示例#1
0
void TBlockingSpiDmaJob::Run()
{
    TaskId = TScheduler::GetCurrentTaskId();
    CurrentJob = this;

    const uint32_t spi = FLASH_SPI_CHANNEL;
    const uint32_t dma = DMA1;

    assert(SPI_SR(spi) & SPI_SR_TXE);
    assert(~SPI_SR(spi) & SPI_SR_BSY);
    assert(!(SPI_SR(spi) & SPI_SR_RXNE));

    {
        const uint32_t channel = FLASH_DMA_TX_CHANNEL;
        dma_channel_reset(dma, channel);
        dma_set_peripheral_address(dma, channel, reinterpret_cast<uint32_t>(&SPI_DR(spi)));
        dma_set_memory_address(dma, channel, reinterpret_cast<uint32_t>(Out));
        dma_set_number_of_data(dma, channel, Len);
        dma_set_read_from_memory(dma, channel);
        dma_enable_memory_increment_mode(dma, channel);
        dma_set_peripheral_size(dma, channel, DMA_CCR_PSIZE_8BIT);
        dma_set_memory_size(dma, channel, DMA_CCR_MSIZE_8BIT);
        dma_set_priority(dma, channel, DMA_CCR_PL_LOW);
        // dma_enable_transfer_complete_interrupt(dma, channel);
        dma_enable_channel(dma, channel);
    }

    {
        const uint32_t channel = FLASH_DMA_RX_CHANNEL;
        dma_channel_reset(dma, channel);
        dma_set_peripheral_address(dma, channel, reinterpret_cast<uint32_t>(&SPI_DR(spi)));
        dma_set_number_of_data(dma, channel, Len);
        if (In != 0) {
            dma_set_memory_address(dma, channel, reinterpret_cast<uint32_t>(In));
            dma_enable_memory_increment_mode(dma, channel);
        }
        else {
            dma_set_memory_address(dma, channel, reinterpret_cast<uint32_t>(&DummyPosition));
        }
        dma_set_peripheral_size(dma, channel, DMA_CCR_PSIZE_8BIT);
        dma_set_memory_size(dma, channel, DMA_CCR_MSIZE_8BIT);
        dma_set_priority(dma, channel, DMA_CCR_PL_LOW);
        dma_enable_transfer_complete_interrupt(dma, channel);
        dma_enable_channel(dma, channel);
    }

    // Kick off the transfer
    spi_enable_rx_dma(spi);
    spi_enable_tx_dma(spi);

    // Wait for completion
    TScheduler::BlockUntil(&Finished);
}
/* SPI transmit completed with DMA */
void dma1_channel3_isr(void)
{
	gpio_set(GPIOB,GPIO1);
	if ((DMA1_ISR &DMA_ISR_TCIF3) != 0) {
		DMA1_IFCR |= DMA_IFCR_CTCIF3;
	}

	dma_disable_transfer_complete_interrupt(DMA1, DMA_CHANNEL3);

	spi_disable_tx_dma(SPI1);

	dma_disable_channel(DMA1, DMA_CHANNEL3);

	/* If tx_len < rx_len, create a dummy transfer to clock in the remaining
	 * rx data
	 */
	if (rx_buf_remainder > 0) {
		dma_channel_reset(DMA1, DMA_CHANNEL3);
		dma_set_peripheral_address(DMA1, DMA_CHANNEL3, (uint32_t)&SPI1_DR);
		dma_set_memory_address(DMA1, DMA_CHANNEL3, (uint32_t)(&dummy_tx_buf)); // Change here
		dma_set_number_of_data(DMA1, DMA_CHANNEL3, rx_buf_remainder); // Change here
		dma_set_read_from_memory(DMA1, DMA_CHANNEL3);
		dma_disable_memory_increment_mode(DMA1, DMA_CHANNEL3); // Change here
#if USE_16BIT_TRANSFERS
		dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_16BIT);
		dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_16BIT);
#else
		dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT);
		dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT);
#endif
		dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH);

		rx_buf_remainder = 0; // Clear the buffer remainder to disable this section later

		dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL3);
		dma_enable_channel(DMA1, DMA_CHANNEL3);
		spi_enable_tx_dma(SPI1);
	} else {
		/* Increment the status to indicate one of the transfers is complete */
		transceive_status++;
	}

	gpio_clear(GPIOB,GPIO1);
}
示例#3
0
void baro_init()
{
    gpio_set_mode(GPIOB, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, GPIO14);
    gpio_set_mode(GPIOB, GPIO_MODE_OUTPUT_50_MHZ,
            GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO13 | GPIO15);
    gpio_set_mode(GPIOB, GPIO_MODE_OUTPUT_50_MHZ,
            GPIO_CNF_OUTPUT_PUSHPULL, GPIO12);
    deselect_slave();

    spi_init_master(SPI2, SPI_CR1_BAUDRATE_FPCLK_DIV_8, SPI_CR1_CPOL,
            SPI_CR1_CPHA, SPI_CR1_DFF_8BIT, SPI_CR1_MSBFIRST);
    spi_enable_ss_output(SPI2);
    spi_enable(SPI2);

    dma_set_peripheral_address(DMA1, DMA_CHANNEL3, SPI2_DR);
    dma_set_read_from_memory(DMA1, DMA_CHANNEL3);
    dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL3);
    dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT);
    dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT);
    dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH);

    dma_set_peripheral_address(DMA1, DMA_CHANNEL4, SPI2_DR);
    dma_set_read_from_peripheral(DMA1, DMA_CHANNEL4);
    dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL4);
    dma_set_peripheral_size(DMA1, DMA_CHANNEL4, DMA_CCR_PSIZE_8BIT);
    dma_set_memory_size(DMA1, DMA_CHANNEL4, DMA_CCR_MSIZE_8BIT);
    dma_set_priority(DMA1, DMA_CHANNEL4, DMA_CCR_PL_VERY_HIGH);
    dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL4);

    timer_reset(TIM4);
    timer_enable_irq(TIM4, TIM_DIER_UIE);
    timer_set_mode(TIM4, TIM_CR1_CKD_CK_INT,
            TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
    /* 3200 / 16 = 200 Hz */
    timer_set_prescaler(TIM4, 32);
    timer_set_period(TIM4, 5625);

    nvic_set_priority(NVIC_TIM4_IRQ, 16 * 2);
    nvic_set_priority(NVIC_DMA1_CHANNEL4_IRQ, 16 * 2);
    nvic_enable_irq(NVIC_TIM4_IRQ);
    nvic_enable_irq(NVIC_DMA1_CHANNEL4_IRQ);

    read_calibration_data();
}
示例#4
0
/* Receive data using DMA. */
void rx_spi(void *data, uint16_t size){
	if(DmaCleanupNeeded)cleanup_dma_spi();

