示例#1
0
// pass an int for the problem number
int main( int argc, char *argv[] )
{
register int i, j;
int problem, ret;
double p[5], // 5 is max(2, 3, 5)
	   x[16]; // 16 is max(2, 3, 5, 6, 16)
int m, n;
double opts[LM_OPTS_SZ], info[LM_INFO_SZ];
char *probname[]={
    "Rosenbrock function",
    "modified Rosenbrock problem",
    "Powell's function",
    "Wood's function",
    "Meyer's (reformulated) problem",
    "Osborne's problem",
    "helical valley function",
    "Boggs & Tolle's problem #3",
    "Hock - Schittkowski problem #28",
    "Hock - Schittkowski problem #48",
    "Hock - Schittkowski problem #51",
    "Hock - Schittkowski problem #01",
    "Hock - Schittkowski modified problem #21",
    "hatfldb problem",
    "hatfldc problem",
    "equilibrium combustion problem",
    "Hock - Schittkowski modified #1 problem #52",
    "Schittkowski modified problem #235",
    "Boggs & Tolle modified problem #7",
    "Hock - Schittkowski modified #2 problem #52",
    "Hock - Schittkowski modified problem #76",
};

  opts[0]=LM_INIT_MU; opts[1]=1E-15; opts[2]=1E-15; opts[3]=1E-20;
  opts[4]= LM_DIFF_DELTA; // relevant only if the Jacobian is approximated using finite differences; specifies forward differencing 
  //opts[4]=-LM_DIFF_DELTA; // specifies central differencing to approximate Jacobian; more accurate but more expensive to compute!

  /* uncomment the appropriate line below to select a minimization problem */


  if ( argc < 2 )  {
    fprintf(stderr, "Supply an integer specifying problem number as command line argument\n");
           exit(1);
  }

  problem = atoi(argv[1]);
		  //0; // Rosenbrock function
		  //1; // modified Rosenbrock problem
		  //2; // Powell's function
      //3; // Wood's function
    //		  4; // Meyer's (reformulated) problem
		  //5; // Osborne's problem
      //6; // helical valley function
#ifdef HAVE_LAPACK
      //7; // Boggs & Tolle's problem 3
      //8; // Hock - Schittkowski problem 28
      //9; // Hock - Schittkowski problem 48
      //10; // Hock - Schittkowski problem 51
#else // no LAPACK
#ifdef _MSC_VER
#pragma message("LAPACK not available, some test problems cannot be used")
#else
#warning LAPACK not available, some test problems cannot be used
#endif // _MSC_VER

#endif /* HAVE_LAPACK */
      //11; // Hock - Schittkowski problem 01
      //12; // Hock - Schittkowski modified problem 21
      //13; // hatfldb problem
      //14; // hatfldc problem
      //15; // equilibrium combustion problem
#ifdef HAVE_LAPACK
      //16; // Hock - Schittkowski modified #1 problem 52
      //17; // Schittkowski modified problem 235
      //18; // Boggs & Tolle modified problem #7
      //19; // Hock - Schittkowski modified #2 problem 52
      //20; // Hock - Schittkowski modified problem #76"
#endif /* HAVE_LAPACK */

  
  switch(problem){
  default: fprintf(stderr, "unknown problem specified (#%d)! Note that some minimization problems require LAPACK.\n", problem);
           exit(1);
    break;

  case 0:
  /* Rosenbrock function */
    m=2; n=2;
    p[0]=-1.2; p[1]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    ret=dlevmar_der(ros, jacros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    //ret=dlevmar_dif(ros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL);  // no Jacobian
  break;

  case 1:
  /* modified Rosenbrock problem */
    m=2; n=3;
    p[0]=-1.2; p[1]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    ret=dlevmar_der(modros, jacmodros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    //ret=dlevmar_dif(modros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL);  // no Jacobian
  break;

