示例#1
0
static int
iterate (void *vstate, gsl_multiroot_function * func, gsl_vector * x, gsl_vector * f, gsl_vector * dx, int scale)
{
  hybrid_state_t *state = (hybrid_state_t *) vstate;

  const double fnorm = state->fnorm;

  gsl_matrix *J = state->J;
  gsl_matrix *q = state->q;
  gsl_matrix *r = state->r;
  gsl_vector *tau = state->tau;
  gsl_vector *diag = state->diag;
  gsl_vector *qtf = state->qtf;
  gsl_vector *x_trial = state->x_trial;
  gsl_vector *f_trial = state->f_trial;
  gsl_vector *df = state->df;
  gsl_vector *qtdf = state->qtdf;
  gsl_vector *rdx = state->rdx;
  gsl_vector *w = state->w;
  gsl_vector *v = state->v;

  double prered, actred;
  double pnorm, fnorm1, fnorm1p;
  double ratio;
  double p1 = 0.1, p5 = 0.5, p001 = 0.001, p0001 = 0.0001;

  /* Compute qtf = Q^T f */

  compute_qtf (q, f, qtf);

  /* Compute dogleg step */

  dogleg (r, qtf, diag, state->delta, state->newton, state->gradient, dx);

  /* Take a trial step */

  compute_trial_step (x, dx, state->x_trial);

  pnorm = scaled_enorm (diag, dx);

  if (state->iter == 1)
    {
      if (pnorm < state->delta)
	{
	  state->delta = pnorm;
	}
    }

  /* Evaluate function at x + p */

  {
    int status = GSL_MULTIROOT_FN_EVAL (func, x_trial, f_trial);

    if (status != GSL_SUCCESS) 
      {
        return GSL_EBADFUNC;
      }
  }
  
  /* Set df = f_trial - f */

  compute_df (f_trial, f, df);

  /* Compute the scaled actual reduction */

  fnorm1 = enorm (f_trial);

  actred = compute_actual_reduction (fnorm, fnorm1);

  /* Compute rdx = R dx */

  compute_rdx (r, dx, rdx);

  /* Compute the scaled predicted reduction phi1p = |Q^T f + R dx| */

  fnorm1p = enorm_sum (qtf, rdx);

  prered = compute_predicted_reduction (fnorm, fnorm1p);

  /* Compute the ratio of the actual to predicted reduction */

  if (prered > 0)
    {
      ratio = actred / prered;
    }
  else
    {
      ratio = 0;
    }

  /* Update the step bound */

  if (ratio < p1)
    {
      state->ncsuc = 0;
      state->ncfail++;
      state->delta *= p5;
    }
  else
    {
      state->ncfail = 0;
      state->ncsuc++;

      if (ratio >= p5 || state->ncsuc > 1)
	state->delta = GSL_MAX (state->delta, pnorm / p5);
      if (fabs (ratio - 1) <= p1)
	state->delta = pnorm / p5;
    }

  /* Test for successful iteration */

  if (ratio >= p0001)
    {
      gsl_vector_memcpy (x, x_trial);
      gsl_vector_memcpy (f, f_trial);
      state->fnorm = fnorm1;
      state->iter++;
    }

  /* Determine the progress of the iteration */

  state->nslow1++;
  if (actred >= p001)
    state->nslow1 = 0;

  if (actred >= p1)
    state->nslow2 = 0;

  if (state->ncfail == 2)
    {
      gsl_multiroot_fdjacobian (func, x, f, GSL_SQRT_DBL_EPSILON, J) ;

      state->nslow2++;

      if (state->iter == 1)
	{
          if (scale)
            compute_diag (J, diag);
	  state->delta = compute_delta (diag, x);
	}
      else
        {
          if (scale)
            update_diag (J, diag);
        }

      /* Factorize J into QR decomposition */

      gsl_linalg_QR_decomp (J, tau);
      gsl_linalg_QR_unpack (J, tau, q, r);

      return GSL_SUCCESS;
    }

  /* Compute qtdf = Q^T df, w = (Q^T df - R dx)/|dx|,  v = D^2 dx/|dx| */

  compute_qtf (q, df, qtdf);

  compute_wv (qtdf, rdx, dx, diag, pnorm, w, v);

  /* Rank-1 update of the jacobian Q'R' = Q(R + w v^T) */

  gsl_linalg_QR_update (q, r, w, v);