	/* This byte is sent continuously when rx_spi() receives data. */
	static const uint8_t RxSpiDummyByte = 0x00;

	spi_enable_rx_dma(SPI3);
	
	dma_channel_reset(DMA1, DMA_CHANNEL2);
	dma_disable_channel(DMA1, DMA_CHANNEL2);
	dma_set_peripheral_address(DMA1, DMA_CHANNEL2, (uint32_t) &(SPI_DR(SPI3)));
	dma_set_memory_address(DMA1, DMA_CHANNEL2, (uint32_t) data);
	dma_set_number_of_data(DMA1, DMA_CHANNEL2, size);
	dma_set_priority(DMA1, DMA_CHANNEL2, DMA_CCR_PL_HIGH);
	dma_set_memory_size(DMA1, DMA_CHANNEL2, DMA_CCR_MSIZE_8BIT);
	dma_set_peripheral_size(DMA1, DMA_CHANNEL2, DMA_CCR_PSIZE_8BIT);
	dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL2);
	dma_disable_peripheral_increment_mode(DMA1, DMA_CHANNEL2);
	dma_set_read_from_peripheral(DMA1, DMA_CHANNEL2);
	dma_enable_channel(DMA1, DMA_CHANNEL2);

	/* The SPI peripheral is driven by transmitted bytes, so dummy bytes
	 * must be sent in order to receive data. This is accomplished with DMA
	 * by simply not incrementing the memory address. */
	dma_channel_reset(DMA1, DMA_CHANNEL3);
	dma_disable_channel(DMA1, DMA_CHANNEL3);
	dma_set_peripheral_address(DMA1, DMA_CHANNEL3, (uint32_t) &(SPI_DR(SPI3)));
	dma_set_memory_address(DMA1, DMA_CHANNEL3, (uint32_t) &RxSpiDummyByte);
	dma_set_number_of_data(DMA1, DMA_CHANNEL3, size);
	dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH);
	dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT);
	dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT);
	dma_disable_memory_increment_mode(DMA1, DMA_CHANNEL3);
	dma_disable_peripheral_increment_mode(DMA1, DMA_CHANNEL3);
	dma_set_read_from_memory(DMA1, DMA_CHANNEL3);
	dma_enable_channel(DMA1, DMA_CHANNEL3);
	
	spi_enable_tx_dma(SPI3);
	spi_enable(SPI3);
	DmaCleanupNeeded = true;
}
示例#5
0
文件: uart.c 项目: F-D-R/deviation
u8 UART_Send(u8 *data, u16 len) {
    if (busy) return 1;
    busy = 1;

    dma_channel_reset(_USART_DMA, _USART_DMA_CHANNEL);

    dma_set_peripheral_address(_USART_DMA, _USART_DMA_CHANNEL,(u32) &_USART_DR);  /* send data to the USART data register */
    dma_set_memory_address(_USART_DMA, _USART_DMA_CHANNEL, (u32) data);
    dma_set_number_of_data(_USART_DMA, _USART_DMA_CHANNEL, len);
    dma_set_read_from_memory(_USART_DMA, _USART_DMA_CHANNEL);                     /* direction is from memory to usart */
    dma_enable_memory_increment_mode(_USART_DMA, _USART_DMA_CHANNEL);             /* memory pointer increments, peripheral no */
    dma_set_peripheral_size(_USART_DMA, _USART_DMA_CHANNEL, DMA_CCR_PSIZE_8BIT);  /* USART_DR is 8bit wide in this mode */
    dma_set_memory_size(_USART_DMA, _USART_DMA_CHANNEL, DMA_CCR_MSIZE_8BIT);      /* destination memory is also 8 bit wide */
    dma_set_priority(_USART_DMA, _USART_DMA_CHANNEL, DMA_CCR_PL_LOW);
    dma_enable_transfer_complete_interrupt(_USART_DMA, _USART_DMA_CHANNEL);

    dma_enable_channel(_USART_DMA, _USART_DMA_CHANNEL);    /* dma ready to go */
    usart_enable_tx_dma(_USART);

    return 0;
}
/*--------------------------------------------------------------------*/
void dma_setup(void)
{
/* DAC channel 1 shares DMA controller 2 Channel 3. */
/* Enable DMA2 clock and IRQ */
	rcc_peripheral_enable_clock(&RCC_AHBENR, RCC_AHBENR_DMA2EN);
	nvic_enable_irq(NVIC_DMA2_CHANNEL3_IRQ);
	dma_channel_reset(DMA2,DMA_CHANNEL3);
	dma_set_priority(DMA2,DMA_CHANNEL3,DMA_CCR_PL_LOW);
	dma_set_memory_size(DMA2,DMA_CHANNEL3,DMA_CCR_MSIZE_8BIT);
	dma_set_peripheral_size(DMA2,DMA_CHANNEL3,DMA_CCR_PSIZE_8BIT);
	dma_enable_memory_increment_mode(DMA2,DMA_CHANNEL3);
	dma_enable_circular_mode(DMA2,DMA_CHANNEL3);
	dma_set_read_from_memory(DMA2,DMA_CHANNEL3);
/* The register to target is the DAC1 8-bit right justified data register */
	dma_set_peripheral_address(DMA2,DMA_CHANNEL3,(uint32_t) &DAC_DHR8R1);
/* The array v[] is filled with the waveform data to be output */
	dma_set_memory_address(DMA2,DMA_CHANNEL3,(uint32_t) v);
	dma_set_number_of_data(DMA2,DMA_CHANNEL3,256);
	dma_enable_transfer_complete_interrupt(DMA2, DMA_CHANNEL3);
	dma_enable_channel(DMA2,DMA_CHANNEL3);
}
void dma_transmit_setup(void)
{
    dma_channel_reset(DMA1, DMA_CHANNEL4);

    nvic_enable_irq(NVIC_DMA1_CHANNEL4_5_IRQ);

    dma_set_peripheral_address(DMA1, DMA_CHANNEL4, (uint32_t) &USART2_TDR);
    dma_set_read_from_memory(DMA1, DMA_CHANNEL4);

    dma_set_peripheral_size(DMA1, DMA_CHANNEL4, DMA_CCR_PSIZE_8BIT);
    dma_set_memory_size(DMA1, DMA_CHANNEL4, DMA_CCR_MSIZE_8BIT);

    dma_set_priority(DMA1, DMA_CHANNEL4, DMA_CCR_PL_VERY_HIGH);

    dma_disable_peripheral_increment_mode(DMA1, DMA_CHANNEL4);
    dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL4);

    dma_disable_transfer_error_interrupt(DMA1, DMA_CHANNEL4);
    dma_disable_half_transfer_interrupt(DMA1, DMA_CHANNEL4);
    dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL4);
}
示例#8
0
/// Processing done after tx completes
void process_tx_dma_interrupt(struct spi_periph *periph) {
  struct spi_periph_dma *dma = periph->init_struct;
  struct spi_transaction *trans = periph->trans[periph->trans_extract_idx];