  case 2:
  /* Powell's function */
    m=2; n=2;
    p[0]=3.0; p[1]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    ret=dlevmar_der(powell, jacpowell, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    //ret=dlevmar_dif(powell, p, x, m, n, 1000, opts, info, NULL, NULL, NULL);		// no Jacobian
  break;

  case 3:
  /* Wood's function */
    m=4; n=6;
    p[0]=-3.0; p[1]=-1.0; p[2]=-3.0; p[3]=-1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    ret=dlevmar_dif(wood, p, x, m, n, 1000, opts, info, NULL, NULL, NULL);  // no Jacobian
  break;

  case 4:
  /* Meyer's data fitting problem */
    m=3; n=16;
    p[0]=8.85; p[1]=4.0; p[2]=2.5;
    x[0]=34.780;	x[1]=28.610; x[2]=23.650; x[3]=19.630;
    x[4]=16.370;	x[5]=13.720; x[6]=11.540; x[7]=9.744;
    x[8]=8.261;	x[9]=7.030; x[10]=6.005; x[11]=5.147;
    x[12]=4.427;	x[13]=3.820; x[14]=3.307; x[15]=2.872;
    //ret=dlevmar_der(meyer, jacmeyer, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian

   { double *work, *covar;
    work=malloc((LM_DIF_WORKSZ(m, n)+m*m)*sizeof(double));
    if(!work){
    	fprintf(stderr, "memory allocation request failed in main()\n");
      exit(1);
    }
    covar=work+LM_DIF_WORKSZ(m, n);

    ret=dlevmar_dif(meyer, p, x, m, n, 1000, opts, info, work, covar, NULL); // no Jacobian, caller allocates work memory, covariance estimated

    printf("Covariance of the fit:\n");
    for(i=0; i<m; ++i){
      for(j=0; j<m; ++j)
        printf("%g ", covar[i*m+j]);
      printf("\n");
    }
    printf("\n");

    free(work);
   }

/* uncomment the following block to verify Jacobian */
/*
   {
    double err[16];
    dlevmar_chkjac(meyer, jacmeyer, p, m, n, NULL, err); 
    for(i=0; i<n; ++i) printf("gradient %d, err %g\n", i, err[i]);
   }
*/
  break;

  case 5:
  /* Osborne's data fitting problem */
  {
    double x33[]={
      8.44E-1, 9.08E-1, 9.32E-1, 9.36E-1, 9.25E-1, 9.08E-1, 8.81E-1,
      8.5E-1, 8.18E-1, 7.84E-1, 7.51E-1, 7.18E-1, 6.85E-1, 6.58E-1,
      6.28E-1, 6.03E-1, 5.8E-1, 5.58E-1, 5.38E-1, 5.22E-1, 5.06E-1,
      4.9E-1, 4.78E-1, 4.67E-1, 4.57E-1, 4.48E-1, 4.38E-1, 4.31E-1,
      4.24E-1, 4.2E-1, 4.14E-1, 4.11E-1, 4.06E-1};

    m=5; n=33;
    p[0]=0.5; p[1]=1.5; p[2]=-1.0; p[3]=1.0E-2; p[4]=2.0E-2;

    ret=dlevmar_der(osborne, jacosborne, p, x33, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    //ret=dlevmar_dif(osborne, p, x33, m, n, 1000, opts, info, NULL, NULL, NULL);  // no Jacobian
  }
  break;

  case 6:
  /* helical valley function */
    m=3; n=3;
    p[0]=-1.0; p[1]=0.0; p[2]=0.0;
    for(i=0; i<n; i++) x[i]=0.0;
    ret=dlevmar_der(helval, jachelval, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    //ret=dlevmar_dif(helval, p, x, m, n, 1000, opts, info, NULL, NULL, NULL);  // no Jacobian
  break;

