = *nout;
		s_wsfe(&io___39);
		do_fio(&c__1, "Generator", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		return 0;
	    }

L100:

/*           Call DGEBRD and DORGBR to compute B, Q, and P, do tests. */

	    if (! bidiag) {

/*              Compute transformations to reduce A to bidiagonal form: */
/*              B := Q' * A * P. */

		dlacpy_(" ", &m, &n, &a[a_offset], lda, &q[q_offset], ldq);
		i__3 = *lwork - (mnmin << 1);
		dgebrd_(&m, &n, &q[q_offset], ldq, &bd[1], &be[1], &work[1], &
			work[mnmin + 1], &work[(mnmin << 1) + 1], &i__3, &
			iinfo);

/*              Check error code from DGEBRD. */

		if (iinfo != 0) {
		    io___40.ciunit = *nout;
		    s_wsfe(&io___40);
		    do_fio(&c__1, "DGEBRD", (ftnlen)6);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    return 0;
		}

		dlacpy_(" ", &m, &n, &q[q_offset], ldq, &pt[pt_offset], ldpt);
		if (m >= n) {
		    *(unsigned char *)uplo = 'U';
		} else {
		    *(unsigned char *)uplo = 'L';
		}

/*              Generate Q */

		mq = m;
		if (*nrhs <= 0) {
		    mq = mnmin;
		}
		i__3 = *lwork - (mnmin << 1);
		dorgbr_("Q", &m, &mq, &n, &q[q_offset], ldq, &work[1], &work[(
			mnmin << 1) + 1], &i__3, &iinfo);

/*              Check error code from DORGBR. */

		if (iinfo != 0) {
		    io___42.ciunit = *nout;
		    s_wsfe(&io___42);
		    do_fio(&c__1, "DORGBR(Q)", (ftnlen)9);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    return 0;
		}

/*              Generate P' */

		i__3 = *lwork - (mnmin << 1);
		dorgbr_("P", &mnmin, &n, &m, &pt[pt_offset], ldpt, &work[
			mnmin + 1], &work[(mnmin << 1) + 1], &i__3, &iinfo);

/*              Check error code from DORGBR. */

		if (iinfo != 0) {
		    io___43.ciunit = *nout;
		    s_wsfe(&io___43);
		    do_fio(&c__1, "DORGBR(P)", (ftnlen)9);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    return 0;
		}

/*              Apply Q' to an M by NRHS matrix X:  Y := Q' * X. */

		dgemm_("Transpose", "No transpose", &m, nrhs, &m, &c_b37, &q[
			q_offset], ldq, &x[x_offset], ldx, &c_b20, &y[
			y_offset], ldx);

/*              Test 1:  Check the decomposition A := Q * B * PT */
/*                   2:  Check the orthogonality of Q */
/*                   3:  Check the orthogonality of PT */

		dbdt01_(&m, &n, &c__1, &a[a_offset], lda, &q[q_offset], ldq, &
			bd[1], &be[1], &pt[pt_offset], ldpt, &work[1], result)
			;
		dort01_("Columns", &m, &mq, &q[q_offset], ldq, &work[1], 
			lwork, &result[1]);
		dort01_("Rows", &mnmin, &n, &pt[pt_offset], ldpt, &work[1], 
			lwork, &result[2]);
	    }

/*           Use DBDSQR to form the SVD of the bidiagonal matrix B: */
/*           B := U * S1 * VT, and compute Z = U' * Y. */

	    dcopy_(&mnmin, &bd[1], &c__1, &s1[1], &c__1);
	    if (mnmin > 0) {
		i__3 = mnmin - 1;
		dcopy_(&i__3, &be[1], &c__1, &work[1], &c__1);
	    }
	    dlacpy_(" ", &m, nrhs, &y[y_offset], ldx, &z__[z_offset], ldx);
	    dlaset_("Full", &mnmin, &mnmin, &c_b20, &c_b37, &u[u_offset], 
		    ldpt);
	    dlaset_("Full", &mnmin, &mnmin, &c_b20, &c_b37, &vt[vt_offset], 
		    ldpt);

	    dbdsqr_(uplo, &mnmin, &mnmin, &mnmin, nrhs, &s1[1], &work[1], &vt[
		    vt_offset], ldpt, &u[u_offset], ldpt, &z__[z_offset], ldx, 
		     &work[mnmin + 1], &iinfo);

/*           Check error code from DBDSQR. */

	    if (iinfo != 0) {
		io___44.ciunit = *nout;
		s_wsfe(&io___44);
		do_fio(&c__1, "DBDSQR(vects)", (ftnlen)13);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    return 0;
		} else {
		    result[3] = ulpinv;
		    goto L170;
		}
	    }

/*           Use DBDSQR to compute only the singular values of the */
/*           bidiagonal matrix B;  U, VT, and Z should not be modified. */

	    dcopy_(&mnmin, &bd[1], &c__1, &s2[1], &c__1);
	    if (mnmin > 0) {
		i__3 = mnmin - 1;
		dcopy_(&i__3, &be[1], &c__1, &work[1], &c__1);
	    }

	    dbdsqr_(uplo, &mnmin, &c__0, &c__0, &c__0, &s2[1], &work[1], &vt[
		    vt_offset], ldpt, &u[u_offset], ldpt, &z__[z_offset], ldx, 
		     &work[mnmin + 1], &iinfo);

/*           Check error code from DBDSQR. */

	    if (iinfo != 0) {
		io___45.ciunit = *nout;
		s_wsfe(&io___45);
		do_fio(&c__1, "DBDSQR(values)", (ftnlen)14);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    return 0;
		} else {
		    result[8] = ulpinv;
		    goto L170;
		}
	    }

/*           Test 4:  Check the decomposition B := U * S1 * VT */
/*                5:  Check the computation Z := U' * Y */
/*                6:  Check the orthogonality of U */
/*                7:  Check the orthogonality of VT */

	    dbdt03_(uplo, &mnmin, &c__1, &bd[1], &be[1], &u[u_offset], ldpt, &
		    s1[1], &vt[vt_offset], ldpt, &work[1], &result[3]);
	    dbdt02_(&mnmin, nrhs, &y[y_offset], ldx, &z__[z_offset], ldx, &u[
		    u_offset], ldpt, &work[1], &result[4]);
	    dort01_("Columns", &mnmin, &mnmin, &u[u_offset], ldpt, &work[1], 
		    lwork, &result[5]);
	    dort01_("Rows", &mnmin, &mnmin, &vt[vt_offset], ldpt, &work[1], 
		    lwork, &result[6]);

/*           Test 8:  Check that the singular values are sorted in */
/*                    non-increasing order and are non-negative */

	    result[7] = 0.;
	    i__3 = mnmin - 1;
	    for (i__ = 1; i__ <= i__3; ++i__) {
		if (s1[i__] < s1[i__ + 1]) {
		    result[7] = ulpinv;
		}
		if (s1[i__] < 0.) {
		    result[7] = ulpinv;
		}
/* L110: */
	    }
	    if (mnmin >= 1) {
		if (s1[mnmin] < 0.) {
		    result[7] = ulpinv;
		}
	    }

/*           Test 9:  Compare DBDSQR with and without singular vectors */

	    temp2 = 0.;

	    i__3 = mnmin;
	    for (j = 1; j <= i__3; ++j) {
/* Computing MAX */
/* Computing MAX */
		d__6 = (d__1 = s1[j], abs(d__1)), d__7 = (d__2 = s2[j], abs(
			d__2));
		d__4 = sqrt(unfl) * max(s1[1],1.), d__5 = ulp * max(d__6,d__7)
			;
		temp1 = (d__3 = s1[j] - s2[j], abs(d__3)) / max(d__4,d__5);
		temp2 = max(temp1,temp2);
/* L120: */
	    }

	    result[8] = temp2;

/*           Test 10:  Sturm sequence test of singular values */
/*                     Go up by factors of two until it succeeds */

	    temp1 = *thresh * (.5 - ulp);

	    i__3 = log2ui;
	    for (j = 0; j <= i__3; ++j) {
/*               CALL DSVDCH( MNMIN, BD, BE, S1, TEMP1, IINFO ) */
		if (iinfo == 0) {
		    goto L140;
		}
		temp1 *= 2.;
/* L130: */
	    }

L140:
	    result[9] = temp1;

/*           Use DBDSQR to form the decomposition A := (QU) S (VT PT) */
/*           from the bidiagonal form A := Q B PT. */

	    if (! bidiag) {
		dcopy_(&mnmin, &bd[1], &c__1, &s2[1], &c__1);
		if (mnmin > 0) {
		    i__3 = mnmin - 1;
		    dcopy_(&i__3, &be[1], &c__1, &work[1], &c__1);
		}

		dbdsqr_(uplo, &mnmin, &n, &m, nrhs, &s2[1], &work[1], &pt[
			pt_offset], ldpt, &q[q_offset], ldq, &y[y_offset], 
			ldx, &work[mnmin + 1], &iinfo);

/*              Test 11:  Check the decomposition A := Q*U * S2 * VT*PT */
/*                   12:  Check the computation Z := U' * Q' * X */
/*                   13:  Check the orthogonality of Q*U */
/*                   14:  Check the orthogonality of VT*PT */

		dbdt01_(&m, &n, &c__0, &a[a_offset], lda, &q[q_offset], ldq, &
			s2[1], dumma, &pt[pt_offset], ldpt, &work[1], &result[
			10]);
		dbdt02_(&m, nrhs, &x[x_offset], ldx, &y[y_offset], ldx, &q[
			q_offset], ldq, &work[1], &result[11]);
		dort01_("Columns", &m, &mq, &q[q_offset], ldq, &work[1], 
			lwork, &result[12]);
		dort01_("Rows", &mnmin, &n, &pt[pt_offset], ldpt, &work[1], 
			lwork, &result[13]);
	    }

/*           Use DBDSDC to form the SVD of the bidiagonal matrix B: */
/*           B := U * S1 * VT */

	    dcopy_(&mnmin, &bd[1], &c__1, &s1[1], &c__1);
	    if (mnmin > 0) {
		i__3 = mnmin - 1;
		dcopy_(&i__3, &be[1], &c__1, &work[1], &c__1);
	    }
	    dlaset_("Full", &mnmin, &mnmin, &c_b20, &c_b37, &u[u_offset], 
		    ldpt);
	    dlaset_("Full", &mnmin, &mnmin, &c_b20, &c_b37, &vt[vt_offset], 
		    ldpt);

	    dbdsdc_(uplo, "I", &mnmin, &s1[1], &work[1], &u[u_offset], ldpt, &
		    vt[vt_offset], ldpt, dum, idum, &work[mnmin + 1], &iwork[
		    1], &iinfo);

/*           Check error code from DBDSDC. */

	    if (iinfo != 0) {
		io___51.ciunit = *nout;
		s_wsfe(&io___51);
		do_fio(&c__1, "DBDSDC(vects)", (ftnlen)13);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    return 0;
		} else {
		    result[14] = ulpinv;
		    goto L170;
		}
	    }

/*           Use DBDSDC to compute only the singular values of the */
/*           bidiagonal matrix B;  U and VT should not be modified. */

	    dcopy_(&mnmin, &bd[1], &c__1, &s2[1], &c__1);
	    if (mnmin > 0) {
		i__3 = mnmin - 1;
		dcopy_(&i__3, &be[1], &c__1, &work[1], &c__1);
	    }

	    dbdsdc_(uplo, "N", &mnmin, &s2[1], &work[1], dum, &c__1, dum, &
		    c__1, dum, idum, &work[mnmin + 1], &iwork[1], &iinfo);

/*           Check error code from DBDSDC. */

	    if (iinfo != 0) {
		io___52.ciunit = *nout;
		s_wsfe(&io___52);
		do_fio(&c__1, "DBDSDC(values)", (ftnlen)14);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    return 0;
		} else {
		    result[17] = ulpinv;
		    goto L170;
		}
	    }

/*           Test 15:  Check the decomposition B := U * S1 * VT */
/*                16:  Check the orthogonality of U */
/*                17:  Check the orthogonality of VT */

	    dbdt03_(uplo, &mnmin, &c__1, &bd[1], &be[1], &u[u_offset], ldpt, &
		    s1[1], &vt[vt_offset], ldpt, &work[1], &result[14]);
	    dort01_("Columns", &mnmin, &mnmin, &u[u_offset], ldpt, &work[1], 
		    lwork, &result[15]);
	    dort01_("Rows", &mnmin, &mnmin, &vt[vt_offset], ldpt, &work[1], 
		    lwork, &result[16]);