  /* Disable DMA Channel */
  dma_disable_transfer_complete_interrupt(dma->dma, dma->tx_chan);

  /* Disable SPI TX request */
  spi_disable_tx_dma((uint32_t)periph->reg_addr);

  /* Disable DMA tx channel */
  dma_disable_channel(dma->dma, dma->tx_chan);

  if (dma->tx_extra_dummy_dma) {
    /*
     * We are finished the first part of the transmit with real data,
     * but still need to clock in the rest of the receive data.
     * Set up a dummy dma transmit transfer to accomplish this.
     */

    /* Reset the flag so this only happens once in a transaction */
    dma->tx_extra_dummy_dma = FALSE;

    /* Use the difference in length between tx and rx */
    uint16_t len_remaining = trans->input_length - trans->output_length;

    spi_configure_dma(dma->dma, dma->tx_chan, (uint32_t)dma->spidr,
                      (uint32_t)&(dma->tx_dummy_buf), len_remaining, trans->dss, FALSE);
    dma_set_read_from_memory(dma->dma, dma->tx_chan);
    dma_set_priority(dma->dma, dma->tx_chan, DMA_CCR_PL_MEDIUM);

    /* Enable DMA transfer complete interrupts. */
    dma_enable_transfer_complete_interrupt(dma->dma, dma->tx_chan);
    /* Enable DMA channels */
    dma_enable_channel(dma->dma, dma->tx_chan);
    /* Enable SPI transfers via DMA */
    spi_enable_tx_dma((uint32_t)periph->reg_addr);

  }
}
示例#9
0
/* Transmit data using DMA. */
void tx_spi(const void *data, uint16_t size){
	if(DmaCleanupNeeded)cleanup_dma_spi();
	
	dma_channel_reset(DMA1, DMA_CHANNEL3);
	dma_disable_channel(DMA1, DMA_CHANNEL3);
	dma_set_peripheral_address(DMA1, DMA_CHANNEL3, (uint32_t) &(SPI_DR(SPI3)));
	dma_set_memory_address(DMA1, DMA_CHANNEL3, (uint32_t) data);
	dma_set_number_of_data(DMA1, DMA_CHANNEL3, size);
	dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH);
	dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT);
	dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT);
	dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL3);
	dma_disable_peripheral_increment_mode(DMA1, DMA_CHANNEL3);
	dma_set_read_from_memory(DMA1, DMA_CHANNEL3);
	dma_enable_channel(DMA1, DMA_CHANNEL3);

	spi_enable_tx_dma(SPI3);
	spi_enable(SPI3);

	TxSpi = true;
	DmaCleanupNeeded = true;
}
示例#10
0
文件: uart.c 项目: goebish/deviation
u8 UART_Send(u8 *data, u16 len) {
    if (busy) return 1;
    busy = 1;

    DMA_stream_reset(USART_DMA);

    dma_set_peripheral_address(USART_DMA.dma, USART_DMA.stream, (u32) &USART_DR(UART_CFG.uart));  /* send data to the USART data register */
    dma_set_memory_address(USART_DMA.dma, USART_DMA.stream, (u32) data);
    dma_set_number_of_data(USART_DMA.dma, USART_DMA.stream, len);
    dma_set_read_from_memory(USART_DMA.dma, USART_DMA.stream);                     /* direction is from memory to usart */
    dma_enable_memory_increment_mode(USART_DMA.dma, USART_DMA.stream);             /* memory pointer increments, peripheral no */
    dma_set_peripheral_size(USART_DMA.dma, USART_DMA.stream, DMA_SxCR_PSIZE_8BIT);  /* USART_DR is 8bit wide in this mode */
    dma_set_memory_size(USART_DMA.dma, USART_DMA.stream, DMA_SxCR_MSIZE_8BIT);      /* destination memory is also 8 bit wide */
    dma_set_priority(USART_DMA.dma, USART_DMA.stream, DMA_CCR_PL_LOW);
    dma_enable_transfer_complete_interrupt(USART_DMA.dma, USART_DMA.stream);
    DMA_channel_select(USART_DMA);

    DMA_enable_stream(USART_DMA);    /* dma ready to go */
    usart_enable_tx_dma(UART_CFG.uart);

    return 0;
}
示例#11
0
文件: main.c 项目: Mechelix/btstack
void hal_uart_dma_send_block(const uint8_t *data, uint16_t size){

	// printf("hal_uart_dma_send_block size %u\n", size);
	/*
	 * USART3_TX Using DMA_CHANNEL2 
	 */

	/* Reset DMA channel*/
	dma_channel_reset(DMA1, DMA_CHANNEL2);

	dma_set_peripheral_address(DMA1, DMA_CHANNEL2, (uint32_t)&USART3_DR);
	dma_set_memory_address(DMA1, DMA_CHANNEL2, (uint32_t)data);
	dma_set_number_of_data(DMA1, DMA_CHANNEL2, size);
	dma_set_read_from_memory(DMA1, DMA_CHANNEL2);
	dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL2);
	dma_set_peripheral_size(DMA1, DMA_CHANNEL2, DMA_CCR_PSIZE_8BIT);
	dma_set_memory_size(DMA1, DMA_CHANNEL2, DMA_CCR_MSIZE_8BIT);
	dma_set_priority(DMA1, DMA_CHANNEL2, DMA_CCR_PL_VERY_HIGH);
	dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL2);
	dma_enable_channel(DMA1, DMA_CHANNEL2);
    usart_enable_tx_dma(USART3);
}
示例#12
0
static int timer_dma(uint8_t *tx_buf, int tx_len)
{
	dma_int_enable();	

	/* Reset DMA channels*/
	dma_channel_reset(DMA1, DMA_CHANNEL3);

	/* Set up tx dma */
	dma_set_peripheral_address(DMA1, DMA_CHANNEL3, (uint32_t)&TIM_CCR2(TIM3));
	dma_set_memory_address(DMA1, DMA_CHANNEL3, (uint32_t)tx_buf);
	dma_set_number_of_data(DMA1, DMA_CHANNEL3, tx_len);
	dma_set_read_from_memory(DMA1, DMA_CHANNEL3);
	dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL3);
	dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_32BIT);
	dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT);
	dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH);

	dma_enable_circular_mode(DMA1, DMA_CHANNEL3);
	dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL3);
	dma_enable_half_transfer_interrupt(DMA1, DMA_CHANNEL3);
	dma_enable_channel(DMA1, DMA_CHANNEL3);

	return 0;
}
示例#13
0
void ws2812_init( void )
{
	uint32_t i,j;

	for( i = 0; i < WS2812_BUFFERSIZE; i++ )
	{
		bitframe_pattern[i] = 0;
		bitframe_pattern_draw[i] = 0;
	}

	for( i=0; i < (3*NR_OF_LEDS_PER_CH*NR_OF_ROWS); i++)
	{
		frame_pattern[i] = 0;