#ifdef HAVE_LAPACK
  case 7:
  /* Boggs-Tolle problem 3 */
    m=5; n=5;
    p[0]=2.0; p[1]=2.0; p[2]=2.0;
    p[3]=2.0; p[4]=2.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[3*5]={1.0, 3.0, 0.0, 0.0, 0.0,  0.0, 0.0, 1.0, 1.0, -2.0,  0.0, 1.0, 0.0, 0.0, -1.0},
             b[3]={0.0, 0.0, 0.0};

    ret=dlevmar_lec_der(bt3, jacbt3, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian
    //ret=dlevmar_lec_dif(bt3, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian
    }
  break;

  case 8:
  /* Hock - Schittkowski problem 28 */
    m=3; n=3;
    p[0]=-4.0; p[1]=1.0; p[2]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[1*3]={1.0, 2.0, 3.0},
             b[1]={1.0};

    ret=dlevmar_lec_der(hs28, jachs28, p, x, m, n, A, b, 1, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian
    //ret=dlevmar_lec_dif(hs28, p, x, m, n, A, b, 1, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian
    }
  break;

  case 9:
  /* Hock - Schittkowski problem 48 */
    m=5; n=5;
    p[0]=3.0; p[1]=5.0; p[2]=-3.0;
    p[3]=2.0; p[4]=-2.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[2*5]={1.0, 1.0, 1.0, 1.0, 1.0,  0.0, 0.0, 1.0, -2.0, -2.0},
             b[2]={5.0, -3.0};

    ret=dlevmar_lec_der(hs48, jachs48, p, x, m, n, A, b, 2, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian
    //ret=dlevmar_lec_dif(hs48, p, x, m, n, A, b, 2, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian
    }
  break;

  case 10:
  /* Hock - Schittkowski problem 51 */
    m=5; n=5;
    p[0]=2.5; p[1]=0.5; p[2]=2.0;
    p[3]=-1.0; p[4]=0.5;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[3*5]={1.0, 3.0, 0.0, 0.0, 0.0,  0.0, 0.0, 1.0, 1.0, -2.0,  0.0, 1.0, 0.0, 0.0, -1.0},
             b[3]={4.0, 0.0, 0.0};

    ret=dlevmar_lec_der(hs51, jachs51, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian
    //ret=dlevmar_lec_dif(hs51, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian
    }
  break;

#endif /* HAVE_LAPACK */

  case 11:
  /* Hock - Schittkowski problem 01 */
    m=2; n=2;
    p[0]=-2.0; p[1]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    //ret=dlevmar_der(hs01, jachs01, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    {
      double lb[2], ub[2];

      lb[0]=-DBL_MAX; lb[1]=-1.5;
      ub[0]=ub[1]=DBL_MAX;

      ret=dlevmar_bc_der(hs01, jachs01, p, x, m, n, lb, ub, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    }
    break;

  case 12:
  /* Hock - Schittkowski (modified) problem 21 */
    m=2; n=2;
    p[0]=-1.0; p[1]=-1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    //ret=dlevmar_der(hs21, jachs21, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    {
      double lb[2], ub[2];

      lb[0]=2.0; lb[1]=-50.0;
      ub[0]=50.0; ub[1]=50.0;

      ret=dlevmar_bc_der(hs21, jachs21, p, x, m, n, lb, ub, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    }
    break;

  case 13:
  /* hatfldb problem */
    m=4; n=4;
    p[0]=p[1]=p[2]=p[3]=0.1;
    for(i=0; i<n; i++) x[i]=0.0;
    //ret=dlevmar_der(hatfldb, jachatfldb, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    {
      double lb[4], ub[4];

      lb[0]=lb[1]=lb[2]=lb[3]=0.0;

      ub[0]=ub[2]=ub[3]=DBL_MAX;
      ub[1]=0.8;

      ret=dlevmar_bc_der(hatfldb, jachatfldb, p, x, m, n, lb, ub, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    }
    break;