  /* No progress as measured by jacobian evaluations */

  if (state->nslow2 == 5)
    {
      return GSL_ENOPROGJ;
    }

  /* No progress as measured by function evaluations */

  if (state->nslow1 == 10)
    {
      return GSL_ENOPROG;
    }

  return GSL_SUCCESS;
}
int trustregion(NLP1* nlp, std::ostream *fout, 
		SymmetricMatrix& H, ColumnVector& search_dir, 
		ColumnVector& sx, real& TR_size, real& step_length, 
		real stpmax, real stpmin)
{
/****************************************************************************
 *   subroutine trustregion
 *
 *   Purpose
 *   find a step which satisfies the Goldstein-Armijo line search conditions
 *
 *        Compute the dogleg step
 *        Compute the predicted reduction, pred, of the quadratic model
 *        Compute the actual reduction, ared
 *        IF ared/pred > eta
 *          THEN x_vec = x_vec + d_vec
 *               TR_size >= TR_size
 *               Compute the gradient g_vec at the new point
 *          ELSE TR_size < ||d_vec||
 *
 *   Parameters
 *     nlp          -->  pointer to nonlinear problem object 
 *
 *     search_dir   -->  Vector of length n which specifies the 
 *                       newton direction on input. On output it will
 *                       contain the step 
 *
 *     step_length  <-- is a nonnegative variable. 
 *                      On output step_length contains the step size taken
 *
 *     ftol  -->  default Value = 1.e-4
 *                ftol should be smaller than 5.e-1
 *                suggested value = 1.e-4 for newton methods
 *                                = 1.e-1 for more exact line searches
 *     xtol  -->  default Value = 2.2e-16
 *     gtol  -->  default Value = 0.9
 *                gtol should be greater than 1.e-4 
 *
 *                termination occurs when the sufficient decrease 
 *                condition and the directional derivative condition are 
 *                satisfied. 
 *
 *     stpmin and TR_size are nonnegative input variables which 
 *       specify lower and upper bounds for the step.
 *       stpmin Default Value = 1.e-9
 *
 *   Initial version    Juan Meza November 1994
 *
 *
 *****************************************************************************/

  // Local variables

  int n = nlp->getDim();
  bool debug = nlp->getDebug();
  bool modeOverride = nlp->getModeOverride();

  ColumnVector tgrad(n), newton_dir(n), tvec(n), xc(n), xtrial(n);
  real fvalue, fplus, dnorm;
  real eta1 = .001;
  real eta2 = .1;
  real eta3 = .75;
  real rho_k;
  int iter = 0;
  int iter_max = 100;
  real dd1, dd2;
  real ared, pred;
  int dog_step;
  real TR_MAX = stpmax;
  static char *steps[] = {"C", "D", "N", "B"};
  static bool accept;

  //
  // Initialize variables
  //

  fvalue = nlp->getF();
  xc     = nlp->getXc();
  step_length = 1.0;
  tgrad      = nlp->getGrad();
  newton_dir = search_dir;

  if (debug) {
    *fout << "\n***************************************";
    *fout << "***************************************\n";
    *fout << "\nComputeStep using trustregion\n";
    *fout << "\tStep   ||step||       ared          pred        TR_size \n";
  }

  while (iter < iter_max) {
    iter++;
    //
    // Compute the dogleg step 
    //
    search_dir = newton_dir;
    dog_step = dogleg(nlp, fout, H, tgrad, search_dir, sx, dnorm, TR_size, stpmax);
    step_length = dnorm;
    //
    // Compute pred = -g'd - 1/2 d'Hd
    //
    dd1  = Dot(tgrad,search_dir);
    tvec = H * search_dir;
    dd2  = Dot(search_dir,tvec);
    pred = -dd1 - dd2/2.0;
    
    //
    // Compute objective function at trial point
    //

    xtrial = xc + search_dir;
    if (modeOverride) {
      nlp->setX(xtrial);
      nlp->eval();
      fplus = nlp->getF();
    }
    else
      fplus  = nlp->evalF(xtrial);
    ared   = fvalue - fplus;

    //
    // Should we take this step ?
    //

    rho_k = ared/pred;

    accept = false;
    if (rho_k >= eta1) accept = true;