	}

	/* configure the GPIOs */
	/* Enable GPIOC clock  */
	rcc_periph_clock_enable(RCC_GPIOB);

	/* Setup GPIO pin GPIO8/9 on GPIO port C for LEDs. */
	gpio_mode_setup(GPIOB, GPIO_MODE_OUTPUT, GPIO_PUPD_PULLDOWN, GPIO0);
	gpio_set_output_options( GPIOB, GPIO_OTYPE_PP, GPIO_OSPEED_HIGH, GPIO0);

	/* configure the DMA */
	rcc_periph_clock_enable(RCC_DMA);

	/* configure DMA for sending high constant pattern to port on begin of cycle
	 * send unrolled bitframe on Timer OC1 event
	 * send low on Timer OC3 event
	 */
	dma_channel_reset( DMA1, DMA_CHANNEL3);
	dma_set_peripheral_address( DMA1, DMA_CHANNEL3, (uint32_t)&GPIOB_ODR);
    dma_set_memory_address( DMA1, DMA_CHANNEL3, (uint32_t)&high_pattern);
    dma_set_peripheral_size( DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT);
    dma_set_memory_size( DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT);
    dma_disable_peripheral_increment_mode( DMA1, DMA_CHANNEL3 );
    dma_disable_memory_increment_mode( DMA1, DMA_CHANNEL3 );
    dma_set_priority( DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH);
    dma_set_read_from_memory(DMA1, DMA_CHANNEL3);

	dma_channel_reset( DMA1, DMA_CHANNEL4);
	dma_set_peripheral_address( DMA1, DMA_CHANNEL4, (uint32_t)&GPIOB_ODR);
    dma_set_memory_address( DMA1, DMA_CHANNEL4, (uint32_t)actual_bitframe);
    dma_set_peripheral_size( DMA1, DMA_CHANNEL4, DMA_CCR_PSIZE_8BIT);
    dma_set_memory_size( DMA1, DMA_CHANNEL4, DMA_CCR_MSIZE_8BIT);
    dma_disable_peripheral_increment_mode( DMA1, DMA_CHANNEL4 );
    dma_enable_memory_increment_mode( DMA1, DMA_CHANNEL4 );
    dma_set_priority( DMA1, DMA_CHANNEL4, DMA_CCR_PL_HIGH);
    dma_set_read_from_memory(DMA1, DMA_CHANNEL4);

	dma_channel_reset( DMA1, DMA_CHANNEL2);
	dma_set_peripheral_address( DMA1, DMA_CHANNEL2, (uint32_t)&GPIOB_ODR);
    dma_set_memory_address( DMA1, DMA_CHANNEL2, (uint32_t)&low_pattern);
    dma_set_peripheral_size( DMA1, DMA_CHANNEL2, DMA_CCR_PSIZE_8BIT);
    dma_set_memory_size( DMA1, DMA_CHANNEL2, DMA_CCR_MSIZE_8BIT);
    dma_disable_peripheral_increment_mode( DMA1, DMA_CHANNEL2 );
    dma_disable_memory_increment_mode( DMA1, DMA_CHANNEL2 );
    dma_set_priority( DMA1, DMA_CHANNEL2, DMA_CCR_PL_HIGH);
    dma_set_read_from_memory(DMA1, DMA_CHANNEL2);


    nvic_set_priority(NVIC_DMA1_CHANNEL2_3_IRQ, 0);
    nvic_enable_irq(NVIC_DMA1_CHANNEL2_3_IRQ);
    dma_enable_transfer_complete_interrupt( DMA1, DMA_CHANNEL2);


    /* configure timer */
    rcc_periph_clock_enable(RCC_TIM3);


    /* configure the timer for 800kHz overall frequency */
    timer_reset( TIM3 );
    timer_set_mode( TIM3, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
    timer_set_period( TIM3, 60);
    timer_set_repetition_counter( TIM3, 0);
    timer_disable_preload( TIM3 );

    /* timer compare section 1 for low coding */
    timer_set_oc_mode( TIM3, TIM_OC1,TIM_OCM_FROZEN);
    timer_set_oc_value( TIM3, TIM_OC1, 19);
    timer_disable_oc_preload( TIM3, TIM_OC1);

    /* timer compare section 3 for high coding */
    timer_set_oc_mode( TIM3, TIM_OC3,TIM_OCM_FROZEN);
    timer_set_oc_value( TIM3, TIM_OC3, 41);
    timer_disable_oc_preload( TIM3, TIM_OC3);

    nvic_set_priority( NVIC_TIM3_IRQ,1);
    nvic_set_priority( NVIC_PENDSV_IRQ, 2);
    nvic_enable_irq(NVIC_TIM3_IRQ);
    nvic_enable_irq(NVIC_PENDSV_IRQ);

    /* start the sending process */
    ws2812_send();
}
示例#14
0
/**
 * Start a new transaction with DMA.
 */
static void spi_start_dma_transaction(struct spi_periph* periph, struct spi_transaction* trans)
{
  struct spi_periph_dma *dma;
  uint8_t sig = 0x00;

  /* Store local copy to notify of the results */
  trans->status = SPITransRunning;
  periph->status = SPIRunning;

  dma = periph->init_struct;

  /*
   * Check if we need to reconfigure the spi peripheral for this transaction
   */
  sig = get_transaction_signature(trans);
  if (sig != dma->comm_sig) {
    /* A different config is required in this transaction... */
    set_comm_from_transaction(&(dma->comm), trans);

    /* remember the new conf signature */
    dma->comm_sig = sig;

    /* apply the new configuration */
    spi_disable((uint32_t)periph->reg_addr);
    spi_init_master((uint32_t)periph->reg_addr, dma->comm.br, dma->comm.cpol,
                    dma->comm.cpha, dma->comm.dff, dma->comm.lsbfirst);
    spi_enable_software_slave_management((uint32_t)periph->reg_addr);
    spi_set_nss_high((uint32_t)periph->reg_addr);
    spi_enable((uint32_t)periph->reg_addr);
  }

  /*
   * Select the slave after reconfiguration of the peripheral
   */
  if (trans->select == SPISelectUnselect || trans->select == SPISelect) {
    SpiSlaveSelect(trans->slave_idx);
  }