/*           Test 18:  Check that the singular values are sorted in */
/*                     non-increasing order and are non-negative */

	    result[17] = 0.;
	    i__3 = mnmin - 1;
	    for (i__ = 1; i__ <= i__3; ++i__) {
		if (s1[i__] < s1[i__ + 1]) {
		    result[17] = ulpinv;
		}
		if (s1[i__] < 0.) {
		    result[17] = ulpinv;
		}
/* L150: */
	    }
	    if (mnmin >= 1) {
		if (s1[mnmin] < 0.) {
		    result[17] = ulpinv;
		}
	    }

/*           Test 19:  Compare DBDSQR with and without singular vectors */

	    temp2 = 0.;

	    i__3 = mnmin;
	    for (j = 1; j <= i__3; ++j) {
/* Computing MAX */
/* Computing MAX */
		d__4 = abs(s1[1]), d__5 = abs(s2[1]);
		d__2 = sqrt(unfl) * max(s1[1],1.), d__3 = ulp * max(d__4,d__5)
			;
		temp1 = (d__1 = s1[j] - s2[j], abs(d__1)) / max(d__2,d__3);
		temp2 = max(temp1,temp2);
/* L160: */
	    }

	    result[18] = temp2;

/*           End of Loop -- Check for RESULT(j) > THRESH */

L170:
	    for (j = 1; j <= 19; ++j) {
		if (result[j - 1] >= *thresh) {
		    if (nfail == 0) {
			dlahd2_(nout, path);
		    }
		    io___53.ciunit = *nout;
		    s_wsfe(&io___53);
		    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&result[j - 1], (ftnlen)sizeof(
			    doublereal));
		    e_wsfe();
		    ++nfail;
		}
/* L180: */
	    }
	    if (! bidiag) {
		ntest += 19;
	    } else {
		ntest += 5;
	    }

L190:
	    ;
	}
/* L200: */
    }

/*     Summary */

    alasum_(path, nout, &nfail, &ntest, &c__0);

    return 0;

/*     End of DCHKBD */


} /* dchkbd_ */
示例#4
0
/* Subroutine */ int dchksb_(integer *nsizes, integer *nn, integer *nwdths, 
	integer *kk, integer *ntypes, logical *dotype, integer *iseed, 
	doublereal *thresh, integer *nounit, doublereal *a, integer *lda, 
	doublereal *sd, doublereal *se, doublereal *u, integer *ldu, 
	doublereal *work, integer *lwork, doublereal *result, integer *info)
{
    /* Initialized data */

    static integer ktype[15] = { 1,2,4,4,4,4,4,5,5,5,5,5,8,8,8 };
    static integer kmagn[15] = { 1,1,1,1,1,2,3,1,1,1,2,3,1,2,3 };
    static integer kmode[15] = { 0,0,4,3,1,4,4,4,3,1,4,4,0,0,0 };

    /* Format strings */
    static char fmt_9999[] = "(\002 DCHKSB: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
	    "(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9998[] = "(/1x,a3,\002 -- Real Symmetric Banded Tridiago"
	    "nal Reduction Routines\002)";
    static char fmt_9997[] = "(\002 Matrix types (see DCHKSB for details):"
	    " \002)";
    static char fmt_9996[] = "(/\002 Special Matrices:\002,/\002  1=Zero mat"
	    "rix.                        \002,\002  5=Diagonal: clustered ent"
	    "ries.\002,/\002  2=Identity matrix.                    \002,\002"
	    "  6=Diagonal: large, evenly spaced.\002,/\002  3=Diagonal: evenl"
	    "y spaced entries.    \002,\002  7=Diagonal: small, evenly spaced."
	    "\002,/\002  4=Diagonal: geometr. spaced entries.\002)";
    static char fmt_9995[] = "(\002 Dense \002,a,\002 Banded Matrices:\002,"
	    "/\002  8=Evenly spaced eigenvals.            \002,\002 12=Small,"
	    " evenly spaced eigenvals.\002,/\002  9=Geometrically spaced eige"
	    "nvals.     \002,\002 13=Matrix with random O(1) entries.\002,"
	    "/\002 10=Clustered eigenvalues.              \002,\002 14=Matrix"
	    " with large random entries.\002,/\002 11=Large, evenly spaced ei"
	    "genvals.     \002,\002 15=Matrix with small random entries.\002)";
    static char fmt_9994[] = "(/\002 Tests performed:   (S is Tridiag,  U "
	    "is \002,a,\002,\002,/20x,a,\002 means \002,a,\002.\002,/\002 UPL"
	    "O='U':\002,/\002  1= | A - U S U\002,a1,\002 | / ( |A| n ulp )  "
	    "   \002,\002  2= | I - U U\002,a1,\002 | / ( n ulp )\002,/\002 U"
	    "PLO='L':\002,/\002  3= | A - U S U\002,a1,\002 | / ( |A| n ulp )"
	    "     \002,\002  4= | I - U U\002,a1,\002 | / ( n ulp )\002)";
    static char fmt_9993[] = "(\002 N=\002,i5,\002, K=\002,i4,\002, seed="
	    "\002,4(i4,\002,\002),\002 type \002,i2,\002, test(\002,i2,\002)"
	    "=\002,g10.3)";

    /* System generated locals */
    integer a_dim1, a_offset, u_dim1, u_offset, i__1, i__2, i__3, i__4, i__5, 
	    i__6, i__7;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, j, k, n, jc, jr;
    doublereal ulp, cond;
    integer jcol, kmax, nmax;
    doublereal unfl, ovfl, temp1;
    logical badnn;
    integer imode;
    extern /* Subroutine */ int dsbt21_(char *, integer *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, doublereal *, doublereal *);
    integer iinfo;
    doublereal aninv, anorm;
    integer nmats, jsize, nerrs, itype, jtype, ntest;
    logical badnnb;
    extern doublereal dlamch_(char *);
    integer idumma[1];
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *);
    integer ioldsd[4];
    extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *), 
	    xerbla_(char *, integer *), dsbtrd_(char *, char *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *), dlatmr_(integer *, integer *, char *, integer *, 
	    char *, doublereal *, integer *, doublereal *, doublereal *, char 
	    *, char *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, char *, integer *, integer *, integer *, 
	    doublereal *, doublereal *, char *, doublereal *, integer *, 
	    integer *, integer *), dlatms_(integer *, integer *, char *, integer *, char *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *, char *, doublereal *, integer *, doublereal *, integer 
	    *), dlasum_(char *, integer *, integer *, 
	    integer *);
    integer jwidth;
    doublereal rtunfl, rtovfl, ulpinv;
    integer mtypes, ntestt;

    /* Fortran I/O blocks */
    static cilist io___36 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___37 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___40 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9994, 0 };
    static cilist io___46 = { 0, 0, 0, fmt_9993, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DCHKSB tests the reduction of a symmetric band matrix to tridiagonal */
/*  form, used with the symmetric eigenvalue problem. */

/*  DSBTRD factors a symmetric band matrix A as  U S U' , where ' means */
/*  transpose, S is symmetric tridiagonal, and U is orthogonal. */
/*  DSBTRD can use either just the lower or just the upper triangle */
/*  of A; DCHKSB checks both cases. */

/*  When DCHKSB is called, a number of matrix "sizes" ("n's"), a number */
/*  of bandwidths ("k's"), and a number of matrix "types" are */
/*  specified.  For each size ("n"), each bandwidth ("k") less than or */
/*  equal to "n", and each type of matrix, one matrix will be generated */
/*  and used to test the symmetric banded reduction routine.  For each */
/*  matrix, a number of tests will be performed: */

/*  (1)     | A - V S V' | / ( |A| n ulp )  computed by DSBTRD with */
/*                                          UPLO='U' */

/*  (2)     | I - UU' | / ( n ulp ) */

/*  (3)     | A - V S V' | / ( |A| n ulp )  computed by DSBTRD with */
/*                                          UPLO='L' */

/*  (4)     | I - UU' | / ( n ulp ) */

/*  The "sizes" are specified by an array NN(1:NSIZES); the value of */
/*  each element NN(j) specifies one size. */
/*  The "types" are specified by a logical array DOTYPE( 1:NTYPES ); */
/*  if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. */
/*  Currently, the list of possible types is: */

/*  (1)  The zero matrix. */
/*  (2)  The identity matrix. */

/*  (3)  A diagonal matrix with evenly spaced entries */
/*       1, ..., ULP  and random signs. */
/*       (ULP = (first number larger than 1) - 1 ) */
/*  (4)  A diagonal matrix with geometrically spaced entries */
/*       1, ..., ULP  and random signs. */
/*  (5)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */
/*       and random signs. */

/*  (6)  Same as (4), but multiplied by SQRT( overflow threshold ) */
/*  (7)  Same as (4), but multiplied by SQRT( underflow threshold ) */

/*  (8)  A matrix of the form  U' D U, where U is orthogonal and */
/*       D has evenly spaced entries 1, ..., ULP with random signs */
/*       on the diagonal. */

/*  (9)  A matrix of the form  U' D U, where U is orthogonal and */
/*       D has geometrically spaced entries 1, ..., ULP with random */
/*       signs on the diagonal. */

/*  (10) A matrix of the form  U' D U, where U is orthogonal and */
/*       D has "clustered" entries 1, ULP,..., ULP with random */
/*       signs on the diagonal. */

/*  (11) Same as (8), but multiplied by SQRT( overflow threshold ) */
/*  (12) Same as (8), but multiplied by SQRT( underflow threshold ) */

/*  (13) Symmetric matrix with random entries chosen from (-1,1). */
/*  (14) Same as (13), but multiplied by SQRT( overflow threshold ) */
/*  (15) Same as (13), but multiplied by SQRT( underflow threshold ) */

/*  Arguments */
/*  ========= */

/*  NSIZES  (input) INTEGER */
/*          The number of sizes of matrices to use.  If it is zero, */
/*          DCHKSB does nothing.  It must be at least zero. */

/*  NN      (input) INTEGER array, dimension (NSIZES) */
/*          An array containing the sizes to be used for the matrices. */
/*          Zero values will be skipped.  The values must be at least */
/*          zero. */

/*  NWDTHS  (input) INTEGER */
/*          The number of bandwidths to use.  If it is zero, */
/*          DCHKSB does nothing.  It must be at least zero. */

/*  KK      (input) INTEGER array, dimension (NWDTHS) */
/*          An array containing the bandwidths to be used for the band */
/*          matrices.  The values must be at least zero. */

/*  NTYPES  (input) INTEGER */
/*          The number of elements in DOTYPE.   If it is zero, DCHKSB */
/*          does nothing.  It must be at least zero.  If it is MAXTYP+1 */
/*          and NSIZES is 1, then an additional type, MAXTYP+1 is */
/*          defined, which is to use whatever matrix is in A.  This */
/*          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and */
/*          DOTYPE(MAXTYP+1) is .TRUE. . */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          If DOTYPE(j) is .TRUE., then for each size in NN a */
/*          matrix of that size and of type j will be generated. */
/*          If NTYPES is smaller than the maximum number of types */
/*          defined (PARAMETER MAXTYP), then types NTYPES+1 through */
/*          MAXTYP will not be generated.  If NTYPES is larger */
/*          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) */
/*          will be ignored. */

/*  ISEED   (input/output) INTEGER array, dimension (4) */
/*          On entry ISEED specifies the seed of the random number */
/*          generator. The array elements should be between 0 and 4095; */
/*          if not they will be reduced mod 4096.  Also, ISEED(4) must */
/*          be odd.  The random number generator uses a linear */
/*          congruential sequence limited to small integers, and so */
/*          should produce machine independent random numbers. The */
/*          values of ISEED are changed on exit, and can be used in the */
/*          next call to DCHKSB to continue the same random number */
/*          sequence. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          A test will count as "failed" if the "error", computed as */
/*          described above, exceeds THRESH.  Note that the error */
/*          is scaled to be O(1), so THRESH should be a reasonably */
/*          small multiple of 1, e.g., 10 or 100.  In particular, */
/*          it should not depend on the precision (single vs. double) */
/*          or the size of the matrix.  It must be at least zero. */