    //
    // Update the trust region
    //

    if (accept) {

      //
      // Do the standard updating
      //
      
      if (rho_k <= eta2) {

	// Model is just sort of bad
	// New trust region will be TR_size/2
	
	if (debug) {
	  *fout << "trustregion: rho_k  = " << e(rho_k,14,4) 
	      << " eta2 = " << e(eta2,14,4) << "\n";
	}
	TR_size = step_length / 2.0;

	if (TR_size < stpmin) {
	  *fout << "***** Trust region too small to continue.\n";
	  nlp->setX(xc);
	  nlp->setF(fvalue);
	  nlp->setGrad(tgrad);
	  return(-1);
	}
      }

      else if ((eta3 <= rho_k) && (rho_k <= (2.0 - eta3))) {

	// Model is PRETTY good
	// Double trust region

	if (debug) {
	  *fout << "trustregion: rho_k = " << e(rho_k,14,4) 
	      << " eta3 = " << e(eta3,14,4) << "\n";
	}
	TR_size = min(2.0*TR_size, TR_MAX);
      }

      else {

	//
	// All other cases
	//

	TR_size = max(2.0*step_length,TR_size);
	TR_size = min(TR_size, TR_MAX);
	if (debug) {
	  *fout << "trustregion: rho_k = " << e(rho_k,14,4) << "\n";
	}
      }
    }
    
    else {

      // Model is REALLY bad
      //

      TR_size = step_length/10.0;

      if (debug) {
	*fout << "trustregion: rho_k = " << e(rho_k,14,4) << "n"
	    << " eta1 = " << e(eta1,14,4) << "\n";
      }
      if (TR_size < stpmin) {
	*fout << "***** Trust region too small to continue.\n";
	nlp->setX(xc);
	nlp->setF(fvalue);
	nlp->setGrad(tgrad);
	return(-1);
      }
    }

    //
    //  Accept/Reject Step
    //      

    if (accept) {
      //
      // Update x, f, and grad
      //

      if (!modeOverride) {
	nlp->setX(xtrial);
	nlp->setF(fplus);
	nlp->evalG();
      }

      if (debug) {
	*fout << "\t Step     ||step||       ared          pred        TR_size \n";
	*fout << "Accept  " << steps[dog_step] << e(step_length,14,4) 
	      << e(ared,14,4) << e(pred,14,4) << e(TR_size,14,4) << "\n";
      }
      return(dog_step);
    }

    else {
      //
      // Reject step
      //
	
      if (debug) {
	*fout << "\t Step     ||step||       ared          pred        TR_size \n";
	*fout << "Reject  " << steps[dog_step] << e(step_length,14,4) 
	      << e(ared,14,4)  << e(pred,14,4)  << e(TR_size,14,4) << "\n";
      }
    }
  }
  nlp->setX(xc);
  nlp->setF(fvalue);
  nlp->setGrad(tgrad);
  return(-1); // Too many iterations
}
示例#3
0
文件: hybrj.c 项目: AndresPozo/PCL
/* Subroutine */ int hybrj(minpack_funcder_nn fcn, void *p, int n, double *x, double *
	fvec, double *fjac, int ldfjac, double xtol, int
	maxfev, double *diag, int mode, double factor, int
	nprint, int *nfev, int *njev, double *r, 
	int lr, double *qtf, double *wa1, double *wa2, 
	double *wa3, double *wa4)
{
    /* Initialized data */

#define p1 .1
#define p5 .5
#define p001 .001
#define p0001 1e-4

    /* System generated locals */
    int fjac_dim1, fjac_offset;
    double d1, d2;

    /* Local variables */
    int i, j, l, jm1, iwa[1];
    double sum;
    int sing;
    int iter;
    double temp;
    int iflag;
    double delta;
    int jeval;
    int ncsuc;
    double ratio;
    double fnorm;
    double pnorm, xnorm, fnorm1;
    int nslow1, nslow2;
    int ncfail;
    double actred, epsmch, prered;
    int info;

/*     ********** */

/*     subroutine hybrj */

/*     the purpose of hybrj is to find a zero of a system of */
/*     n nonlinear functions in n variables by a modification */
/*     of the powell hybrid method. the user must provide a */
/*     subroutine which calculates the functions and the jacobian. */