  case 14:
  /* hatfldc problem */
    m=4; n=4;
    p[0]=p[1]=p[2]=p[3]=0.9;
    for(i=0; i<n; i++) x[i]=0.0;
    //ret=dlevmar_der(hatfldc, jachatfldc, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    {
      double lb[4], ub[4];

      lb[0]=lb[1]=lb[2]=lb[3]=0.0;

      ub[0]=ub[1]=ub[2]=ub[3]=10.0;

      ret=dlevmar_bc_der(hatfldc, jachatfldc, p, x, m, n, lb, ub, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    }
    break;

  case 15:
  /* equilibrium combustion problem */
    m=5; n=5;
    p[0]=p[1]=p[2]=p[3]=p[4]=0.0001;
    for(i=0; i<n; i++) x[i]=0.0;
    //ret=dlevmar_der(combust, jaccombust, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    {
      double lb[5], ub[5];

      lb[0]=lb[1]=lb[2]=lb[3]=lb[4]=0.0001;

      ub[0]=ub[1]=ub[2]=ub[3]=ub[4]=100.0;

      ret=dlevmar_bc_der(combust, jaccombust, p, x, m, n, lb, ub, 5000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    }
    break;

#ifdef HAVE_LAPACK
  case 16:
  /* Hock - Schittkowski modified #1 problem 52 */
    m=5; n=4;
    p[0]=2.0; p[1]=2.0; p[2]=2.0;
    p[3]=2.0; p[4]=2.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[3*5]={1.0, 3.0, 0.0, 0.0, 0.0,  0.0, 0.0, 1.0, 1.0, -2.0,  0.0, 1.0, 0.0, 0.0, -1.0},
             b[3]={0.0, 0.0, 0.0};

      double lb[5], ub[5];

      double weights[5]={2000.0, 2000.0, 2000.0, 2000.0, 2000.0}; // penalty terms weights

      lb[0]=-0.09; lb[1]=0.0; lb[2]=-DBL_MAX; lb[3]=-0.2; lb[4]=0.0;
      ub[0]=DBL_MAX; ub[1]=0.3; ub[2]=0.25; ub[3]=0.3; ub[4]=0.3;

      ret=dlevmar_blec_der(mod1hs52, jacmod1hs52, p, x, m, n, lb, ub, A, b, 3, weights, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, analytic Jacobian
      //ret=dlevmar_blec_dif(mod1hs52, p, x, m, n, lb, ub, A, b, 3, weights, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, no Jacobian
    }
    break;

  case 17:
  /* Schittkowski modified problem 235 */
    m=3; n=2;
    p[0]=-2.0; p[1]=3.0; p[2]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[2*3]={1.0, 0.0, 1.0,  0.0, 1.0, -4.0},
             b[2]={-1.0, 0.0};

      double lb[3], ub[3];

      lb[0]=-DBL_MAX; lb[1]=0.1; lb[2]=0.7;
      ub[0]=DBL_MAX; ub[1]=2.9; ub[2]=DBL_MAX;

      ret=dlevmar_blec_der(mods235, jacmods235, p, x, m, n, lb, ub, A, b, 2, NULL, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, analytic Jacobian
      //ret=dlevmar_blec_dif(mods235, p, x, m, n, lb, ub, A, b, 2, NULL, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, no Jacobian
    }
    break;

  case 18:
  /* Boggs & Tolle modified problem 7 */
    m=5; n=5;
    p[0]=-2.0; p[1]=1.0; p[2]=1.0; p[3]=1.0; p[4]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[3*5]={1.0, 1.0, -1.0, 0.0, 0.0,   1.0, 1.0, 0.0, -1.0, 0.0,   1.0, 0.0, 0.0, 0.0, 1.0},
             b[3]={1.0, 0.0, 0.5};

      double lb[5], ub[5];

      lb[0]=-DBL_MAX; lb[1]=-DBL_MAX; lb[2]=-DBL_MAX; lb[3]=-DBL_MAX; lb[4]=-0.3;
      ub[0]=0.7;      ub[1]= DBL_MAX; ub[2]= DBL_MAX; ub[3]= DBL_MAX; ub[4]=DBL_MAX;