/*  NOUNIT  (input) INTEGER */
/*          The FORTRAN unit number for printing out error messages */
/*          (e.g., if a routine returns IINFO not equal to 0.) */

/*  A       (input/workspace) DOUBLE PRECISION array, dimension */
/*                            (LDA, max(NN)) */
/*          Used to hold the matrix whose eigenvalues are to be */
/*          computed. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of A.  It must be at least 2 (not 1!) */
/*          and at least max( KK )+1. */

/*  SD      (workspace) DOUBLE PRECISION array, dimension (max(NN)) */
/*          Used to hold the diagonal of the tridiagonal matrix computed */
/*          by DSBTRD. */

/*  SE      (workspace) DOUBLE PRECISION array, dimension (max(NN)) */
/*          Used to hold the off-diagonal of the tridiagonal matrix */
/*          computed by DSBTRD. */

/*  U       (workspace) DOUBLE PRECISION array, dimension (LDU, max(NN)) */
/*          Used to hold the orthogonal matrix computed by DSBTRD. */

/*  LDU     (input) INTEGER */
/*          The leading dimension of U.  It must be at least 1 */
/*          and at least max( NN ). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK) */

/*  LWORK   (input) INTEGER */
/*          The number of entries in WORK.  This must be at least */
/*          max( LDA+1, max(NN)+1 )*max(NN). */

/*  RESULT  (output) DOUBLE PRECISION array, dimension (4) */
/*          The values computed by the tests described above. */
/*          The values are currently limited to 1/ulp, to avoid */
/*          overflow. */

/*  INFO    (output) INTEGER */
/*          If 0, then everything ran OK. */

/* ----------------------------------------------------------------------- */

/*       Some Local Variables and Parameters: */
/*       ---- ----- --------- --- ---------- */
/*       ZERO, ONE       Real 0 and 1. */
/*       MAXTYP          The number of types defined. */
/*       NTEST           The number of tests performed, or which can */
/*                       be performed so far, for the current matrix. */
/*       NTESTT          The total number of tests performed so far. */
/*       NMAX            Largest value in NN. */
/*       NMATS           The number of matrices generated so far. */
/*       NERRS           The number of tests which have exceeded THRESH */
/*                       so far. */
/*       COND, IMODE     Values to be passed to the matrix generators. */
/*       ANORM           Norm of A; passed to matrix generators. */

/*       OVFL, UNFL      Overflow and underflow thresholds. */
/*       ULP, ULPINV     Finest relative precision and its inverse. */
/*       RTOVFL, RTUNFL  Square roots of the previous 2 values. */
/*               The following four arrays decode JTYPE: */
/*       KTYPE(j)        The general type (1-10) for type "j". */
/*       KMODE(j)        The MODE value to be passed to the matrix */
/*                       generator for type "j". */
/*       KMAGN(j)        The order of magnitude ( O(1), */
/*                       O(overflow^(1/2) ), O(underflow^(1/2) ) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --nn;
    --kk;
    --dotype;
    --iseed;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --sd;
    --se;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1;
    u -= u_offset;
    --work;
    --result;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Check for errors */

    ntestt = 0;
    *info = 0;

/*     Important constants */

    badnn = FALSE_;
    nmax = 1;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = nmax, i__3 = nn[j];
	nmax = max(i__2,i__3);
	if (nn[j] < 0) {
	    badnn = TRUE_;
	}
/* L10: */
    }

    badnnb = FALSE_;
    kmax = 0;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = kmax, i__3 = kk[j];
	kmax = max(i__2,i__3);
	if (kk[j] < 0) {
	    badnnb = TRUE_;
	}
/* L20: */
    }
/* Computing MIN */
    i__1 = nmax - 1;
    kmax = min(i__1,kmax);

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badnn) {
	*info = -2;
    } else if (*nwdths < 0) {
	*info = -3;
    } else if (badnnb) {
	*info = -4;
    } else if (*ntypes < 0) {
	*info = -5;
    } else if (*lda < kmax + 1) {
	*info = -11;
    } else if (*ldu < nmax) {
	*info = -15;
    } else if ((max(*lda,nmax) + 1) * nmax > *lwork) {
	*info = -17;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DCHKSB", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*nsizes == 0 || *ntypes == 0 || *nwdths == 0) {
	return 0;
    }

/*     More Important constants */

    unfl = dlamch_("Safe minimum");
    ovfl = 1. / unfl;
    ulp = dlamch_("Epsilon") * dlamch_("Base");
    ulpinv = 1. / ulp;
    rtunfl = sqrt(unfl);
    rtovfl = sqrt(ovfl);

/*     Loop over sizes, types */

    nerrs = 0;
    nmats = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	n = nn[jsize];
	aninv = 1. / (doublereal) max(1,n);

	i__2 = *nwdths;
	for (jwidth = 1; jwidth <= i__2; ++jwidth) {
	    k = kk[jwidth];
	    if (k > n) {
		goto L180;
	    }
/* Computing MAX */
/* Computing MIN */
	    i__5 = n - 1;
	    i__3 = 0, i__4 = min(i__5,k);
	    k = max(i__3,i__4);

	    if (*nsizes != 1) {
		mtypes = min(15,*ntypes);
	    } else {
		mtypes = min(16,*ntypes);
	    }

	    i__3 = mtypes;
	    for (jtype = 1; jtype <= i__3; ++jtype) {
		if (! dotype[jtype]) {
		    goto L170;
		}
		++nmats;
		ntest = 0;

		for (j = 1; j <= 4; ++j) {
		    ioldsd[j - 1] = iseed[j];
/* L30: */
		}

/*              Compute "A". */
/*              Store as "Upper"; later, we will copy to other format. */

/*              Control parameters: */

/*                  KMAGN  KMODE        KTYPE */
/*              =1  O(1)   clustered 1  zero */
/*              =2  large  clustered 2  identity */
/*              =3  small  exponential  (none) */
/*              =4         arithmetic   diagonal, (w/ eigenvalues) */
/*              =5         random log   symmetric, w/ eigenvalues */
/*              =6         random       (none) */
/*              =7                      random diagonal */
/*              =8                      random symmetric */
/*              =9                      positive definite */
/*              =10                     diagonally dominant tridiagonal */

		if (mtypes > 15) {
		    goto L100;
		}

		itype = ktype[jtype - 1];
		imode = kmode[jtype - 1];

/*              Compute norm */

		switch (kmagn[jtype - 1]) {
		    case 1:  goto L40;
		    case 2:  goto L50;
		    case 3:  goto L60;
		}

L40:
		anorm = 1.;
		goto L70;

L50:
		anorm = rtovfl * ulp * aninv;
		goto L70;

L60:
		anorm = rtunfl * n * ulpinv;
		goto L70;

L70:

		dlaset_("Full", lda, &n, &c_b18, &c_b18, &a[a_offset], lda);
		iinfo = 0;
		if (jtype <= 15) {
		    cond = ulpinv;
		} else {
		    cond = ulpinv * aninv / 10.;
		}

/*              Special Matrices -- Identity & Jordan block */

/*                 Zero */

		if (itype == 1) {
		    iinfo = 0;

		} else if (itype == 2) {

/*                 Identity */

		    i__4 = n;
		    for (jcol = 1; jcol <= i__4; ++jcol) {
			a[k + 1 + jcol * a_dim1] = anorm;
/* L80: */
		    }

		} else if (itype == 4) {

/*                 Diagonal Matrix, [Eigen]values Specified */

		    dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &
			    cond, &anorm, &c__0, &c__0, "Q", &a[k + 1 + 
			    a_dim1], lda, &work[n + 1], &iinfo);

		} else if (itype == 5) {

/*                 Symmetric, eigenvalues specified */

		    dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &
			    cond, &anorm, &k, &k, "Q", &a[a_offset], lda, &
			    work[n + 1], &iinfo);

		} else if (itype == 7) {

/*                 Diagonal, random eigenvalues */

		    dlatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &
			    c_b32, &c_b32, "T", "N", &work[n + 1], &c__1, &
			    c_b32, &work[(n << 1) + 1], &c__1, &c_b32, "N", 
			    idumma, &c__0, &c__0, &c_b18, &anorm, "Q", &a[k + 
			    1 + a_dim1], lda, idumma, &iinfo);

		} else if (itype == 8) {

/*                 Symmetric, random eigenvalues */

		    dlatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &
			    c_b32, &c_b32, "T", "N", &work[n + 1], &c__1, &
			    c_b32, &work[(n << 1) + 1], &c__1, &c_b32, "N", 
			    idumma, &k, &k, &c_b18, &anorm, "Q", &a[a_offset], 
			     lda, idumma, &iinfo);

		} else if (itype == 9) {

/*                 Positive definite, eigenvalues specified. */

		    dlatms_(&n, &n, "S", &iseed[1], "P", &work[1], &imode, &
			    cond, &anorm, &k, &k, "Q", &a[a_offset], lda, &
			    work[n + 1], &iinfo);

		} else if (itype == 10) {

/*                 Positive definite tridiagonal, eigenvalues specified. */

		    if (n > 1) {
			k = max(1,k);
		    }
		    dlatms_(&n, &n, "S", &iseed[1], "P", &work[1], &imode, &
			    cond, &anorm, &c__1, &c__1, "Q", &a[k + a_dim1], 
			    lda, &work[n + 1], &iinfo);
		    i__4 = n;
		    for (i__ = 2; i__ <= i__4; ++i__) {
			temp1 = (d__1 = a[k + i__ * a_dim1], abs(d__1)) / 
				sqrt((d__2 = a[k + 1 + (i__ - 1) * a_dim1] * 
				a[k + 1 + i__ * a_dim1], abs(d__2)));
			if (temp1 > .5) {
			    a[k + i__ * a_dim1] = sqrt((d__1 = a[k + 1 + (i__ 
				    - 1) * a_dim1] * a[k + 1 + i__ * a_dim1], 
				    abs(d__1))) * .5;
			}
/* L90: */
		    }

		} else {

		    iinfo = 1;
		}

		if (iinfo != 0) {
		    io___36.ciunit = *nounit;
		    s_wsfe(&io___36);
		    do_fio(&c__1, "Generator", (ftnlen)9);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    return 0;
		}

L100:

/*              Call DSBTRD to compute S and U from upper triangle. */

		i__4 = k + 1;
		dlacpy_(" ", &i__4, &n, &a[a_offset], lda, &work[1], lda);

		ntest = 1;
		dsbtrd_("V", "U", &n, &k, &work[1], lda, &sd[1], &se[1], &u[
			u_offset], ldu, &work[*lda * n + 1], &iinfo);

		if (iinfo != 0) {
		    io___37.ciunit = *nounit;
		    s_wsfe(&io___37);
		    do_fio(&c__1, "DSBTRD(U)", (ftnlen)9);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    if (iinfo < 0) {
			return 0;
		    } else {
			result[1] = ulpinv;
			goto L150;
		    }
		}

/*              Do tests 1 and 2 */

		dsbt21_("Upper", &n, &k, &c__1, &a[a_offset], lda, &sd[1], &
			se[1], &u[u_offset], ldu, &work[1], &result[1]);

/*              Convert A from Upper-Triangle-Only storage to */
/*              Lower-Triangle-Only storage. */

		i__4 = n;
		for (jc = 1; jc <= i__4; ++jc) {
/* Computing MIN */
		    i__6 = k, i__7 = n - jc;
		    i__5 = min(i__6,i__7);
		    for (jr = 0; jr <= i__5; ++jr) {
			a[jr + 1 + jc * a_dim1] = a[k + 1 - jr + (jc + jr) * 
				a_dim1];
/* L110: */
		    }
/* L120: */
		}
		i__4 = n;
		for (jc = n + 1 - k; jc <= i__4; ++jc) {
/* Computing MIN */
		    i__5 = k, i__6 = n - jc;
		    i__7 = k;
		    for (jr = min(i__5,i__6) + 1; jr <= i__7; ++jr) {
			a[jr + 1 + jc * a_dim1] = 0.;
/* L130: */
		    }
/* L140: */
		}

/*              Call DSBTRD to compute S and U from lower triangle */

		i__4 = k + 1;
		dlacpy_(" ", &i__4, &n, &a[a_offset], lda, &work[1], lda);

		ntest = 3;
		dsbtrd_("V", "L", &n, &k, &work[1], lda, &sd[1], &se[1], &u[
			u_offset], ldu, &work[*lda * n + 1], &iinfo);

		if (iinfo != 0) {
		    io___40.ciunit = *nounit;
		    s_wsfe(&io___40);
		    do_fio(&c__1, "DSBTRD(L)", (ftnlen)9);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    if (iinfo < 0) {
			return 0;
		    } else {
			result[3] = ulpinv;
			goto L150;
		    }
		}
		ntest = 4;