  /* Run the callback AFTER selecting the slave */
  if (trans->before_cb != 0) {
    trans->before_cb(trans);
  }

  /*
   * Receive DMA channel configuration ----------------------------------------
   *
   * We always run the receive DMA until the very end!
   * This is done so we can use the transfer complete interrupt
   * of the RX DMA to signal the end of the transaction.
   *
   * If we want to receive less than we transmit, a dummy buffer
   * for the rx DMA is used after for the remaining data.
   *
   * In the transmit only case (input_length == 0),
   * the dummy is used right from the start.
   */
  if (trans->input_length == 0) {
    /* run the dummy rx dma for the complete transaction length */
    spi_configure_dma(dma->dma, dma->rx_chan, (uint32_t)dma->spidr,
                      (uint32_t)&(dma->rx_dummy_buf), trans->output_length, trans->dss, FALSE);
  } else {
    /* run the real rx dma for input_length */
    spi_configure_dma(dma->dma, dma->rx_chan, (uint32_t)dma->spidr,
                      (uint32_t)trans->input_buf, trans->input_length, trans->dss, TRUE);
    /* use dummy rx dma for the rest */
    if (trans->output_length > trans->input_length) {
      /* Enable use of second dma transfer with dummy buffer (cleared in ISR) */
      dma->rx_extra_dummy_dma = TRUE;
    }
  }
  dma_set_read_from_peripheral(dma->dma, dma->rx_chan);
  dma_set_priority(dma->dma, dma->rx_chan, DMA_CCR_PL_VERY_HIGH);


  /*
   * Transmit DMA channel configuration ---------------------------------------
   *
   * We always run the transmit DMA!
   * To receive data, the clock must run, so something has to be transmitted.
   * If needed, use a dummy DMA transmitting zeros for the remaining length.
   *
   * In the reveive only case (output_length == 0),
   * the dummy is used right from the start.
   */
  if (trans->output_length == 0) {
    spi_configure_dma(dma->dma, dma->tx_chan, (uint32_t)dma->spidr,
                      (uint32_t)&(dma->tx_dummy_buf), trans->input_length, trans->dss, FALSE);
  } else {
    spi_configure_dma(dma->dma, dma->tx_chan, (uint32_t)dma->spidr,
                      (uint32_t)trans->output_buf, trans->output_length, trans->dss, TRUE);
    if (trans->input_length > trans->output_length) {
      /* Enable use of second dma transfer with dummy buffer (cleared in ISR) */
      dma->tx_extra_dummy_dma = TRUE;
    }
  }
  dma_set_read_from_memory(dma->dma, dma->tx_chan);
  dma_set_priority(dma->dma, dma->tx_chan, DMA_CCR_PL_MEDIUM);


  /* Enable DMA transfer complete interrupts. */
  dma_enable_transfer_complete_interrupt(dma->dma, dma->rx_chan);
  dma_enable_transfer_complete_interrupt(dma->dma, dma->tx_chan);

  /* Enable DMA channels */
  dma_enable_channel(dma->dma, dma->rx_chan);
  dma_enable_channel(dma->dma, dma->tx_chan);

  /* Enable SPI transfers via DMA */
  spi_enable_rx_dma((uint32_t)periph->reg_addr);
  spi_enable_tx_dma((uint32_t)periph->reg_addr);
}
示例#15
0
static int spi_dma_transceive(uint8_t *tx_buf, int tx_len, uint8_t *rx_buf, int rx_len)
#endif
{
/* Check for 0 length in both tx and rx */
    if ((rx_len < 1) && (tx_len < 1)) {
/* return -1 as error */
        return -1;
    }

/* Reset DMA channels*/
    dma_channel_reset(DMA1, DMA_CHANNEL4);
    dma_channel_reset(DMA1, DMA_CHANNEL5);

/* Reset SPI data and status registers.
 * Here we assume that the SPI peripheral is NOT
 * busy any longer, i.e. the last activity was verified
 * complete elsewhere in the program.
 */
    volatile uint8_t temp_data __attribute__ ((unused));
    while (SPI_SR(SPI2) & (SPI_SR_RXNE | SPI_SR_OVR)) {
        temp_data = SPI_DR(SPI2);
    }

/* Reset status flag appropriately (both 0 case caught above) */
    transceive_status = NONE;
    if (rx_len < 1) {
        transceive_status = ONE;
    }
    if (tx_len < 1) {
        transceive_status = ONE;
    }

/* Set up rx dma, note it has higher priority to avoid overrun */
    if (rx_len > 0) {
        dma_set_peripheral_address(DMA1, DMA_CHANNEL4, (uint32_t)&SPI2_DR);
        dma_set_memory_address(DMA1, DMA_CHANNEL4, (uint32_t)rx_buf);
        dma_set_number_of_data(DMA1, DMA_CHANNEL4, rx_len);
        dma_set_read_from_peripheral(DMA1, DMA_CHANNEL4);
        dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL4);
#if USE_16BIT_TRANSFERS
        dma_set_peripheral_size(DMA1, DMA_CHANNEL4, DMA_CCR_PSIZE_16BIT);
        dma_set_memory_size(DMA1, DMA_CHANNEL4, DMA_CCR_MSIZE_16BIT);
#else
        dma_set_peripheral_size(DMA1, DMA_CHANNEL4, DMA_CCR_PSIZE_8BIT);
        dma_set_memory_size(DMA1, DMA_CHANNEL4, DMA_CCR_MSIZE_8BIT);
#endif
        dma_set_priority(DMA1, DMA_CHANNEL4, DMA_CCR_PL_VERY_HIGH);
    }

/* Set up tx dma */
    if (tx_len > 0) {
        dma_set_peripheral_address(DMA1, DMA_CHANNEL5, (uint32_t)&SPI2_DR);
        dma_set_memory_address(DMA1, DMA_CHANNEL5, (uint32_t)tx_buf);
        dma_set_number_of_data(DMA1, DMA_CHANNEL5, tx_len);
        dma_set_read_from_memory(DMA1, DMA_CHANNEL5);
        dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL5);
#if USE_16BIT_TRANSFERS
        dma_set_peripheral_size(DMA1, DMA_CHANNEL5, DMA_CCR_PSIZE_16BIT);
        dma_set_memory_size(DMA1, DMA_CHANNEL5, DMA_CCR_MSIZE_16BIT);
#else
        dma_set_peripheral_size(DMA1, DMA_CHANNEL5, DMA_CCR_PSIZE_8BIT);
        dma_set_memory_size(DMA1, DMA_CHANNEL5, DMA_CCR_MSIZE_8BIT);
#endif
        dma_set_priority(DMA1, DMA_CHANNEL5, DMA_CCR_PL_HIGH);
    }