/*     the subroutine statement is */

/*       subroutine hybrj(fcn,n,x,fvec,fjac,ldfjac,xtol,maxfev,diag, */
/*                        mode,factor,nprint,info,nfev,njev,r,lr,qtf, */
/*                        wa1,wa2,wa3,wa4) */

/*     where */

/*       fcn is the name of the user-supplied subroutine which */
/*         calculates the functions and the jacobian. fcn must */
/*         be declared in an external statement in the user */
/*         calling program, and should be written as follows. */

/*         subroutine fcn(n,x,fvec,fjac,ldfjac,iflag) */
/*         integer n,ldfjac,iflag */
/*         double precision x(n),fvec(n),fjac(ldfjac,n) */
/*         ---------- */
/*         if iflag = 1 calculate the functions at x and */
/*         return this vector in fvec. do not alter fjac. */
/*         if iflag = 2 calculate the jacobian at x and */
/*         return this matrix in fjac. do not alter fvec. */
/*         --------- */
/*         return */
/*         end */

/*         the value of iflag should not be changed by fcn unless */
/*         the user wants to terminate execution of hybrj. */
/*         in this case set iflag to a negative integer. */

/*       n is a positive integer input variable set to the number */
/*         of functions and variables. */

/*       x is an array of length n. on input x must contain */
/*         an initial estimate of the solution vector. on output x */
/*         contains the final estimate of the solution vector. */

/*       fvec is an output array of length n which contains */
/*         the functions evaluated at the output x. */

/*       fjac is an output n by n array which contains the */
/*         orthogonal matrix q produced by the qr factorization */
/*         of the final approximate jacobian. */

/*       ldfjac is a positive integer input variable not less than n */
/*         which specifies the leading dimension of the array fjac. */

/*       xtol is a nonnegative input variable. termination */
/*         occurs when the relative error between two consecutive */
/*         iterates is at most xtol. */

/*       maxfev is a positive integer input variable. termination */
/*         occurs when the number of calls to fcn with iflag = 1 */
/*         has reached maxfev. */

/*       diag is an array of length n. if mode = 1 (see */
/*         below), diag is internally set. if mode = 2, diag */
/*         must contain positive entries that serve as */
/*         multiplicative scale factors for the variables. */

/*       mode is an integer input variable. if mode = 1, the */
/*         variables will be scaled internally. if mode = 2, */
/*         the scaling is specified by the input diag. other */
/*         values of mode are equivalent to mode = 1. */

/*       factor is a positive input variable used in determining the */
/*         initial step bound. this bound is set to the product of */
/*         factor and the euclidean norm of diag*x if nonzero, or else */
/*         to factor itself. in most cases factor should lie in the */
/*         interval (.1,100.). 100. is a generally recommended value. */

/*       nprint is an integer input variable that enables controlled */
/*         printing of iterates if it is positive. in this case, */
/*         fcn is called with iflag = 0 at the beginning of the first */
/*         iteration and every nprint iterations thereafter and */
/*         immediately prior to return, with x and fvec available */
/*         for printing. fvec and fjac should not be altered. */
/*         if nprint is not positive, no special calls of fcn */
/*         with iflag = 0 are made. */

/*       info is an integer output variable. if the user has */
/*         terminated execution, info is set to the (negative) */
/*         value of iflag. see description of fcn. otherwise, */
/*         info is set as follows. */

/*         info = 0   improper input parameters. */

/*         info = 1   relative error between two consecutive iterates */
/*                    is at most xtol. */

/*         info = 2   number of calls to fcn with iflag = 1 has */
/*                    reached maxfev. */

/*         info = 3   xtol is too small. no further improvement in */
/*                    the approximate solution x is possible. */

/*         info = 4   iteration is not making good progress, as */
/*                    measured by the improvement from the last */
/*                    five jacobian evaluations. */

/*         info = 5   iteration is not making good progress, as */
/*                    measured by the improvement from the last */
/*                    ten iterations. */

/*       nfev is an integer output variable set to the number of */
/*         calls to fcn with iflag = 1. */

/*       njev is an integer output variable set to the number of */
/*         calls to fcn with iflag = 2. */

/*       r is an output array of length lr which contains the */
/*         upper triangular matrix produced by the qr factorization */
/*         of the final approximate jacobian, stored rowwise. */

/*       lr is a positive integer input variable not less than */
/*         (n*(n+1))/2. */