/*              Do tests 3 and 4 */

		dsbt21_("Lower", &n, &k, &c__1, &a[a_offset], lda, &sd[1], &
			se[1], &u[u_offset], ldu, &work[1], &result[3]);

/*              End of Loop -- Check for RESULT(j) > THRESH */

L150:
		ntestt += ntest;

/*              Print out tests which fail. */

		i__4 = ntest;
		for (jr = 1; jr <= i__4; ++jr) {
		    if (result[jr] >= *thresh) {

/*                    If this is the first test to fail, */
/*                    print a header to the data file. */

			if (nerrs == 0) {
			    io___41.ciunit = *nounit;
			    s_wsfe(&io___41);
			    do_fio(&c__1, "DSB", (ftnlen)3);
			    e_wsfe();
			    io___42.ciunit = *nounit;
			    s_wsfe(&io___42);
			    e_wsfe();
			    io___43.ciunit = *nounit;
			    s_wsfe(&io___43);
			    e_wsfe();
			    io___44.ciunit = *nounit;
			    s_wsfe(&io___44);
			    do_fio(&c__1, "Symmetric", (ftnlen)9);
			    e_wsfe();
			    io___45.ciunit = *nounit;
			    s_wsfe(&io___45);
			    do_fio(&c__1, "orthogonal", (ftnlen)10);
			    do_fio(&c__1, "'", (ftnlen)1);
			    do_fio(&c__1, "transpose", (ftnlen)9);
			    for (j = 1; j <= 4; ++j) {
				do_fio(&c__1, "'", (ftnlen)1);
			    }
			    e_wsfe();
			}
			++nerrs;
			io___46.ciunit = *nounit;
			s_wsfe(&io___46);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&jr, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[jr], (ftnlen)sizeof(
				doublereal));
			e_wsfe();
		    }
/* L160: */
		}

L170:
		;
	    }
L180:
	    ;
	}
/* L190: */
    }

/*     Summary */

    dlasum_("DSB", nounit, &nerrs, &ntestt);
    return 0;





/*     End of DCHKSB */

} /* dchksb_ */
示例#5
0
文件: dchkbb.c 项目: kstraube/hysim
/* Subroutine */ int dchkbb_(integer *nsizes, integer *mval, integer *nval, 
	integer *nwdths, integer *kk, integer *ntypes, logical *dotype, 
	integer *nrhs, integer *iseed, doublereal *thresh, integer *nounit, 
	doublereal *a, integer *lda, doublereal *ab, integer *ldab, 
	doublereal *bd, doublereal *be, doublereal *q, integer *ldq, 
	doublereal *p, integer *ldp, doublereal *c__, integer *ldc, 
	doublereal *cc, doublereal *work, integer *lwork, doublereal *result, 
	integer *info)
{
    /* Initialized data */

    static integer ktype[15] = { 1,2,4,4,4,4,4,6,6,6,6,6,9,9,9 };
    static integer kmagn[15] = { 1,1,1,1,1,2,3,1,1,1,2,3,1,2,3 };
    static integer kmode[15] = { 0,0,4,3,1,4,4,4,3,1,4,4,0,0,0 };

    /* Format strings */
    static char fmt_9999[] = "(\002 DCHKBB: \002,a,\002 returned INFO=\002,i"
	    "5,\002.\002,/9x,\002M=\002,i5,\002 N=\002,i5,\002 K=\002,i5,\002"
	    ", JTYPE=\002,i5,\002, ISEED=(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9998[] = "(\002 M =\002,i4,\002 N=\002,i4,\002, K=\002,i"
	    "3,\002, seed=\002,4(i4,\002,\002),\002 type \002,i2,\002, test"
	    "(\002,i2,\002)=\002,g10.3)";

    /* System generated locals */
    integer a_dim1, a_offset, ab_dim1, ab_offset, c_dim1, c_offset, cc_dim1, 
	    cc_offset, p_dim1, p_offset, q_dim1, q_offset, i__1, i__2, i__3, 
	    i__4, i__5, i__6, i__7, i__8, i__9;

    /* Builtin functions */
    double sqrt(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, j, k, m, n, kl, jr, ku;
    doublereal ulp, cond;
    integer jcol, kmax, mmax, nmax;
    doublereal unfl, ovfl;
    extern /* Subroutine */ int dbdt01_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, doublereal *)
	    , dbdt02_(integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *);
    logical badmm, badnn;
    integer imode, iinfo;
    extern /* Subroutine */ int dort01_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *);
    doublereal anorm;
    integer mnmin, mnmax, nmats, jsize, nerrs, itype, jtype, ntest;
    extern /* Subroutine */ int dlahd2_(integer *, char *);
    logical badnnb;
    extern /* Subroutine */ int dgbbrd_(char *, integer *, integer *, integer 
	    *, integer *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *);
    extern doublereal dlamch_(char *);
    integer idumma[1];
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *);
    integer ioldsd[4];
    extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *), 
	    xerbla_(char *, integer *), dlatmr_(integer *, integer *, 
	    char *, integer *, char *, doublereal *, integer *, doublereal *, 
	    doublereal *, char *, char *, doublereal *, integer *, doublereal 
	    *, doublereal *, integer *, doublereal *, char *, integer *, 
	    integer *, integer *, doublereal *, doublereal *, char *, 
	    doublereal *, integer *, integer *, integer *), dlatms_(integer *, integer *, 
	    char *, integer *, char *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, integer *, char *, doublereal *, integer 
	    *, doublereal *, integer *), dlasum_(char 
	    *, integer *, integer *, integer *);
    doublereal amninv;
    integer jwidth;
    doublereal rtunfl, rtovfl, ulpinv;
    integer mtypes, ntestt;

    /* Fortran I/O blocks */
    static cilist io___41 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (release 2.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DCHKBB tests the reduction of a general real rectangular band */
/*  matrix to bidiagonal form. */

/*  DGBBRD factors a general band matrix A as  Q B P* , where * means */
/*  transpose, B is upper bidiagonal, and Q and P are orthogonal; */
/*  DGBBRD can also overwrite a given matrix C with Q* C . */

/*  For each pair of matrix dimensions (M,N) and each selected matrix */
/*  type, an M by N matrix A and an M by NRHS matrix C are generated. */
/*  The problem dimensions are as follows */
/*     A:          M x N */
/*     Q:          M x M */
/*     P:          N x N */
/*     B:          min(M,N) x min(M,N) */
/*     C:          M x NRHS */

/*  For each generated matrix, 4 tests are performed: */

/*  (1)   | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P' */

/*  (2)   | I - Q' Q | / ( M ulp ) */

/*  (3)   | I - PT PT' | / ( N ulp ) */

/*  (4)   | Y - Q' C | / ( |Y| max(M,NRHS) ulp ), where Y = Q' C. */

/*  The "types" are specified by a logical array DOTYPE( 1:NTYPES ); */
/*  if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. */
/*  Currently, the list of possible types is: */

/*  The possible matrix types are */

/*  (1)  The zero matrix. */
/*  (2)  The identity matrix. */

/*  (3)  A diagonal matrix with evenly spaced entries */
/*       1, ..., ULP  and random signs. */
/*       (ULP = (first number larger than 1) - 1 ) */
/*  (4)  A diagonal matrix with geometrically spaced entries */
/*       1, ..., ULP  and random signs. */
/*  (5)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */
/*       and random signs. */

/*  (6)  Same as (3), but multiplied by SQRT( overflow threshold ) */
/*  (7)  Same as (3), but multiplied by SQRT( underflow threshold ) */

/*  (8)  A matrix of the form  U D V, where U and V are orthogonal and */
/*       D has evenly spaced entries 1, ..., ULP with random signs */
/*       on the diagonal. */

/*  (9)  A matrix of the form  U D V, where U and V are orthogonal and */
/*       D has geometrically spaced entries 1, ..., ULP with random */
/*       signs on the diagonal. */

/*  (10) A matrix of the form  U D V, where U and V are orthogonal and */
/*       D has "clustered" entries 1, ULP,..., ULP with random */
/*       signs on the diagonal. */

/*  (11) Same as (8), but multiplied by SQRT( overflow threshold ) */
/*  (12) Same as (8), but multiplied by SQRT( underflow threshold ) */

/*  (13) Rectangular matrix with random entries chosen from (-1,1). */
/*  (14) Same as (13), but multiplied by SQRT( overflow threshold ) */
/*  (15) Same as (13), but multiplied by SQRT( underflow threshold ) */

/*  Arguments */
/*  ========= */

/*  NSIZES  (input) INTEGER */
/*          The number of values of M and N contained in the vectors */
/*          MVAL and NVAL.  The matrix sizes are used in pairs (M,N). */
/*          If NSIZES is zero, DCHKBB does nothing.  NSIZES must be at */
/*          least zero. */

/*  MVAL    (input) INTEGER array, dimension (NSIZES) */
/*          The values of the matrix row dimension M. */

/*  NVAL    (input) INTEGER array, dimension (NSIZES) */
/*          The values of the matrix column dimension N. */

/*  NWDTHS  (input) INTEGER */
/*          The number of bandwidths to use.  If it is zero, */
/*          DCHKBB does nothing.  It must be at least zero. */

/*  KK      (input) INTEGER array, dimension (NWDTHS) */
/*          An array containing the bandwidths to be used for the band */
/*          matrices.  The values must be at least zero. */

/*  NTYPES  (input) INTEGER */
/*          The number of elements in DOTYPE.   If it is zero, DCHKBB */
/*          does nothing.  It must be at least zero.  If it is MAXTYP+1 */
/*          and NSIZES is 1, then an additional type, MAXTYP+1 is */
/*          defined, which is to use whatever matrix is in A.  This */
/*          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and */
/*          DOTYPE(MAXTYP+1) is .TRUE. . */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          If DOTYPE(j) is .TRUE., then for each size in NN a */
/*          matrix of that size and of type j will be generated. */
/*          If NTYPES is smaller than the maximum number of types */
/*          defined (PARAMETER MAXTYP), then types NTYPES+1 through */
/*          MAXTYP will not be generated.  If NTYPES is larger */
/*          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) */
/*          will be ignored. */

/*  NRHS    (input) INTEGER */
/*          The number of columns in the "right-hand side" matrix C. */
/*          If NRHS = 0, then the operations on the right-hand side will */
/*          not be tested. NRHS must be at least 0. */

/*  ISEED   (input/output) INTEGER array, dimension (4) */
/*          On entry ISEED specifies the seed of the random number */
/*          generator. The array elements should be between 0 and 4095; */
/*          if not they will be reduced mod 4096.  Also, ISEED(4) must */
/*          be odd.  The random number generator uses a linear */
/*          congruential sequence limited to small integers, and so */
/*          should produce machine independent random numbers. The */
/*          values of ISEED are changed on exit, and can be used in the */
/*          next call to DCHKBB to continue the same random number */
/*          sequence. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          A test will count as "failed" if the "error", computed as */
/*          described above, exceeds THRESH.  Note that the error */
/*          is scaled to be O(1), so THRESH should be a reasonably */
/*          small multiple of 1, e.g., 10 or 100.  In particular, */
/*          it should not depend on the precision (single vs. double) */
/*          or the size of the matrix.  It must be at least zero. */

/*  NOUNIT  (input) INTEGER */
/*          The FORTRAN unit number for printing out error messages */
/*          (e.g., if a routine returns IINFO not equal to 0.) */

/*  A       (input/workspace) DOUBLE PRECISION array, dimension */
/*                            (LDA, max(NN)) */
/*          Used to hold the matrix A. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of A.  It must be at least 1 */
/*          and at least max( NN ). */

/*  AB      (workspace) DOUBLE PRECISION array, dimension (LDAB, max(NN)) */
/*          Used to hold A in band storage format. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of AB.  It must be at least 2 (not 1!) */
/*          and at least max( KK )+1. */

/*  BD      (workspace) DOUBLE PRECISION array, dimension (max(NN)) */
/*          Used to hold the diagonal of the bidiagonal matrix computed */
/*          by DGBBRD. */