/* Enable dma transfer complete interrupts */
    if (rx_len > 0) {
        dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL4);
    }
    if (tx_len > 0) {
        dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL5);
    }

/* Activate dma channels */
    if (rx_len > 0) {
        dma_enable_channel(DMA1, DMA_CHANNEL4);
    }
    if (tx_len > 0) {
        dma_enable_channel(DMA1, DMA_CHANNEL5);
    }

/* Enable the spi transfer via dma
 * This will immediately start the transmission,
 * after which when the receive is complete, the
 * receive dma will activate
 */
    if (rx_len > 0) {
        spi_enable_rx_dma(SPI2);
    }
    if (tx_len > 0) {
        spi_enable_tx_dma(SPI2);
    }

    return 0;
}
示例#16
0
void accel_highg_init()
{
    uint8_t channel_array[16];

    gpio_set_mode(GPIOB, GPIO_MODE_INPUT,
            GPIO_CNF_INPUT_ANALOG, GPIO0 | GPIO1 | GPIO2);

    adc_set_dual_mode(ADC_CR1_DUALMOD_RSM);

    /* ADC1 + ADC2 dual mode */
    adc_set_dual_mode(ADC_CR1_DUALMOD_ISM);

    adc_enable_external_trigger_injected(ADC1, ADC_CR2_JEXTSEL_TIM1_TRGO);
    adc_enable_external_trigger_injected(ADC3, ADC_CR2_JEXTSEL_TIM1_TRGO);

    adc_enable_dma(ADC1);
    adc_enable_dma(ADC3);

    adc_power_on(ADC1);
    adc_power_on(ADC2);
    adc_power_on(ADC3);

    adc_stab_sleep();

    adc_reset_calibration(ADC1);
    adc_reset_calibration(ADC2);
    adc_reset_calibration(ADC3);
    adc_calibration(ADC1);
    adc_calibration(ADC2);
    adc_calibration(ADC3);

    memset(channel_array, 0, sizeof(channel_array));
    channel_array[0] = 10;
    adc_set_injected_sequence(ADC1, 1, channel_array);
    channel_array[0] = 11;
    adc_set_injected_sequence(ADC2, 1, channel_array);
    channel_array[0] = 12;
    adc_set_injected_sequence(ADC3, 1, channel_array);

    timer_reset(TIM1);
    timer_enable_irq(TIM1, TIM_DIER_UIE);
    timer_set_mode(TIM1, TIM_CR1_CKD_CK_INT,
            TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
    /* 500Hz */
    timer_set_prescaler(TIM1, 64);
    timer_set_period(TIM1, 2250);

    /* Generate TRGO */
    timer_set_master_mode(TIM1, TIM_CR2_MMS_UPDATE);

    dma_set_peripheral_address(DMA1, DMA_CHANNEL5, (uint32_t) &ADC1_DR);
    dma_set_read_from_memory(DMA1, DMA_CHANNEL5);
    dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL5);
    dma_set_peripheral_size(DMA1, DMA_CHANNEL5, DMA_CCR_PSIZE_32BIT);
    dma_set_memory_size(DMA1, DMA_CHANNEL5, DMA_CCR_MSIZE_32BIT);
    dma_set_priority(DMA1, DMA_CHANNEL5, DMA_CCR_PL_HIGH);

    dma_set_peripheral_address(DMA1, DMA_CHANNEL6, (uint32_t) &ADC3_DR);
    dma_set_read_from_peripheral(DMA1, DMA_CHANNEL6);
    dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL6);
    dma_set_peripheral_size(DMA1, DMA_CHANNEL6, DMA_CCR_PSIZE_16BIT);
    dma_set_memory_size(DMA1, DMA_CHANNEL6, DMA_CCR_MSIZE_16BIT);
    dma_set_priority(DMA1, DMA_CHANNEL6, DMA_CCR_PL_HIGH);

    dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL5);
    dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL6);
}
示例#17
0
bool TSpiDmaQueue::TryStartJob()
{
    // Start the next DMA job in the queue if the SPI interface is
    // available (TXE=1 and BSY=0)
    // We treat both SPI busses (flash and display) as one, so no concurrent jobs
    // are allowed.

    const uint32_t spi = LCD_SPI_CHANNEL;
    if ((SPI_SR(spi) & SPI_SR_TXE) && (~SPI_SR(spi) & SPI_SR_BSY)) {

        if (Jobs.Empty()) {
            return false;
        }

        const TSpiDmaJob& job = Jobs.First();
        const TBuffer& buffer = job.GetBuffer();

        // SPI receive register should be empty here!
        assert(!(SPI_SR(spi) & SPI_SR_RXNE));

        const uint32_t dma = DMA1;
        {
            const uint32_t channel = (job.GetChip() == TSpiDmaJob::CS_LCD) ? LCD_DMA_TX_CHANNEL : FLASH_DMA_TX_CHANNEL;
            dma_channel_reset(dma, channel);
            dma_set_peripheral_address(dma, channel, reinterpret_cast<uint32_t>(&SPI_DR(spi)));
            dma_set_memory_address(dma, channel, reinterpret_cast<uint32_t>(buffer.GetData()));
            dma_set_number_of_data(dma, channel, buffer.GetLength());
            dma_set_read_from_memory(dma, channel);
            dma_enable_memory_increment_mode(dma, channel);
            dma_set_peripheral_size(dma, channel, DMA_CCR_PSIZE_8BIT);
            dma_set_memory_size(dma, channel, DMA_CCR_MSIZE_8BIT);
            dma_set_priority(dma, channel, DMA_CCR_PL_LOW);
            //dma_enable_transfer_complete_interrupt(dma, channel);
            dma_enable_channel(dma, channel);
        }

        {
            const uint32_t channel =  (job.GetChip() == TSpiDmaJob::CS_LCD) ? LCD_DMA_RX_CHANNEL : FLASH_DMA_RX_CHANNEL;
            dma_channel_reset(dma, channel);
            dma_set_peripheral_address(dma, channel, reinterpret_cast<uint32_t>(&SPI_DR(spi)));
            dma_set_memory_address(dma, channel, reinterpret_cast<uint32_t>(buffer.GetData()));
            dma_set_number_of_data(dma, channel, buffer.GetLength());
            dma_enable_memory_increment_mode(dma, channel);
            dma_set_peripheral_size(dma, channel, DMA_CCR_PSIZE_8BIT);
            dma_set_memory_size(dma, channel, DMA_CCR_MSIZE_8BIT);
            dma_set_priority(dma, channel, DMA_CCR_PL_LOW);
            dma_enable_transfer_complete_interrupt(dma, channel);
            dma_enable_channel(dma, channel);
        }