/*       qtf is an output array of length n which contains */
/*         the vector (q transpose)*fvec. */

/*       wa1, wa2, wa3, and wa4 are work arrays of length n. */

/*     subprograms called */

/*       user-supplied ...... fcn */

/*       minpack-supplied ... dogleg,dpmpar,enorm, */
/*                            qform,qrfac,r1mpyq,r1updt */

/*       fortran-supplied ... dabs,dmax1,dmin1,mod */

/*     argonne national laboratory. minpack project. march 1980. */
/*     burton s. garbow, kenneth e. hillstrom, jorge j. more */

/*     ********** */
    /* Parameter adjustments */
    --wa4;
    --wa3;
    --wa2;
    --wa1;
    --qtf;
    --diag;
    --fvec;
    --x;
    fjac_dim1 = ldfjac;
    fjac_offset = 1 + fjac_dim1 * 1;
    fjac -= fjac_offset;
    --r;

    /* Function Body */

/*     epsmch is the machine precision. */

    epsmch = dpmpar(1);

    info = 0;
    iflag = 0;
    *nfev = 0;
    *njev = 0;

/*     check the input parameters for errors. */

    if (n <= 0 || ldfjac < n || xtol < 0. || maxfev <= 0 || factor <= 
	    0. || lr < n * (n + 1) / 2) {
	goto TERMINATE;
    }
    if (mode == 2) {
        for (j = 1; j <= n; ++j) {
            if (diag[j] <= 0.) {
                goto TERMINATE;
            }
        }
    }

/*     evaluate the function at the starting point */
/*     and calculate its norm. */

    iflag = (*fcn)(p, n, &x[1], &fvec[1], &fjac[fjac_offset], ldfjac, 1);
    *nfev = 1;
    if (iflag < 0) {
	goto TERMINATE;
    }
    fnorm = enorm(n, &fvec[1]);

/*     initialize iteration counter and monitors. */

    iter = 1;
    ncsuc = 0;
    ncfail = 0;
    nslow1 = 0;
    nslow2 = 0;

/*     beginning of the outer loop. */

    for (;;) {
        jeval = TRUE_;

/*        calculate the jacobian matrix. */

        iflag = (*fcn)(p, n, &x[1], &fvec[1], &fjac[fjac_offset], ldfjac, 2);
        ++(*njev);
        if (iflag < 0) {
            goto TERMINATE;
        }

/*        compute the qr factorization of the jacobian. */

        qrfac(n, n, &fjac[fjac_offset], ldfjac, FALSE_, iwa, 1,
              &wa1[1], &wa2[1], &wa3[1]);

/*        on the first iteration and if mode is 1, scale according */
/*        to the norms of the columns of the initial jacobian. */

        if (iter == 1) {
            if (mode != 2) {
                for (j = 1; j <= n; ++j) {
                    diag[j] = wa2[j];
                    if (wa2[j] == 0.) {
                        diag[j] = 1.;
                    }
                }
            }

/*        on the first iteration, calculate the norm of the scaled x */
/*        and initialize the step bound delta. */

            for (j = 1; j <= n; ++j) {
                wa3[j] = diag[j] * x[j];
            }
            xnorm = enorm(n, &wa3[1]);
            delta = factor * xnorm;
            if (delta == 0.) {
                delta = factor;
            }
        }

/*        form (q transpose)*fvec and store in qtf. */

        for (i = 1; i <= n; ++i) {
            qtf[i] = fvec[i];
        }
        for (j = 1; j <= n; ++j) {
            if (fjac[j + j * fjac_dim1] != 0.) {
                sum = 0.;
                for (i = j; i <= n; ++i) {
                    sum += fjac[i + j * fjac_dim1] * qtf[i];
                }
                temp = -sum / fjac[j + j * fjac_dim1];
                for (i = j; i <= n; ++i) {
                    qtf[i] += fjac[i + j * fjac_dim1] * temp;
                }
            }
        }

/*        copy the triangular factor of the qr factorization into r. */

        sing = FALSE_;
        for (j = 1; j <= n; ++j) {
            l = j;
            jm1 = j - 1;
            if (jm1 >= 1) {
                for (i = 1; i <= jm1; ++i) {
                    r[l] = fjac[i + j * fjac_dim1];
                    l = l + n - i;
                }
            }
            r[l] = wa1[j];
            if (wa1[j] == 0.) {
                sing = TRUE_;
            }
        }