      ret=dlevmar_blec_der(modbt7, jacmodbt7, p, x, m, n, lb, ub, A, b, 3, NULL, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, analytic Jacobian
      //ret=dlevmar_blec_dif(modbt7, p, x, m, n, lb, ub, A, b, 3, NULL, 10000, opts, info, NULL, NULL, NULL); // box & lin. constraints, no Jacobian
    }
    break;

  case 19:
  /* Hock - Schittkowski modified #2 problem 52 */
    m=5; n=5;
    p[0]=2.0; p[1]=2.0; p[2]=2.0;
    p[3]=2.0; p[4]=2.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double C[3*5]={1.0, 3.0, 0.0, 0.0, 0.0,  0.0, 0.0, 1.0, 1.0, -2.0,  0.0, -1.0, 0.0, 0.0, 1.0},
             d[3]={-1.0, -2.0, -7.0};

             //      ret=dlevmar_bleic_der(mod2hs52, jacmod2hs52, p, x, m, n, NULL, NULL, NULL, NULL, 0, C, d, 3, 1000, opts, info, NULL, NULL, NULL); // lin. ineq. constraints, analytic Jacobian


        ret=dlevmar_lic_der(mod2hs52, jacmod2hs52, p, x, m, n, C, d, 3, 1000, opts, info, NULL, NULL, NULL); // lin. ineq. constraints, analytic Jacobian
      
      //ret=dlevmar_bleic_dif(mod2hs52, p, x, m, n, NULL, NULL, NULL, NULL, 0, C, d, 3, 1000, opts, info, NULL, NULL, NULL); // lin. ineq. constraints, no Jacobian
    }
    break;

  case 20:
  /* Hock - Schittkowski modified problem 76 */
    m=4; n=4;
    p[0]=0.5; p[1]=0.5; p[2]=0.5; p[3]=0.5;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[1*4]={0.0, 1.0, 4.0, 0.0},
             b[1]={1.5};

      double C[2*4]={-1.0, -2.0, -1.0, -1.0,   -3.0, -1.0, -2.0, 1.0},
             d[2]={-5.0, -0.4};

      double lb[4]={0.0, 0.0, 0.0, 0.0};

      ret=dlevmar_bleic_der(modhs76, jacmodhs76, p, x, m, n, lb, NULL, A, b, 1, C, d, 2, 1000, opts, info, NULL, NULL, NULL); // lin. ineq. constraints, analytic Jacobian
      //ret=dlevmar_bleic_dif(modhs76, p, x, m, n, lb, NULL, A, b, 1, C, d, 2, 1000, opts, info, NULL, NULL, NULL); // lin. ineq. constraints, no Jacobian
      /* variations:
       * if no lb is used, the minimizer is (-0.1135922 0.1330097 0.3417476 0.07572816)
       * if the rhs of constr2 is 4.0, the minimizer is (0.0, 0.166667, 0.333333, 0.0)
       */
    }
    break;

#endif /* HAVE_LAPACK */
  } /* switch */
  
  printf("Results for %s:\n", probname[problem]);
  printf("Levenberg-Marquardt returned %d in %g iter, reason %g\nSolution: ", ret, info[5], info[6]);
  for(i=0; i<m; ++i)
    printf("%.7g ", p[i]);
  printf("\n\nMinimization info:\n");
  for(i=0; i<LM_INFO_SZ; ++i)
    printf("%g ", info[i]);
  printf("\n");

  return 0;
}
// Function definitions. 
// -----------------------------------------------------------------
void mexFunction (int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) 
{
    //Input Args
    user_function_data fun;
    double *x0, *ydata = NULL, *lb = NULL, *ub = NULL, *A = NULL, *b = NULL, *Aeq = NULL, *beq = NULL;
    //Options
    int maxIter = 500;
    double info[LM_INFO_SZ];
    double opts[LM_OPTS_SZ]={J_INIT_MU, J_STOP_THRESH, J_STOP_THRESH, J_STOP_THRESH, LM_DIFF_DELTA};
    