/*  BE      (workspace) DOUBLE PRECISION array, dimension (max(NN)) */
/*          Used to hold the off-diagonal of the bidiagonal matrix */
/*          computed by DGBBRD. */

/*  Q       (workspace) DOUBLE PRECISION array, dimension (LDQ, max(NN)) */
/*          Used to hold the orthogonal matrix Q computed by DGBBRD. */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of Q.  It must be at least 1 */
/*          and at least max( NN ). */

/*  P       (workspace) DOUBLE PRECISION array, dimension (LDP, max(NN)) */
/*          Used to hold the orthogonal matrix P computed by DGBBRD. */

/*  LDP     (input) INTEGER */
/*          The leading dimension of P.  It must be at least 1 */
/*          and at least max( NN ). */

/*  C       (workspace) DOUBLE PRECISION array, dimension (LDC, max(NN)) */
/*          Used to hold the matrix C updated by DGBBRD. */

/*  LDC     (input) INTEGER */
/*          The leading dimension of U.  It must be at least 1 */
/*          and at least max( NN ). */

/*  CC      (workspace) DOUBLE PRECISION array, dimension (LDC, max(NN)) */
/*          Used to hold a copy of the matrix C. */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK) */

/*  LWORK   (input) INTEGER */
/*          The number of entries in WORK.  This must be at least */
/*          max( LDA+1, max(NN)+1 )*max(NN). */

/*  RESULT  (output) DOUBLE PRECISION array, dimension (4) */
/*          The values computed by the tests described above. */
/*          The values are currently limited to 1/ulp, to avoid */
/*          overflow. */

/*  INFO    (output) INTEGER */
/*          If 0, then everything ran OK. */

/* ----------------------------------------------------------------------- */

/*       Some Local Variables and Parameters: */
/*       ---- ----- --------- --- ---------- */
/*       ZERO, ONE       Real 0 and 1. */
/*       MAXTYP          The number of types defined. */
/*       NTEST           The number of tests performed, or which can */
/*                       be performed so far, for the current matrix. */
/*       NTESTT          The total number of tests performed so far. */
/*       NMAX            Largest value in NN. */
/*       NMATS           The number of matrices generated so far. */
/*       NERRS           The number of tests which have exceeded THRESH */
/*                       so far. */
/*       COND, IMODE     Values to be passed to the matrix generators. */
/*       ANORM           Norm of A; passed to matrix generators. */

/*       OVFL, UNFL      Overflow and underflow thresholds. */
/*       ULP, ULPINV     Finest relative precision and its inverse. */
/*       RTOVFL, RTUNFL  Square roots of the previous 2 values. */
/*               The following four arrays decode JTYPE: */
/*       KTYPE(j)        The general type (1-10) for type "j". */
/*       KMODE(j)        The MODE value to be passed to the matrix */
/*                       generator for type "j". */
/*       KMAGN(j)        The order of magnitude ( O(1), */
/*                       O(overflow^(1/2) ), O(underflow^(1/2) ) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --mval;
    --nval;
    --kk;
    --dotype;
    --iseed;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --bd;
    --be;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    p_dim1 = *ldp;
    p_offset = 1 + p_dim1;
    p -= p_offset;
    cc_dim1 = *ldc;
    cc_offset = 1 + cc_dim1;
    cc -= cc_offset;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1;
    c__ -= c_offset;
    --work;
    --result;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Check for errors */

    ntestt = 0;
    *info = 0;

/*     Important constants */

    badmm = FALSE_;
    badnn = FALSE_;
    mmax = 1;
    nmax = 1;
    mnmax = 1;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = mmax, i__3 = mval[j];
	mmax = max(i__2,i__3);
	if (mval[j] < 0) {
	    badmm = TRUE_;
	}
/* Computing MAX */
	i__2 = nmax, i__3 = nval[j];
	nmax = max(i__2,i__3);
	if (nval[j] < 0) {
	    badnn = TRUE_;
	}
/* Computing MAX */
/* Computing MIN */
	i__4 = mval[j], i__5 = nval[j];
	i__2 = mnmax, i__3 = min(i__4,i__5);
	mnmax = max(i__2,i__3);
/* L10: */
    }

    badnnb = FALSE_;
    kmax = 0;
    i__1 = *nwdths;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = kmax, i__3 = kk[j];
	kmax = max(i__2,i__3);
	if (kk[j] < 0) {
	    badnnb = TRUE_;
	}
/* L20: */
    }

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badmm) {
	*info = -2;
    } else if (badnn) {
	*info = -3;
    } else if (*nwdths < 0) {
	*info = -4;
    } else if (badnnb) {
	*info = -5;
    } else if (*ntypes < 0) {
	*info = -6;
    } else if (*nrhs < 0) {
	*info = -8;
    } else if (*lda < nmax) {
	*info = -13;
    } else if (*ldab < (kmax << 1) + 1) {
	*info = -15;
    } else if (*ldq < nmax) {
	*info = -19;
    } else if (*ldp < nmax) {
	*info = -21;
    } else if (*ldc < nmax) {
	*info = -23;
    } else if ((max(*lda,nmax) + 1) * nmax > *lwork) {
	*info = -26;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DCHKBB", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*nsizes == 0 || *ntypes == 0 || *nwdths == 0) {
	return 0;
    }

/*     More Important constants */

    unfl = dlamch_("Safe minimum");
    ovfl = 1. / unfl;
    ulp = dlamch_("Epsilon") * dlamch_("Base");
    ulpinv = 1. / ulp;
    rtunfl = sqrt(unfl);
    rtovfl = sqrt(ovfl);

/*     Loop over sizes, widths, types */

    nerrs = 0;
    nmats = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	m = mval[jsize];
	n = nval[jsize];
	mnmin = min(m,n);
/* Computing MAX */
	i__2 = max(1,m);
	amninv = 1. / (doublereal) max(i__2,n);

	i__2 = *nwdths;
	for (jwidth = 1; jwidth <= i__2; ++jwidth) {
	    k = kk[jwidth];
	    if (k >= m && k >= n) {
		goto L150;
	    }
/* Computing MAX */
/* Computing MIN */
	    i__5 = m - 1;
	    i__3 = 0, i__4 = min(i__5,k);
	    kl = max(i__3,i__4);
/* Computing MAX */
/* Computing MIN */
	    i__5 = n - 1;
	    i__3 = 0, i__4 = min(i__5,k);
	    ku = max(i__3,i__4);

	    if (*nsizes != 1) {
		mtypes = min(15,*ntypes);
	    } else {
		mtypes = min(16,*ntypes);
	    }

	    i__3 = mtypes;
	    for (jtype = 1; jtype <= i__3; ++jtype) {
		if (! dotype[jtype]) {
		    goto L140;
		}
		++nmats;
		ntest = 0;

		for (j = 1; j <= 4; ++j) {
		    ioldsd[j - 1] = iseed[j];
/* L30: */
		}

/*              Compute "A". */

/*              Control parameters: */

/*                  KMAGN  KMODE        KTYPE */
/*              =1  O(1)   clustered 1  zero */
/*              =2  large  clustered 2  identity */
/*              =3  small  exponential  (none) */
/*              =4         arithmetic   diagonal, (w/ singular values) */
/*              =5         random log   (none) */
/*              =6         random       nonhermitian, w/ singular values */
/*              =7                      (none) */
/*              =8                      (none) */
/*              =9                      random nonhermitian */

		if (mtypes > 15) {
		    goto L90;
		}

		itype = ktype[jtype - 1];
		imode = kmode[jtype - 1];

/*              Compute norm */

		switch (kmagn[jtype - 1]) {
		    case 1:  goto L40;
		    case 2:  goto L50;
		    case 3:  goto L60;
		}

L40:
		anorm = 1.;
		goto L70;

L50:
		anorm = rtovfl * ulp * amninv;
		goto L70;

L60:
		anorm = rtunfl * max(m,n) * ulpinv;
		goto L70;

L70:

		dlaset_("Full", lda, &n, &c_b18, &c_b18, &a[a_offset], lda);
		dlaset_("Full", ldab, &n, &c_b18, &c_b18, &ab[ab_offset], 
			ldab);
		iinfo = 0;
		cond = ulpinv;

/*              Special Matrices -- Identity & Jordan block */

/*                 Zero */

		if (itype == 1) {
		    iinfo = 0;

		} else if (itype == 2) {

/*                 Identity */

		    i__4 = n;
		    for (jcol = 1; jcol <= i__4; ++jcol) {
			a[jcol + jcol * a_dim1] = anorm;
/* L80: */
		    }

		} else if (itype == 4) {

/*                 Diagonal Matrix, singular values specified */

		    dlatms_(&m, &n, "S", &iseed[1], "N", &work[1], &imode, &
			    cond, &anorm, &c__0, &c__0, "N", &a[a_offset], 
			    lda, &work[m + 1], &iinfo);

		} else if (itype == 6) {

/*                 Nonhermitian, singular values specified */

		    dlatms_(&m, &n, "S", &iseed[1], "N", &work[1], &imode, &
			    cond, &anorm, &kl, &ku, "N", &a[a_offset], lda, &
			    work[m + 1], &iinfo);

		} else if (itype == 9) {

/*                 Nonhermitian, random entries */

		    dlatmr_(&m, &n, "S", &iseed[1], "N", &work[1], &c__6, &
			    c_b35, &c_b35, "T", "N", &work[n + 1], &c__1, &
			    c_b35, &work[(n << 1) + 1], &c__1, &c_b35, "N", 
			    idumma, &kl, &ku, &c_b18, &anorm, "N", &a[
			    a_offset], lda, idumma, &iinfo);

		} else {

		    iinfo = 1;
		}

/*              Generate Right-Hand Side */

		dlatmr_(&m, nrhs, "S", &iseed[1], "N", &work[1], &c__6, &
			c_b35, &c_b35, "T", "N", &work[m + 1], &c__1, &c_b35, 
			&work[(m << 1) + 1], &c__1, &c_b35, "N", idumma, &m, 
			nrhs, &c_b18, &c_b35, "NO", &c__[c_offset], ldc, 
			idumma, &iinfo);

		if (iinfo != 0) {
		    io___41.ciunit = *nounit;
		    s_wsfe(&io___41);
		    do_fio(&c__1, "Generator", (ftnlen)9);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    return 0;
		}

L90:

/*              Copy A to band storage. */

		i__4 = n;
		for (j = 1; j <= i__4; ++j) {
/* Computing MAX */
		    i__5 = 1, i__6 = j - ku;
/* Computing MIN */
		    i__8 = m, i__9 = j + kl;
		    i__7 = min(i__8,i__9);
		    for (i__ = max(i__5,i__6); i__ <= i__7; ++i__) {
			ab[ku + 1 + i__ - j + j * ab_dim1] = a[i__ + j * 
				a_dim1];
/* L100: */
		    }
/* L110: */
		}

/*              Copy C */

		dlacpy_("Full", &m, nrhs, &c__[c_offset], ldc, &cc[cc_offset], 
			 ldc);

/*              Call DGBBRD to compute B, Q and P, and to update C. */

		dgbbrd_("B", &m, &n, nrhs, &kl, &ku, &ab[ab_offset], ldab, &
			bd[1], &be[1], &q[q_offset], ldq, &p[p_offset], ldp, &
			cc[cc_offset], ldc, &work[1], &iinfo);

		if (iinfo != 0) {
		    io___43.ciunit = *nounit;
		    s_wsfe(&io___43);
		    do_fio(&c__1, "DGBBRD", (ftnlen)6);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    if (iinfo < 0) {
			return 0;
		    } else {
			result[1] = ulpinv;
			goto L120;
		    }
		}

/*              Test 1:  Check the decomposition A := Q * B * P' */
/*                   2:  Check the orthogonality of Q */
/*                   3:  Check the orthogonality of P */
/*                   4:  Check the computation of Q' * C */

		dbdt01_(&m, &n, &c_n1, &a[a_offset], lda, &q[q_offset], ldq, &
			bd[1], &be[1], &p[p_offset], ldp, &work[1], &result[1]
);
		dort01_("Columns", &m, &m, &q[q_offset], ldq, &work[1], lwork, 
			 &result[2]);
		dort01_("Rows", &n, &n, &p[p_offset], ldp, &work[1], lwork, &
			result[3]);
		dbdt02_(&m, nrhs, &c__[c_offset], ldc, &cc[cc_offset], ldc, &
			q[q_offset], ldq, &work[1], &result[4]);