        // Set CS and LCD_A0 lines
        Pin_lcd_cs.Clear();
        if (job.GetLcdData()) {
            Pin_lcd_a0.Set();
        } else {
            Pin_lcd_a0.Clear();
        }

        // Kick off the transfer
        spi_enable_rx_dma(spi);
        spi_enable_tx_dma(spi);

        return true;
    }

    return false;
}
static int spi_dma_transceive(uint8_t *tx_buf, int tx_len, uint8_t *rx_buf, int rx_len)
#endif
{	

	/* Check for 0 length in both tx and rx */
	if ((rx_len < 1) && (tx_len < 1)) {
		/* return -1 as error */
		return -1;
	}

	/* Reset DMA channels*/
	dma_channel_reset(DMA1, DMA_CHANNEL2);
	dma_channel_reset(DMA1, DMA_CHANNEL3);

	/* Reset SPI data and status registers.
	 * Here we assume that the SPI peripheral is NOT
	 * busy any longer, i.e. the last activity was verified
	 * complete elsewhere in the program.
	 */
	volatile uint8_t temp_data __attribute__ ((unused));
	while (SPI_SR(SPI1) & (SPI_SR_RXNE | SPI_SR_OVR)) {
		temp_data = SPI_DR(SPI1);
	}

	/* Reset status flag appropriately (both 0 case caught above) */
	transceive_status = NONE;
	if (rx_len < 1) {
		transceive_status = ONE;
	}

	/* Determine tx length case to change behaviour
	 * If tx_len >= rx_len, then normal case, run both DMAs with normal settings
	 * If rx_len == 0, just don't run the rx DMA at all
	 * If tx_len == 0, use a dummy buf and set the tx dma to transfer the same
	 *    amount as the rx_len, to ensure everything is clocked in
	 * If 0 < tx_len < rx_len, first do a normal case, then on the tx finished
	 *    interrupt, set up a new dummyy buf tx dma transfer for the remaining
	 *    required clock cycles (handled in tx dma complete interrupt)
	 */
	if ((tx_len > 0) && (tx_len < rx_len)) {
		rx_buf_remainder = rx_len - tx_len;
	}

	/* Set up rx dma, note it has higher priority to avoid overrun */
	if (rx_len > 0) {
		dma_set_peripheral_address(DMA1, DMA_CHANNEL2, (uint32_t)&SPI1_DR);
		dma_set_memory_address(DMA1, DMA_CHANNEL2, (uint32_t)rx_buf);
		dma_set_number_of_data(DMA1, DMA_CHANNEL2, rx_len);
		dma_set_read_from_peripheral(DMA1, DMA_CHANNEL2);
		dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL2);
#if USE_16BIT_TRANSFERS
		dma_set_peripheral_size(DMA1, DMA_CHANNEL2, DMA_CCR_PSIZE_16BIT);
		dma_set_memory_size(DMA1, DMA_CHANNEL2, DMA_CCR_MSIZE_16BIT);
#else
		dma_set_peripheral_size(DMA1, DMA_CHANNEL2, DMA_CCR_PSIZE_8BIT);
		dma_set_memory_size(DMA1, DMA_CHANNEL2, DMA_CCR_MSIZE_8BIT);
#endif
		dma_set_priority(DMA1, DMA_CHANNEL2, DMA_CCR_PL_VERY_HIGH);
	}

	/* Set up tx dma (must always run tx to get clock signal) */
	if (tx_len > 0) {
		/* Here we have a regular tx transfer */
		dma_set_peripheral_address(DMA1, DMA_CHANNEL3, (uint32_t)&SPI1_DR);
		dma_set_memory_address(DMA1, DMA_CHANNEL3, (uint32_t)tx_buf);
		dma_set_number_of_data(DMA1, DMA_CHANNEL3, tx_len);
		dma_set_read_from_memory(DMA1, DMA_CHANNEL3);
		dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL3);
#if USE_16BIT_TRANSFERS
		dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_16BIT);
		dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_16BIT);
#else
		dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT);
		dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT);
#endif
		dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH);
	} else {
		/* Here we aren't transmitting any real data, use the dummy buffer
		 * and set the length to the rx_len to get all rx data in, while
		 * not incrementing the memory pointer
		 */
		dma_set_peripheral_address(DMA1, DMA_CHANNEL3, (uint32_t)&SPI1_DR);
		dma_set_memory_address(DMA1, DMA_CHANNEL3, (uint32_t)(&dummy_tx_buf)); // Change here
		dma_set_number_of_data(DMA1, DMA_CHANNEL3, rx_len); // Change here
		dma_set_read_from_memory(DMA1, DMA_CHANNEL3);
		dma_disable_memory_increment_mode(DMA1, DMA_CHANNEL3); // Change here
#if USE_16BIT_TRANSFERS
		dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_16BIT);
		dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_16BIT);
#else
		dma_set_peripheral_size(DMA1, DMA_CHANNEL3, DMA_CCR_PSIZE_8BIT);
		dma_set_memory_size(DMA1, DMA_CHANNEL3, DMA_CCR_MSIZE_8BIT);
#endif
		dma_set_priority(DMA1, DMA_CHANNEL3, DMA_CCR_PL_HIGH);
	}

	/* Enable dma transfer complete interrupts */
	if (rx_len > 0) {
		dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL2);
	}
	dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL3);

	/* Activate dma channels */
	if (rx_len > 0) {
		dma_enable_channel(DMA1, DMA_CHANNEL2);
	}
	dma_enable_channel(DMA1, DMA_CHANNEL3);

	/* Enable the spi transfer via dma
	 * This will immediately start the transmission,
	 * after which when the receive is complete, the
	 * receive dma will activate
	 */
	if (rx_len > 0) {
    	spi_enable_rx_dma(SPI1);
    }
    spi_enable_tx_dma(SPI1);

    return 0;
}
示例#19
0
static void setup_i2c_port(enum I2C_FREQ I2C_speed)
{
	// Disable I2C if it happens to be enabled
	i2c_peripheral_disable(I2C_PORT);
	dma_channel_reset(I2C_TX_DMA, I2C_TX_DMA_CHANNEL);
	i2c_disable_interrupt(I2C_PORT, (I2C_CR2_ITEVTEN | I2C_CR2_ITERREN));
	DISABLE_I2C_INTERRUPT();
	reset_i2c_pins();