    //Outputs Args
    double *x, *fval, *exitflag, *iter, *feval;
    double *pcovar = NULL;
    
    //Internal Vars
    size_t ndec, ndat;   
    int i, status, havJac = 0, conMode = 0;
    int nineq=0, neq=0;
    double *covar = NULL;
    double *Apr, *bpr;
    double *llb, *lub;
    citer = 1;
    iterF.enabled = false;
    
    if (nrhs < 1) {
        if(nlhs < 1)
            printSolverInfo();
        else
            plhs[0] = mxCreateString(LM_VERSION);   
        return;
    }

    //Check user inputs & get constraint information
    checkInputs(prhs,nrhs,&conMode);

    //Get Sizes
    ndec = mxGetNumberOfElements(prhs[2]);
    ndat = mxGetNumberOfElements(prhs[3]);
    //Get Objective Function Handle
    if (mxIsChar(prhs[0])) {
        CHECK(mxGetString(prhs[0], fun.f, FLEN) == 0,"error reading objective name string");
        fun.nrhs = 1;
        fun.xrhs = 0;
    } else {
        fun.prhs[0] = (mxArray*)prhs[0];
        strcpy(fun.f, "feval");
        fun.nrhs = 2;
        fun.xrhs = 1;
    }
    fun.prhs[fun.xrhs] = mxCreateDoubleMatrix(ndec, 1, mxREAL); //x0
    fun.print = 0;
    //Check and Get Gradient Function Handle
    if(!mxIsEmpty(prhs[1])) {  
        havJac = 1;
        if (mxIsChar(prhs[1])) {
            CHECK(mxGetString(prhs[1], fun.g, FLEN) == 0,"error reading gradient name string");
            fun.nrhs_g = 1;
            fun.xrhs_g = 0;
        } else {
            fun.prhs_g[0] = (mxArray*)prhs[1];
            strcpy(fun.g, "feval");
            fun.nrhs_g = 2;
            fun.xrhs_g = 1;
        }   
        fun.prhs_g[fun.xrhs_g] = mxCreateDoubleMatrix(ndec, 1, mxREAL); //x0
    }

    //Get x0 + data
    x0 = mxGetPr(prhs[2]);
    ydata = mxGetPr(prhs[3]);
    fun.ydata = ydata;
    
    //Get Bounds
    if(conMode & 1) {
        //LB
        if(!mxIsEmpty(prhs[4])){
            llb = mxGetPr(prhs[4]);
            lb = mxCalloc(ndec,sizeof(double));
            memcpy(lb,llb,ndec*sizeof(double));
            for(i=0;i<ndec;i++) {
                if(mxIsInf(lb[i]))
                    lb[i] = -DBL_MAX;
            }
        }
        else {
            lb = mxCalloc(ndec,sizeof(double));
            for(i=0;i<ndec;i++)
                lb[i] = -DBL_MAX;
        }
        //UB
        if(nrhs > 5 && !mxIsEmpty(prhs[5])){
            lub = mxGetPr(prhs[5]);
            ub = mxCalloc(ndec,sizeof(double));
            memcpy(ub,lub,ndec*sizeof(double));
            for(i=0;i<ndec;i++) {
                if(mxIsInf(ub[i]))
                    ub[i] = DBL_MAX;
            }
        }
        else {
            ub = mxCalloc(ndec,sizeof(double));
            for(i=0;i<ndec;i++)
                ub[i] = DBL_MAX;
        }
    }
    //Get Linear Inequality Constraints
    if(conMode & 2) {
        nineq = (int)mxGetM(prhs[7]);
        Apr = mxGetPr(prhs[6]);
        bpr = mxGetPr(prhs[7]);
        //Need to flip >= to <=
        A = mxCalloc(ndec*nineq,sizeof(double));
        b = mxCalloc(nineq,sizeof(double));
        for(i=0;i<ndec*nineq;i++)
            A[i] = -Apr[i];
        for(i=0;i<nineq;i++)
            b[i] = -bpr[i];
    }
    //Get Linear Equality Constraints
    if(conMode & 4) {
        Aeq = mxGetPr(prhs[8]);
        beq = mxGetPr(prhs[9]);
        neq = (int)mxGetM(prhs[9]);
    }
    