/*              End of Loop -- Check for RESULT(j) > THRESH */

		ntest = 4;
L120:
		ntestt += ntest;

/*              Print out tests which fail. */

		i__4 = ntest;
		for (jr = 1; jr <= i__4; ++jr) {
		    if (result[jr] >= *thresh) {
			if (nerrs == 0) {
			    dlahd2_(nounit, "DBB");
			}
			++nerrs;
			io___45.ciunit = *nounit;
			s_wsfe(&io___45);
			do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__1, (char *)&jr, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[jr], (ftnlen)sizeof(
				doublereal));
			e_wsfe();
		    }
/* L130: */
		}

L140:
		;
	    }
L150:
	    ;
	}
/* L160: */
    }

/*     Summary */

    dlasum_("DBB", nounit, &nerrs, &ntestt);
    return 0;


/*     End of DCHKBB */

} /* dchkbb_ */
示例#6
0
/* Subroutine */ int ddrvvx_(integer *nsizes, integer *nn, integer *ntypes, 
	logical *dotype, integer *iseed, doublereal *thresh, integer *niunit, 
	integer *nounit, doublereal *a, integer *lda, doublereal *h__, 
	doublereal *wr, doublereal *wi, doublereal *wr1, doublereal *wi1, 
	doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr, 
	doublereal *lre, integer *ldlre, doublereal *rcondv, doublereal *
	rcndv1, doublereal *rcdvin, doublereal *rconde, doublereal *rcnde1, 
	doublereal *rcdein, doublereal *scale, doublereal *scale1, doublereal 
	*result, doublereal *work, integer *nwork, integer *iwork, integer *
	info)
{
    /* Initialized data */

    static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 };
    static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 };
    static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 };
    static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 };
    static char bal[1*4] = "N" "P" "S" "B";

    /* Format strings */
    static char fmt_9992[] = "(\002 DDRVVX: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
	    "(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9999[] = "(/1x,a3,\002 -- Real Eigenvalue-Eigenvector De"
	    "composition\002,\002 Expert Driver\002,/\002 Matrix types (see D"
	    "DRVVX for details): \002)";
    static char fmt_9998[] = "(/\002 Special Matrices:\002,/\002  1=Zero mat"
	    "rix.             \002,\002           \002,\002  5=Diagonal: geom"
	    "etr. spaced entries.\002,/\002  2=Identity matrix.              "
	    "      \002,\002  6=Diagona\002,\002l: clustered entries.\002,"
	    "/\002  3=Transposed Jordan block.  \002,\002          \002,\002 "
	    " 7=Diagonal: large, evenly spaced.\002,/\002  \002,\0024=Diagona"
	    "l: evenly spaced entries.    \002,\002  8=Diagonal: s\002,\002ma"
	    "ll, evenly spaced.\002)";
    static char fmt_9997[] = "(\002 Dense, Non-Symmetric Matrices:\002,/\002"
	    "  9=Well-cond., ev\002,\002enly spaced eigenvals.\002,\002 14=Il"
	    "l-cond., geomet. spaced e\002,\002igenals.\002,/\002 10=Well-con"
	    "d., geom. spaced eigenvals. \002,\002 15=Ill-conditioned, cluste"
	    "red e.vals.\002,/\002 11=Well-cond\002,\002itioned, clustered e."
	    "vals. \002,\002 16=Ill-cond., random comp\002,\002lex \002,/\002"
	    " 12=Well-cond., random complex \002,\002         \002,\002 17=Il"
	    "l-cond., large rand. complx \002,/\002 13=Ill-condi\002,\002tion"
	    "ed, evenly spaced.     \002,\002 18=Ill-cond., small rand.\002"
	    ",\002 complx \002)";
    static char fmt_9996[] = "(\002 19=Matrix with random O(1) entries.   "
	    " \002,\002 21=Matrix \002,\002with small random entries.\002,"
	    "/\002 20=Matrix with large ran\002,\002dom entries.   \002,\002 "
	    "22=Matrix read from input file\002,/)";
    static char fmt_9995[] = "(\002 Tests performed with test threshold ="
	    "\002,f8.2,//\002 1 = | A VR - VR W | / ( n |A| ulp ) \002,/\002 "
	    "2 = | transpose(A) VL - VL W | / ( n |A| ulp ) \002,/\002 3 = | "
	    "|VR(i)| - 1 | / ulp \002,/\002 4 = | |VL(i)| - 1 | / ulp \002,"
	    "/\002 5 = 0 if W same no matter if VR or VL computed,\002,\002 1"
	    "/ulp otherwise\002,/\002 6 = 0 if VR same no matter what else co"
	    "mputed,\002,\002  1/ulp otherwise\002,/\002 7 = 0 if VL same no "
	    "matter what else computed,\002,\002  1/ulp otherwise\002,/\002 8"
	    " = 0 if RCONDV same no matter what else computed,\002,\002  1/ul"
	    "p otherwise\002,/\002 9 = 0 if SCALE, ILO, IHI, ABNRM same no ma"
	    "tter what else\002,\002 computed,  1/ulp otherwise\002,/\002 10 "
	    "= | RCONDV - RCONDV(precomputed) | / cond(RCONDV),\002,/\002 11 "
	    "= | RCONDE - RCONDE(precomputed) | / cond(RCONDE),\002)";
    static char fmt_9994[] = "(\002 BALANC='\002,a1,\002',N=\002,i4,\002,I"
	    "WK=\002,i1,\002, seed=\002,4(i4,\002,\002),\002 type \002,i2,"
	    "\002, test(\002,i2,\002)=\002,g10.3)";
    static char fmt_9993[] = "(\002 N=\002,i5,\002, input example =\002,i3"
	    ",\002,  test(\002,i2,\002)=\002,g10.3)";

    /* System generated locals */
    integer a_dim1, a_offset, h_dim1, h_offset, lre_dim1, lre_offset, vl_dim1,
	     vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3;

    /* Local variables */
    integer i__, j, n, iwk;
    doublereal ulp;
    integer ibal;
    doublereal cond;
    integer jcol;
    char path[3];
    integer nmax;
    doublereal unfl, ovfl;
    logical badnn;
    extern /* Subroutine */ int dget23_(logical *, char *, integer *, 
	    doublereal *, integer *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
	     doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
	     doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, integer *, integer *, 
	    integer *);
    integer nfail, imode, iinfo;
    doublereal conds, anorm;
    integer jsize, nerrs, itype, jtype, ntest;
    doublereal rtulp;
    extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
    char balanc[1];
    extern doublereal dlamch_(char *);
    char adumma[1*1];
    extern /* Subroutine */ int dlatme_(integer *, char *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, char *, char 
	    *, char *, char *, doublereal *, integer *, doublereal *, integer 
	    *, integer *, doublereal *, doublereal *, integer *, doublereal *, 
	     integer *);
    integer idumma[1];
    extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *);
    integer ioldsd[4];
    extern /* Subroutine */ int xerbla_(char *, integer *), dlatmr_(
	    integer *, integer *, char *, integer *, char *, doublereal *, 
	    integer *, doublereal *, doublereal *, char *, char *, doublereal 
	    *, integer *, doublereal *, doublereal *, integer *, doublereal *, 
	     char *, integer *, integer *, integer *, doublereal *, 
	    doublereal *, char *, doublereal *, integer *, integer *, integer 
	    *), dlatms_(
	    integer *, integer *, char *, integer *, char *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, integer *, char 
	    *, doublereal *, integer *, doublereal *, integer *), dlasum_(char *, integer *, integer *, integer *);
    integer ntestf, nnwork;
    doublereal rtulpi;
    integer mtypes, ntestt;
    doublereal ulpinv;

    /* Fortran I/O blocks */
    static cilist io___33 = { 0, 0, 0, fmt_9992, 0 };
    static cilist io___40 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9994, 0 };
    static cilist io___46 = { 0, 0, 1, 0, 0 };
    static cilist io___48 = { 0, 0, 0, 0, 0 };
    static cilist io___49 = { 0, 0, 0, 0, 0 };
    static cilist io___50 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___52 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___54 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___55 = { 0, 0, 0, fmt_9993, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*     DDRVVX  checks the nonsymmetric eigenvalue problem expert driver */
/*     DGEEVX. */

/*     DDRVVX uses both test matrices generated randomly depending on */
/*     data supplied in the calling sequence, as well as on data */
/*     read from an input file and including precomputed condition */
/*     numbers to which it compares the ones it computes. */

/*     When DDRVVX is called, a number of matrix "sizes" ("n's") and a */
/*     number of matrix "types" are specified in the calling sequence. */
/*     For each size ("n") and each type of matrix, one matrix will be */
/*     generated and used to test the nonsymmetric eigenroutines.  For */
/*     each matrix, 9 tests will be performed: */

/*     (1)     | A * VR - VR * W | / ( n |A| ulp ) */

/*       Here VR is the matrix of unit right eigenvectors. */
/*       W is a block diagonal matrix, with a 1x1 block for each */
/*       real eigenvalue and a 2x2 block for each complex conjugate */
/*       pair.  If eigenvalues j and j+1 are a complex conjugate pair, */
/*       so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the */
/*       2 x 2 block corresponding to the pair will be: */

/*               (  wr  wi  ) */
/*               ( -wi  wr  ) */

/*       Such a block multiplying an n x 2 matrix  ( ur ui ) on the */
/*       right will be the same as multiplying  ur + i*ui  by  wr + i*wi. */

/*     (2)     | A**H * VL - VL * W**H | / ( n |A| ulp ) */

/*       Here VL is the matrix of unit left eigenvectors, A**H is the */
/*       conjugate transpose of A, and W is as above. */

/*     (3)     | |VR(i)| - 1 | / ulp and largest component real */

/*       VR(i) denotes the i-th column of VR. */

/*     (4)     | |VL(i)| - 1 | / ulp and largest component real */

/*       VL(i) denotes the i-th column of VL. */

/*     (5)     W(full) = W(partial) */

/*       W(full) denotes the eigenvalues computed when VR, VL, RCONDV */
/*       and RCONDE are also computed, and W(partial) denotes the */
/*       eigenvalues computed when only some of VR, VL, RCONDV, and */
/*       RCONDE are computed. */

/*     (6)     VR(full) = VR(partial) */

/*       VR(full) denotes the right eigenvectors computed when VL, RCONDV */
/*       and RCONDE are computed, and VR(partial) denotes the result */
/*       when only some of VL and RCONDV are computed. */

/*     (7)     VL(full) = VL(partial) */

/*       VL(full) denotes the left eigenvectors computed when VR, RCONDV */
/*       and RCONDE are computed, and VL(partial) denotes the result */
/*       when only some of VR and RCONDV are computed. */

/*     (8)     0 if SCALE, ILO, IHI, ABNRM (full) = */
/*                  SCALE, ILO, IHI, ABNRM (partial) */
/*             1/ulp otherwise */

/*       SCALE, ILO, IHI and ABNRM describe how the matrix is balanced. */
/*       (full) is when VR, VL, RCONDE and RCONDV are also computed, and */
/*       (partial) is when some are not computed. */

/*     (9)     RCONDV(full) = RCONDV(partial) */

/*       RCONDV(full) denotes the reciprocal condition numbers of the */
/*       right eigenvectors computed when VR, VL and RCONDE are also */
/*       computed. RCONDV(partial) denotes the reciprocal condition */
/*       numbers when only some of VR, VL and RCONDE are computed. */

/*     The "sizes" are specified by an array NN(1:NSIZES); the value of */
/*     each element NN(j) specifies one size. */
/*     The "types" are specified by a logical array DOTYPE( 1:NTYPES ); */
/*     if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. */
/*     Currently, the list of possible types is: */

/*     (1)  The zero matrix. */
/*     (2)  The identity matrix. */
/*     (3)  A (transposed) Jordan block, with 1's on the diagonal. */

/*     (4)  A diagonal matrix with evenly spaced entries */
/*          1, ..., ULP  and random signs. */
/*          (ULP = (first number larger than 1) - 1 ) */
/*     (5)  A diagonal matrix with geometrically spaced entries */
/*          1, ..., ULP  and random signs. */
/*     (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */
/*          and random signs. */

/*     (7)  Same as (4), but multiplied by a constant near */
/*          the overflow threshold */
/*     (8)  Same as (4), but multiplied by a constant near */
/*          the underflow threshold */