	// set: Source, Destination, and Amount (DMA channel must be disabled)
	dma_set_peripheral_address(I2C_TX_DMA, I2C_TX_DMA_CHANNEL, (uint32_t)&I2C_DR(I2C_PORT));
	dma_set_memory_address(I2C_TX_DMA, I2C_TX_DMA_CHANNEL, 0);
	dma_set_number_of_data(I2C_TX_DMA, I2C_TX_DMA_CHANNEL, 0);
	// set the DMA Configuration (DMA_CCRx)
	//			 (BIT 14) mem2mem_mode disabled
	dma_set_priority(I2C_TX_DMA, I2C_TX_DMA_CHANNEL, DMA_CCR_PL_HIGH); // (BIT 12:13)
	dma_set_memory_size(I2C_TX_DMA, I2C_TX_DMA_CHANNEL, DMA_CCR_MSIZE_8BIT); // (BIT 10:11)
	dma_set_peripheral_size(I2C_TX_DMA, I2C_TX_DMA_CHANNEL, DMA_CCR_PSIZE_8BIT); // (BIT 8:9)
	dma_enable_memory_increment_mode(I2C_TX_DMA, I2C_TX_DMA_CHANNEL); // (BIT 7)
	dma_disable_peripheral_increment_mode(I2C_TX_DMA, I2C_TX_DMA_CHANNEL); // (BIT 6)
	//			 (BIT 5) Circular mode is disabled
	dma_set_read_from_memory(I2C_TX_DMA, I2C_TX_DMA_CHANNEL);	// (BIT 4)
	dma_enable_transfer_error_interrupt(I2C_TX_DMA, I2C_TX_DMA_CHANNEL); // (BIT 3)
	dma_disable_half_transfer_interrupt(I2C_TX_DMA, I2C_TX_DMA_CHANNEL); // (BIT 2)
	dma_enable_transfer_complete_interrupt(I2C_TX_DMA, I2C_TX_DMA_CHANNEL); // (BIT 1)

	// This is the slave address when not transmitting data
	i2c_set_own_7bit_slave_address(I2C_PORT, 0x32);
	// do not respond to the specified slave address
	i2c_disable_ack(I2C_PORT);
	// Use DMA to send I2C data
	i2c_enable_dma(I2C_PORT);
	// set which interrupts I2C uses
	i2c_enable_interrupt(I2C_PORT, (I2C_CR2_ITEVTEN | I2C_CR2_ITERREN));
	// APB1 is running at 36MHz = T(PCLK1) = 1/36000000 sec.
	i2c_set_clock_frequency(I2C_PORT, I2C_CR2_FREQ_36MHZ);
	// Set up the hardware for the particular speed
	switch (I2C_speed) {
		// Values found on Internet for the I2C standard
		//   STANDARD : SCL max rise time = 1000ns = 1000/1000000000 sec
		//       FAST : SCL max rise time =  300ns =  300/1000000000 sec
		// 
		// DATASHEET Function:
		//   TRISE = (T(MAX_SCL_RISE) / T(PCLK1)) + 1
		// 
		// DATASHEET Functions:
		//   STANDARD :      
		//     T(high) =      CCR * T(PCLK1)
		//     T(low)  =      CCR * T(PCLK1)
		//   FAST (DUTY=I2C_CCR_DUTY_DIV2)
		//     T(high) =      CCR * T(PCLK1)
		//     T(low)  =  2 * CCR * T(PCLK1)
		//   FAST (DUTY=I2C_CCR_DUTY_16_DIV_9)   [To reach 400KHz]
		//     T(high) =  9 * CCR * T(PCLK1)
		//     T(low)  = 16 * CCR * T(PCLK1)
		// 
		// I2C PERIOD:
		//   STANDARD
		//     PERIOD = T(high) + T(low) = (2 * CCR * T(PCLK1))
		//   FAST (DUTY=I2C_CCR_DUTY_DIV2)
		//     PERIOD = T(high) + T(low) = (3 * CCR * T(PCLK1))
		//   FAST (DUTY=I2C_CCR_DUTY_16_DIV_9)
		//     PERIOD = T(high) + T(low) = (25 * CCR * T(PCLK1))
		case I2C_400KHz:
			// I2C PERIOD: 400KHz = 400000Hz = 1/400000 sec.
			i2c_set_fast_mode(I2C_PORT);
			// I2C_CCR_DUTY_DIV2 or I2C_CCR_DUTY_16_DIV_9
			i2c_set_dutycycle(I2C_PORT, I2C_CCR_DUTY_16_DIV_9);
			// CCR = PERIOD / (25 * T(PCLK1))
			// CCR = (1/400000) / (25/36000000) = 18/5 = 3.6
			// CCR = 4 => I2C PERIOD = 360kHz
			// CCR = 3 => I2C PERIOD = 480kHz
			i2c_set_ccr(I2C_PORT, 4);	// Only fast mode can have a value less than 0x04
			// TRISE = ( (300/1000000000) / (1/36000000) ) + 1 = 59/5 = 11.8
			// TRISE = 12 => SCL max rise time ~= 305.555ns
			// TRISE = 11 => SCL max rise time ~= 277.777ns
			i2c_set_trise(I2C_PORT, 11);
			break;
		case I2C_100KHz:
			// I2C PERIOD: 100KHz = 100000Hz = 1/100000 sec.
			i2c_set_standard_mode(I2C_PORT);
			// I2C_CCR_DUTY_DIV2 or I2C_CCR_DUTY_16_DIV_9
			i2c_set_dutycycle(I2C_PORT, I2C_CCR_DUTY_DIV2);
			// CCR = PERIOD / (2 * T(PCLK1))
			// CCR = (1/100000) / (2/36000000) = 180
			i2c_set_ccr(I2C_PORT, 180);
			// TRISE = ( (1000/1000000000) / (1/36000000) ) + 1 = 37
			i2c_set_trise(I2C_PORT, 37);
			break;
		case I2C_53KHz:
			// ~= 52.91kHz is the slowest I could get to work
			// CCR value of 341 works but not 342 or higher
		case I2C_50KHz:
		default:
			// I2C PERIOD: 50KHz = 50000Hz = 1/50000 sec.
			i2c_set_standard_mode(I2C_PORT);
			// I2C_CCR_DUTY_DIV2 or I2C_CCR_DUTY_16_DIV_9
			i2c_set_dutycycle(I2C_PORT, I2C_CCR_DUTY_DIV2);
			// CCR = PERIOD / (2 * T(PCLK1))
			// CCR = (1/50000) / (2/36000000) = 360
			//   (341 works but not 342 or higher)
			i2c_set_ccr(I2C_PORT, 341);
			// TRISE = ( (1000/1000000000) / (1/36000000) ) + 1 = 37
			i2c_set_trise(I2C_PORT, 37);
			break;
	}
	i2c_peripheral_enable(I2C_PORT);

	// set the priorities for the interrupts
	nvic_set_priority(I2C_EV_IRQ, IRQ_PRI_I2C);
	nvic_set_priority(I2C_ER_IRQ, IRQ_PRI_ER_I2C);
	nvic_set_priority(I2C_DMA_IRQ, IRQ_PRI_DMA_I2C);
}