    //Get Options if specified
    if(nrhs > 10) {
        if(mxGetField(prhs[10],0,"maxiter"))
            maxIter = (int)*mxGetPr(mxGetField(prhs[10],0,"maxiter"));
        if(mxGetField(prhs[10],0,"display"))
            fun.print = (int)*mxGetPr(mxGetField(prhs[10],0,"display"));
        if(mxGetField(prhs[10],0,"iterfun") && !mxIsEmpty(mxGetField(prhs[10],0,"iterfun")))
        {
            iterF.prhs[0] = (mxArray*)mxGetField(prhs[10],0,"iterfun");
            strcpy(iterF.f, "feval");
            iterF.enabled = true;  
            iterF.prhs[1] = mxCreateNumericMatrix(1,1,mxINT32_CLASS,mxREAL);
            iterF.prhs[2] = mxCreateDoubleMatrix(1,1,mxREAL);
            iterF.prhs[3] = mxCreateDoubleMatrix(ndec,1,mxREAL);
        }
    }                       

    //Create Outputs
    plhs[0] = mxCreateDoubleMatrix(ndec,1, mxREAL);
    plhs[1] = mxCreateDoubleMatrix(1,1, mxREAL);
    plhs[2] = mxCreateDoubleMatrix(1,1, mxREAL);
    plhs[3] = mxCreateDoubleMatrix(1,1, mxREAL);
    plhs[4] = mxCreateDoubleMatrix(1,1, mxREAL);
    x = mxGetPr(plhs[0]); 
    fval = mxGetPr(plhs[1]); 
    exitflag = mxGetPr(plhs[2]);    
    iter = mxGetPr(plhs[3]);
    feval = mxGetPr(plhs[4]);
    
    //Copy initial guess to x
    memcpy(x,x0,ndec*sizeof(double));
    //Create Covariance Matrix if Required
    if(nlhs>4)
        covar=mxCalloc(ndec*ndec,sizeof(double));
    
    //Print Header
    if(fun.print) {
        mexPrintf("\n------------------------------------------------------------------\n");
        
        mexPrintf(" This is LEVMAR v2.5\n");
            
        mexPrintf(" Author: Manolis Lourakis\n MEX Interface J. Currie 2011\n\n");
        mexPrintf(" Problem Properties:\n");
        mexPrintf(" # Decision Variables:     %4d\n",ndec);
        mexPrintf(" # Data Points:            %4d\n",ndat);

        mexPrintf("------------------------------------------------------------------\n");
    }
  