/*     (9)  A matrix of the form  U' T U, where U is orthogonal and */
/*          T has evenly spaced entries 1, ..., ULP with random signs */
/*          on the diagonal and random O(1) entries in the upper */
/*          triangle. */

/*     (10) A matrix of the form  U' T U, where U is orthogonal and */
/*          T has geometrically spaced entries 1, ..., ULP with random */
/*          signs on the diagonal and random O(1) entries in the upper */
/*          triangle. */

/*     (11) A matrix of the form  U' T U, where U is orthogonal and */
/*          T has "clustered" entries 1, ULP,..., ULP with random */
/*          signs on the diagonal and random O(1) entries in the upper */
/*          triangle. */

/*     (12) A matrix of the form  U' T U, where U is orthogonal and */
/*          T has real or complex conjugate paired eigenvalues randomly */
/*          chosen from ( ULP, 1 ) and random O(1) entries in the upper */
/*          triangle. */

/*     (13) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP */
/*          with random signs on the diagonal and random O(1) entries */
/*          in the upper triangle. */

/*     (14) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has geometrically spaced entries */
/*          1, ..., ULP with random signs on the diagonal and random */
/*          O(1) entries in the upper triangle. */

/*     (15) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP */
/*          with random signs on the diagonal and random O(1) entries */
/*          in the upper triangle. */

/*     (16) A matrix of the form  X' T X, where X has condition */
/*          SQRT( ULP ) and T has real or complex conjugate paired */
/*          eigenvalues randomly chosen from ( ULP, 1 ) and random */
/*          O(1) entries in the upper triangle. */

/*     (17) Same as (16), but multiplied by a constant */
/*          near the overflow threshold */
/*     (18) Same as (16), but multiplied by a constant */
/*          near the underflow threshold */

/*     (19) Nonsymmetric matrix with random entries chosen from (-1,1). */
/*          If N is at least 4, all entries in first two rows and last */
/*          row, and first column and last two columns are zero. */
/*     (20) Same as (19), but multiplied by a constant */
/*          near the overflow threshold */
/*     (21) Same as (19), but multiplied by a constant */
/*          near the underflow threshold */

/*     In addition, an input file will be read from logical unit number */
/*     NIUNIT. The file contains matrices along with precomputed */
/*     eigenvalues and reciprocal condition numbers for the eigenvalues */
/*     and right eigenvectors. For these matrices, in addition to tests */
/*     (1) to (9) we will compute the following two tests: */

/*    (10)  |RCONDV - RCDVIN| / cond(RCONDV) */

/*       RCONDV is the reciprocal right eigenvector condition number */
/*       computed by DGEEVX and RCDVIN (the precomputed true value) */
/*       is supplied as input. cond(RCONDV) is the condition number of */
/*       RCONDV, and takes errors in computing RCONDV into account, so */
/*       that the resulting quantity should be O(ULP). cond(RCONDV) is */
/*       essentially given by norm(A)/RCONDE. */

/*    (11)  |RCONDE - RCDEIN| / cond(RCONDE) */

/*       RCONDE is the reciprocal eigenvalue condition number */
/*       computed by DGEEVX and RCDEIN (the precomputed true value) */
/*       is supplied as input.  cond(RCONDE) is the condition number */
/*       of RCONDE, and takes errors in computing RCONDE into account, */
/*       so that the resulting quantity should be O(ULP). cond(RCONDE) */
/*       is essentially given by norm(A)/RCONDV. */

/*  Arguments */
/*  ========== */

/*  NSIZES  (input) INTEGER */
/*          The number of sizes of matrices to use.  NSIZES must be at */
/*          least zero. If it is zero, no randomly generated matrices */
/*          are tested, but any test matrices read from NIUNIT will be */
/*          tested. */

/*  NN      (input) INTEGER array, dimension (NSIZES) */
/*          An array containing the sizes to be used for the matrices. */
/*          Zero values will be skipped.  The values must be at least */
/*          zero. */

/*  NTYPES  (input) INTEGER */
/*          The number of elements in DOTYPE. NTYPES must be at least */
/*          zero. If it is zero, no randomly generated test matrices */
/*          are tested, but and test matrices read from NIUNIT will be */
/*          tested. If it is MAXTYP+1 and NSIZES is 1, then an */
/*          additional type, MAXTYP+1 is defined, which is to use */
/*          whatever matrix is in A.  This is only useful if */
/*          DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          If DOTYPE(j) is .TRUE., then for each size in NN a */
/*          matrix of that size and of type j will be generated. */
/*          If NTYPES is smaller than the maximum number of types */
/*          defined (PARAMETER MAXTYP), then types NTYPES+1 through */
/*          MAXTYP will not be generated.  If NTYPES is larger */
/*          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) */
/*          will be ignored. */

/*  ISEED   (input/output) INTEGER array, dimension (4) */
/*          On entry ISEED specifies the seed of the random number */
/*          generator. The array elements should be between 0 and 4095; */
/*          if not they will be reduced mod 4096.  Also, ISEED(4) must */
/*          be odd.  The random number generator uses a linear */
/*          congruential sequence limited to small integers, and so */
/*          should produce machine independent random numbers. The */
/*          values of ISEED are changed on exit, and can be used in the */
/*          next call to DDRVVX to continue the same random number */
/*          sequence. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          A test will count as "failed" if the "error", computed as */
/*          described above, exceeds THRESH.  Note that the error */
/*          is scaled to be O(1), so THRESH should be a reasonably */
/*          small multiple of 1, e.g., 10 or 100.  In particular, */
/*          it should not depend on the precision (single vs. double) */
/*          or the size of the matrix.  It must be at least zero. */

/*  NIUNIT  (input) INTEGER */
/*          The FORTRAN unit number for reading in the data file of */
/*          problems to solve. */

/*  NOUNIT  (input) INTEGER */
/*          The FORTRAN unit number for printing out error messages */
/*          (e.g., if a routine returns INFO not equal to 0.) */

/*  A       (workspace) DOUBLE PRECISION array, dimension */
/*                      (LDA, max(NN,12)) */
/*          Used to hold the matrix whose eigenvalues are to be */
/*          computed.  On exit, A contains the last matrix actually used. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the arrays A and H. */
/*          LDA >= max(NN,12), since 12 is the dimension of the largest */
/*          matrix in the precomputed input file. */

/*  H       (workspace) DOUBLE PRECISION array, dimension */
/*                      (LDA, max(NN,12)) */
/*          Another copy of the test matrix A, modified by DGEEVX. */

/*  WR      (workspace) DOUBLE PRECISION array, dimension (max(NN)) */
/*  WI      (workspace) DOUBLE PRECISION array, dimension (max(NN)) */
/*          The real and imaginary parts of the eigenvalues of A. */
/*          On exit, WR + WI*i are the eigenvalues of the matrix in A. */

/*  WR1     (workspace) DOUBLE PRECISION array, dimension (max(NN,12)) */
/*  WI1     (workspace) DOUBLE PRECISION array, dimension (max(NN,12)) */
/*          Like WR, WI, these arrays contain the eigenvalues of A, */
/*          but those computed when DGEEVX only computes a partial */
/*          eigendecomposition, i.e. not the eigenvalues and left */
/*          and right eigenvectors. */

/*  VL      (workspace) DOUBLE PRECISION array, dimension */
/*                      (LDVL, max(NN,12)) */
/*          VL holds the computed left eigenvectors. */

/*  LDVL    (input) INTEGER */
/*          Leading dimension of VL. Must be at least max(1,max(NN,12)). */

/*  VR      (workspace) DOUBLE PRECISION array, dimension */
/*                      (LDVR, max(NN,12)) */
/*          VR holds the computed right eigenvectors. */

/*  LDVR    (input) INTEGER */
/*          Leading dimension of VR. Must be at least max(1,max(NN,12)). */

/*  LRE     (workspace) DOUBLE PRECISION array, dimension */
/*                      (LDLRE, max(NN,12)) */
/*          LRE holds the computed right or left eigenvectors. */

/*  LDLRE   (input) INTEGER */
/*          Leading dimension of LRE. Must be at least max(1,max(NN,12)) */

/*  RCONDV  (workspace) DOUBLE PRECISION array, dimension (N) */
/*          RCONDV holds the computed reciprocal condition numbers */
/*          for eigenvectors. */

/*  RCNDV1  (workspace) DOUBLE PRECISION array, dimension (N) */
/*          RCNDV1 holds more computed reciprocal condition numbers */
/*          for eigenvectors. */

/*  RCDVIN  (workspace) DOUBLE PRECISION array, dimension (N) */
/*          When COMP = .TRUE. RCDVIN holds the precomputed reciprocal */
/*          condition numbers for eigenvectors to be compared with */
/*          RCONDV. */

/*  RCONDE  (workspace) DOUBLE PRECISION array, dimension (N) */
/*          RCONDE holds the computed reciprocal condition numbers */
/*          for eigenvalues. */

/*  RCNDE1  (workspace) DOUBLE PRECISION array, dimension (N) */
/*          RCNDE1 holds more computed reciprocal condition numbers */
/*          for eigenvalues. */

/*  RCDEIN  (workspace) DOUBLE PRECISION array, dimension (N) */
/*          When COMP = .TRUE. RCDEIN holds the precomputed reciprocal */
/*          condition numbers for eigenvalues to be compared with */
/*          RCONDE. */

/*  RESULT  (output) DOUBLE PRECISION array, dimension (11) */
/*          The values computed by the seven tests described above. */
/*          The values are currently limited to 1/ulp, to avoid overflow. */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (NWORK) */

/*  NWORK   (input) INTEGER */
/*          The number of entries in WORK.  This must be at least */
/*          max(6*12+2*12**2,6*NN(j)+2*NN(j)**2) = */
/*          max(    360     ,6*NN(j)+2*NN(j)**2)    for all j. */

/*  IWORK   (workspace) INTEGER array, dimension (2*max(NN,12)) */

/*  INFO    (output) INTEGER */
/*          If 0,  then successful exit. */
/*          If <0, then input paramter -INFO is incorrect. */
/*          If >0, DLATMR, SLATMS, SLATME or DGET23 returned an error */
/*                 code, and INFO is its absolute value. */

/* ----------------------------------------------------------------------- */

/*     Some Local Variables and Parameters: */
/*     ---- ----- --------- --- ---------- */

/*     ZERO, ONE       Real 0 and 1. */
/*     MAXTYP          The number of types defined. */
/*     NMAX            Largest value in NN or 12. */
/*     NERRS           The number of tests which have exceeded THRESH */
/*     COND, CONDS, */
/*     IMODE           Values to be passed to the matrix generators. */
/*     ANORM           Norm of A; passed to matrix generators. */

/*     OVFL, UNFL      Overflow and underflow thresholds. */
/*     ULP, ULPINV     Finest relative precision and its inverse. */
/*     RTULP, RTULPI   Square roots of the previous 4 values. */

/*             The following four arrays decode JTYPE: */
/*     KTYPE(j)        The general type (1-10) for type "j". */
/*     KMODE(j)        The MODE value to be passed to the matrix */
/*                     generator for type "j". */
/*     KMAGN(j)        The order of magnitude ( O(1), */
/*                     O(overflow^(1/2) ), O(underflow^(1/2) ) */
/*     KCONDS(j)       Selectw whether CONDS is to be 1 or */
/*                     1/sqrt(ulp).  (0 means irrelevant.) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --nn;
    --dotype;
    --iseed;
    h_dim1 = *lda;
    h_offset = 1 + h_dim1;
    h__ -= h_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --wr;
    --wi;
    --wr1;
    --wi1;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1;
    vr -= vr_offset;
    lre_dim1 = *ldlre;
    lre_offset = 1 + lre_dim1;
    lre -= lre_offset;
    --rcondv;
    --rcndv1;
    --rcdvin;
    --rconde;
    --rcnde1;
    --rcdein;
    --scale;
    --scale1;
    --result;
    --work;
    --iwork;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "VX", (ftnlen)2, (ftnlen)2);

/*     Check for errors */

    ntestt = 0;
    ntestf = 0;
    *info = 0;

/*     Important constants */

    badnn = FALSE_;

/*     12 is the largest dimension in the input file of precomputed */
/*     problems */

    nmax = 12;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = nmax, i__3 = nn[j];
	nmax = max(i__2,i__3);
	if (nn[j] < 0) {
	    badnn = TRUE_;
	}
/* L10: */
    }

