示例#1
0
IMPEM2D_BEGIN_NAMESPACE

void get_autocorrelation2d_no_preprocessing(const cv::Mat &M, cv::Mat &corr) {
  IMP_LOG_VERBOSE("Computing 2D autocorrelation no preprocessing" << std::endl);
  IMP_USAGE_CHECK(((M.rows != 0) && (M.cols != 0)),
                  "em2d:get_autocorrelation2d: Output matrix is empty");
  cv::Mat temp;
  cv::mulSpectrums(M, M, temp, 0, true);
  cv::idft(temp, temp, cv::DFT_SCALE + cv::DFT_REAL_OUTPUT);
  temp(cv::Rect(0, 0, corr.cols, corr.rows)).copyTo(corr);
  do_matrix_to_image_flip(corr);
}
示例#2
0
void get_correlation2d_no_preprocessing(const cv::Mat &M1,
                                    const cv::Mat &M2, cv::Mat &corr) {

  IMP_LOG_VERBOSE("Computing 2D correlation no preprocessing "<<std::endl);

  IMP_USAGE_CHECK(((M1.rows==M2.rows) && (M1.cols == M2.cols)),
                  "em2d:get_correlation2d: Matrices have different size.");

  cv::Mat temp;
  cv::mulSpectrums(M1, M2, temp,0,true);
  cv::idft(temp, temp,cv::DFT_SCALE+cv::DFT_REAL_OUTPUT);
  // now copy the result to corr
  temp(cv::Rect(0, 0, corr.cols, corr.rows)).copyTo(corr);
  do_matrix_to_image_flip(corr);
}
示例#3
0
void get_correlation2d(const cv::Mat &A, const cv::Mat &B, cv::Mat &corr) {

  IMP_LOG_VERBOSE("Computing 2D correlation " <<std::endl);

  IMP_USAGE_CHECK(((A.rows==B.rows) && (A.cols == B.cols)),
                  "em2d:get_correlation2d: Matrices have different size.");
  // resize the output array if needed
  corr.create(A.rows,A.cols, A.type());
  cv::Size dftSize;
  // compute the optimal size for faster DFT transform
  dftSize.width = cv::getOptimalDFTSize(A.cols);
  dftSize.height = cv::getOptimalDFTSize(A.rows);

  // temporary matrices
  cv::Mat tempA(dftSize, A.type(), cv::Scalar::all(0));
  cv::Mat tempB(dftSize, B.type(), cv::Scalar::all(0));

  // copy A and B to the top-left corners of tempA and tempB, respectively
  cv::Mat roiA(tempA, cv::Rect(0,0,A.cols,A.rows));
  A.copyTo(roiA);
  cv::Mat roiB(tempB, cv::Rect(0,0,B.cols,B.rows));
  B.copyTo(roiB);

  // FFT the padded A & B in-place;
  // use "nonzeroRows" hint for faster processing
  cv::dft(tempA, tempA, 0, A.rows);
  cv::dft(tempB, tempB, 0, B.rows);

  // multiply the spectrums;
  // the function handles packed spectrum representations well
  cv::mulSpectrums(tempA, tempB, tempA,0,true);

  // inverse transform
  // Even though all the result rows will be non-zero,
  // we need only the first corr.rows of them, and thus we
  // pass nonzeroRows == corr.rows
  cv::dft(tempA, tempA, cv::DFT_INVERSE + cv::DFT_SCALE, corr.rows);

  // now copy the result back to C.
  tempA(cv::Rect(0, 0, corr.cols, corr.rows)).copyTo(corr);
  do_matrix_to_image_flip(corr);
}