    //Solve based on constraints
    switch(conMode)
    {
        case MIN_UNCONSTRAINED:
            //mexPrintf("Unc Problem\n");
            if(havJac)
                status = dlevmar_der(func, jac, x, ydata, (int)ndec, (int)ndat, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_dif(func, x, ydata, (int)ndec, (int)ndat, maxIter, opts, info, NULL, covar, &fun);            
            break;
        case MIN_CONSTRAINED_BC:
            //mexPrintf("Box Constrained Problem\n");
            if(havJac)
                status = dlevmar_bc_der(func, jac, x, ydata, (int)ndec, (int)ndat, lb, ub, NULL, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_bc_dif(func, x, ydata, (int)ndec, (int)ndat, lb, ub, NULL, maxIter, opts, info, NULL, covar, &fun);
            break;
        case MIN_CONSTRAINED_LIC:
            //mexPrintf("Linear Inequality Problem\n");
            if(havJac)
                status = dlevmar_lic_der(func, jac, x, ydata, (int)ndec, (int)ndat, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_lic_dif(func, x, ydata, (int)ndec, (int)ndat, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            break;
        case MIN_CONSTRAINED_BLIC:
            //mexPrintf("Boxed Linear Inequality Problem\n");
            if(havJac)
                status = dlevmar_blic_der(func, jac, x, ydata, (int)ndec, (int)ndat, lb, ub, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_blic_dif(func, x, ydata, (int)ndec, (int)ndat, lb, ub, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            break;
        case MIN_CONSTRAINED_LEC:
            //mexPrintf("Linear Equality Problem\n");
            if(havJac)
                status = dlevmar_lec_der(func, jac, x, ydata, (int)ndec, (int)ndat, Aeq, beq, neq, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_lec_dif(func, x, ydata, (int)ndec, (int)ndat, Aeq, beq, neq, maxIter, opts, info, NULL, covar, &fun);
            break;
        case MIN_CONSTRAINED_BLEC:
            //mexPrintf("Boxed Linear Equality Problem\n");
            if(havJac)
                status = dlevmar_blec_der(func, jac, x, ydata, (int)ndec, (int)ndat, lb, ub, Aeq, beq, neq, NULL, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_blec_dif(func, x, ydata, (int)ndec, (int)ndat, lb, ub, Aeq, beq, neq, NULL, maxIter, opts, info, NULL, covar, &fun);
            break;
        case MIN_CONSTRAINED_LEIC:
            //mexPrintf("Linear Inequality + Equality Problem\n");
            if(havJac)
                status = dlevmar_leic_der(func, jac, x, ydata, (int)ndec, (int)ndat, Aeq, beq, neq, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_leic_dif(func, x, ydata, (int)ndec, (int)ndat, Aeq, beq, neq, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            break;
        case MIN_CONSTRAINED_BLEIC:
            //mexPrintf("Boxed Linear Inequality + Equality Problem\n");
            if(havJac)
                status = dlevmar_bleic_der(func, jac, x, ydata, (int)ndec, (int)ndat, lb, ub, Aeq, beq, neq, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            else
                status = dlevmar_bleic_dif(func, x, ydata, (int)ndec, (int)ndat, lb, ub, Aeq, beq, neq, A, b, nineq, maxIter, opts, info, NULL, covar, &fun);
            break;
        default:
            mexErrMsgTxt("Unknown constraint configuration");
    }
       
    //Save Status & Iterations
    *fval = info[1];
    *exitflag = getStatus(info[6]);
    *iter = (double)status;
    *feval = (double)citer;
    
    //Save Covariance if Required
    if(nlhs > 5) {
        plhs[5] = mxCreateDoubleMatrix(ndec, ndec, mxREAL);
        pcovar = mxGetPr(plhs[5]);
        memcpy(pcovar,covar,ndec*ndec*sizeof(double));
    }
    
    //Print Header
    if(fun.print){            
        //Termination Detected
        if(*exitflag == 1)
            mexPrintf("\n *** SUCCESSFUL TERMINATION ***\n");
        else if(*exitflag == 0)
            mexPrintf("\n *** MAXIMUM ITERATIONS REACHED ***\n");
        else if(*exitflag == -1)
            mexPrintf("\n *** TERMINATION: TOLERANCE TOO SMALL ***\n");
        else if(*exitflag == -2)
            mexPrintf("\n *** TERMINATION: ROUTINE ERROR ***\n");     

        if(*exitflag==1)
            mexPrintf(" Final SSE: %12.5g\n In %3.0f iterations\n",*fval,*iter);

        mexPrintf("------------------------------------------------------------------\n\n");
    }
    
    //Clean Up
    if(lb) mxFree(lb);
    if(ub) mxFree(ub);
    if(covar) mxFree(covar);
    if(A) mxFree(A);
    if(b) mxFree(b);
}