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badnn) {
	*info = -2;
    } else if (*ntypes < 0) {
	*info = -3;
    } else if (*thresh < 0.) {
	*info = -6;
    } else if (*lda < 1 || *lda < nmax) {
	*info = -10;
    } else if (*ldvl < 1 || *ldvl < nmax) {
	*info = -17;
    } else if (*ldvr < 1 || *ldvr < nmax) {
	*info = -19;
    } else if (*ldlre < 1 || *ldlre < nmax) {
	*info = -21;
    } else /* if(complicated condition) */ {
/* Computing 2nd power */
	i__1 = nmax;
	if (nmax * 6 + (i__1 * i__1 << 1) > *nwork) {
	    *info = -32;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DDRVVX", &i__1);
	return 0;
    }

/*     If nothing to do check on NIUNIT */

    if (*nsizes == 0 || *ntypes == 0) {
	goto L160;
    }

/*     More Important constants */

    unfl = dlamch_("Safe minimum");
    ovfl = 1. / unfl;
    dlabad_(&unfl, &ovfl);
    ulp = dlamch_("Precision");
    ulpinv = 1. / ulp;
    rtulp = sqrt(ulp);
    rtulpi = 1. / rtulp;

/*     Loop over sizes, types */

    nerrs = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	n = nn[jsize];
	if (*nsizes != 1) {
	    mtypes = min(21,*ntypes);
	} else {
	    mtypes = min(22,*ntypes);
	}

	i__2 = mtypes;
	for (jtype = 1; jtype <= i__2; ++jtype) {
	    if (! dotype[jtype]) {
		goto L140;
	    }

/*           Save ISEED in case of an error. */

	    for (j = 1; j <= 4; ++j) {
		ioldsd[j - 1] = iseed[j];
/* L20: */
	    }

/*           Compute "A" */

/*           Control parameters: */

/*           KMAGN  KCONDS  KMODE        KTYPE */
/*       =1  O(1)   1       clustered 1  zero */
/*       =2  large  large   clustered 2  identity */
/*       =3  small          exponential  Jordan */
/*       =4                 arithmetic   diagonal, (w/ eigenvalues) */
/*       =5                 random log   symmetric, w/ eigenvalues */
/*       =6                 random       general, w/ eigenvalues */
/*       =7                              random diagonal */
/*       =8                              random symmetric */
/*       =9                              random general */
/*       =10                             random triangular */

	    if (mtypes > 21) {
		goto L90;
	    }

	    itype = ktype[jtype - 1];
	    imode = kmode[jtype - 1];

/*           Compute norm */

	    switch (kmagn[jtype - 1]) {
		case 1:  goto L30;
		case 2:  goto L40;
		case 3:  goto L50;
	    }

L30:
	    anorm = 1.;
	    goto L60;

L40:
	    anorm = ovfl * ulp;
	    goto L60;

L50:
	    anorm = unfl * ulpinv;
	    goto L60;

L60:

	    dlaset_("Full", lda, &n, &c_b18, &c_b18, &a[a_offset], lda);
	    iinfo = 0;
	    cond = ulpinv;

/*           Special Matrices -- Identity & Jordan block */

/*              Zero */

	    if (itype == 1) {
		iinfo = 0;

	    } else if (itype == 2) {

/*              Identity */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a[jcol + jcol * a_dim1] = anorm;
/* L70: */
		}

	    } else if (itype == 3) {

/*              Jordan Block */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a[jcol + jcol * a_dim1] = anorm;
		    if (jcol > 1) {
			a[jcol + (jcol - 1) * a_dim1] = 1.;
		    }
/* L80: */
		}

	    } else if (itype == 4) {

/*              Diagonal Matrix, [Eigen]values Specified */

		dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[n 
			+ 1], &iinfo);

	    } else if (itype == 5) {

/*              Symmetric, eigenvalues specified */

		dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], 
			&iinfo);

	    } else if (itype == 6) {

/*              General, eigenvalues specified */

		if (kconds[jtype - 1] == 1) {
		    conds = 1.;
		} else if (kconds[jtype - 1] == 2) {
		    conds = rtulpi;
		} else {
		    conds = 0.;
		}

		*(unsigned char *)&adumma[0] = ' ';
		dlatme_(&n, "S", &iseed[1], &work[1], &imode, &cond, &c_b32, 
			adumma, "T", "T", "T", &work[n + 1], &c__4, &conds, &
			n, &n, &anorm, &a[a_offset], lda, &work[(n << 1) + 1], 
			 &iinfo);

	    } else if (itype == 7) {

/*              Diagonal, random eigenvalues */

		dlatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &c__0, &
			c__0, &c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[
			1], &iinfo);

	    } else if (itype == 8) {

/*              Symmetric, random eigenvalues */

		dlatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &n, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else if (itype == 9) {

/*              General, random eigenvalues */

		dlatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &n, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);
		if (n >= 4) {
		    dlaset_("Full", &c__2, &n, &c_b18, &c_b18, &a[a_offset], 
			    lda);
		    i__3 = n - 3;
		    dlaset_("Full", &i__3, &c__1, &c_b18, &c_b18, &a[a_dim1 + 
			    3], lda);
		    i__3 = n - 3;
		    dlaset_("Full", &i__3, &c__2, &c_b18, &c_b18, &a[(n - 1) *
			     a_dim1 + 3], lda);
		    dlaset_("Full", &c__1, &n, &c_b18, &c_b18, &a[n + a_dim1], 
			     lda);
		}

	    } else if (itype == 10) {

/*              Triangular, random eigenvalues */

		dlatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &c__0, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else {

		iinfo = 1;
	    }

	    if (iinfo != 0) {
		io___33.ciunit = *nounit;
		s_wsfe(&io___33);
		do_fio(&c__1, "Generator", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		return 0;
	    }

L90:

/*           Test for minimal and generous workspace */

	    for (iwk = 1; iwk <= 3; ++iwk) {
		if (iwk == 1) {
		    nnwork = n * 3;
		} else if (iwk == 2) {
/* Computing 2nd power */
		    i__3 = n;
		    nnwork = n * 6 + i__3 * i__3;
		} else {
/* Computing 2nd power */
		    i__3 = n;
		    nnwork = n * 6 + (i__3 * i__3 << 1);
		}
		nnwork = max(nnwork,1);

/*              Test for all balancing options */

		for (ibal = 1; ibal <= 4; ++ibal) {
		    *(unsigned char *)balanc = *(unsigned char *)&bal[ibal - 
			    1];

/*                 Perform tests */

		    dget23_(&c_false, balanc, &jtype, thresh, ioldsd, nounit, 
			    &n, &a[a_offset], lda, &h__[h_offset], &wr[1], &
			    wi[1], &wr1[1], &wi1[1], &vl[vl_offset], ldvl, &
			    vr[vr_offset], ldvr, &lre[lre_offset], ldlre, &
			    rcondv[1], &rcndv1[1], &rcdvin[1], &rconde[1], &
			    rcnde1[1], &rcdein[1], &scale[1], &scale1[1], &
			    result[1], &work[1], &nnwork, &iwork[1], info);

/*                 Check for RESULT(j) > THRESH */

		    ntest = 0;
		    nfail = 0;
		    for (j = 1; j <= 9; ++j) {
			if (result[j] >= 0.) {
			    ++ntest;
			}
			if (result[j] >= *thresh) {
			    ++nfail;
			}
/* L100: */
		    }

		    if (nfail > 0) {
			++ntestf;
		    }
		    if (ntestf == 1) {
			io___40.ciunit = *nounit;
			s_wsfe(&io___40);
			do_fio(&c__1, path, (ftnlen)3);
			e_wsfe();
			io___41.ciunit = *nounit;
			s_wsfe(&io___41);
			e_wsfe();
			io___42.ciunit = *nounit;
			s_wsfe(&io___42);
			e_wsfe();
			io___43.ciunit = *nounit;
			s_wsfe(&io___43);
			e_wsfe();
			io___44.ciunit = *nounit;
			s_wsfe(&io___44);
			do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(
				doublereal));
			e_wsfe();
			ntestf = 2;
		    }

		    for (j = 1; j <= 9; ++j) {
			if (result[j] >= *thresh) {
			    io___45.ciunit = *nounit;
			    s_wsfe(&io___45);
			    do_fio(&c__1, balanc, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&iwk, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(
				    doublereal));
			    e_wsfe();
			}
/* L110: */
		    }

		    nerrs += nfail;
		    ntestt += ntest;

/* L120: */
		}
/* L130: */
	    }
L140:
	    ;
	}
/* L150: */
    }

L160:

/*     Read in data from file to check accuracy of condition estimation. */
/*     Assume input eigenvalues are sorted lexicographically (increasing */
/*     by real part, then decreasing by imaginary part) */

    jtype = 0;
L170:
    io___46.ciunit = *niunit;
    i__1 = s_rsle(&io___46);
    if (i__1 != 0) {
	goto L220;
    }
    i__1 = do_lio(&c__3, &c__1, (char *)&n, (ftnlen)sizeof(integer));
    if (i__1 != 0) {
	goto L220;
    }
    i__1 = e_rsle();
    if (i__1 != 0) {
	goto L220;
    }

/*     Read input data until N=0 */

    if (n == 0) {
	goto L220;
    }
    ++jtype;
    iseed[1] = jtype;
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	io___48.ciunit = *niunit;
	s_rsle(&io___48);
	i__2 = n;
	for (j = 1; j <= i__2; ++j) {
	    do_lio(&c__5, &c__1, (char *)&a[i__ + j * a_dim1], (ftnlen)sizeof(
		    doublereal));
	}
	e_rsle();
/* L180: */
    }
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	io___49.ciunit = *niunit;
	s_rsle(&io___49);
	do_lio(&c__5, &c__1, (char *)&wr1[i__], (ftnlen)sizeof(doublereal));
	do_lio(&c__5, &c__1, (char *)&wi1[i__], (ftnlen)sizeof(doublereal));
	do_lio(&c__5, &c__1, (char *)&rcdein[i__], (ftnlen)sizeof(doublereal))
		;
	do_lio(&c__5, &c__1, (char *)&rcdvin[i__], (ftnlen)sizeof(doublereal))
		;
	e_rsle();
/* L190: */
    }
/* Computing 2nd power */
    i__2 = n;
    i__1 = n * 6 + (i__2 * i__2 << 1);
    dget23_(&c_true, "N", &c__22, thresh, &iseed[1], nounit, &n, &a[a_offset], 
	     lda, &h__[h_offset], &wr[1], &wi[1], &wr1[1], &wi1[1], &vl[
	    vl_offset], ldvl, &vr[vr_offset], ldvr, &lre[lre_offset], ldlre, &
	    rcondv[1], &rcndv1[1], &rcdvin[1], &rconde[1], &rcnde1[1], &
	    rcdein[1], &scale[1], &scale1[1], &result[1], &work[1], &i__1, &
	    iwork[1], info);

/*     Check for RESULT(j) > THRESH */

    ntest = 0;
    nfail = 0;
    for (j = 1; j <= 11; ++j) {
	if (result[j] >= 0.) {
	    ++ntest;
	}
	if (result[j] >= *thresh) {
	    ++nfail;
	}
/* L200: */
    }

    if (nfail > 0) {
	++ntestf;
    }
    if (ntestf == 1) {
	io___50.ciunit = *nounit;
	s_wsfe(&io___50);
	do_fio(&c__1, path, (ftnlen)3);
	e_wsfe();
	io___51.ciunit = *nounit;
	s_wsfe(&io___51);
	e_wsfe();
	io___52.ciunit = *nounit;
	s_wsfe(&io___52);
	e_wsfe();
	io___53.ciunit = *nounit;
	s_wsfe(&io___53);
	e_wsfe();
	io___54.ciunit = *nounit;
	s_wsfe(&io___54);
	do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(doublereal));
	e_wsfe();
	ntestf = 2;
    }

    for (j = 1; j <= 11; ++j) {
	if (result[j] >= *thresh) {
	    io___55.ciunit = *nounit;
	    s_wsfe(&io___55);
	    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
	    do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(doublereal));
	    e_wsfe();
	}
/* L210: */
    }

    nerrs += nfail;
    ntestt += ntest;
    goto L170;
L220:

/*     Summary */

    dlasum_(path, nounit, &nerrs, &ntestt);



    return 0;

/*     End of DDRVVX */

} /* ddrvvx_ */