/*        accumulate the orthogonal factor in fjac. */

        qform(n, n, &fjac[fjac_offset], ldfjac, &wa1[1]);

/*        rescale if necessary. */

        if (mode != 2) {
            for (j = 1; j <= n; ++j) {
                /* Computing MAX */
                d1 = diag[j], d2 = wa2[j];
                diag[j] = max(d1,d2);
            }
        }

/*        beginning of the inner loop. */

        for (;;) {

/*           if requested, call fcn to enable printing of iterates. */

            if (nprint > 0) {
                iflag = 0;
                if ((iter - 1) % nprint == 0) {
                    iflag = (*fcn)(p, n, &x[1], &fvec[1], &fjac[fjac_offset], ldfjac, 0);
                }
                if (iflag < 0) {
                    goto TERMINATE;
                }
            }

/*           determine the direction p. */

            dogleg(n, &r[1], lr, &diag[1], &qtf[1], delta, &wa1[1], &wa2[1], &wa3[1]);

/*           store the direction p and x + p. calculate the norm of p. */

            for (j = 1; j <= n; ++j) {
                wa1[j] = -wa1[j];
                wa2[j] = x[j] + wa1[j];
                wa3[j] = diag[j] * wa1[j];
            }
            pnorm = enorm(n, &wa3[1]);

/*           on the first iteration, adjust the initial step bound. */

            if (iter == 1) {
                delta = min(delta,pnorm);
            }

/*           evaluate the function at x + p and calculate its norm. */

            iflag = (*fcn)(p, n, &wa2[1], &wa4[1], &fjac[fjac_offset], ldfjac, 1);
            ++(*nfev);
            if (iflag < 0) {
                goto TERMINATE;
            }
            fnorm1 = enorm(n, &wa4[1]);

/*           compute the scaled actual reduction. */

            actred = -1.;
            if (fnorm1 < fnorm) {
                /* Computing 2nd power */
                d1 = fnorm1 / fnorm;
                actred = 1. - d1 * d1;
            }

/*           compute the scaled predicted reduction. */

            l = 1;
            for (i = 1; i <= n; ++i) {
                sum = 0.;
                for (j = i; j <= n; ++j) {
                    sum += r[l] * wa1[j];
                    ++l;
                }
                wa3[i] = qtf[i] + sum;
            }
            temp = enorm(n, &wa3[1]);
            prered = 0.;
            if (temp < fnorm) {
                /* Computing 2nd power */
                d1 = temp / fnorm;
                prered = 1. - d1 * d1;
            }

/*           compute the ratio of the actual to the predicted */
/*           reduction. */

            ratio = 0.;
            if (prered > 0.) {
                ratio = actred / prered;
            }

/*           update the step bound. */

            if (ratio < p1) {
                ncsuc = 0;
                ++ncfail;
                delta = p5 * delta;
            } else {
                ncfail = 0;
                ++ncsuc;
                if (ratio >= p5 || ncsuc > 1) {
                    /* Computing MAX */
                    d1 = pnorm / p5;
                    delta = max(delta,d1);
                }
                if (fabs(ratio - 1.) <= p1) {
                    delta = pnorm / p5;
                }
            }

/*           test for successful iteration. */

            if (ratio >= p0001) {

/*           successful iteration. update x, fvec, and their norms. */

                for (j = 1; j <= n; ++j) {
                    x[j] = wa2[j];
                    wa2[j] = diag[j] * x[j];
                    fvec[j] = wa4[j];
                }
                xnorm = enorm(n, &wa2[1]);
                fnorm = fnorm1;
                ++iter;
            }

/*           determine the progress of the iteration. */

            ++nslow1;
            if (actred >= p001) {
                nslow1 = 0;
            }
            if (jeval) {
                ++nslow2;
            }
            if (actred >= p1) {
                nslow2 = 0;
            }

/*           test for convergence. */

            if (delta <= xtol * xnorm || fnorm == 0.) {
                info = 1;
            }
            if (info != 0) {
                goto TERMINATE;
            }

/*           tests for termination and stringent tolerances. */

            if (*nfev >= maxfev) {
                info = 2;
            }
            /* Computing MAX */
            d1 = p1 * delta;
            if (p1 * max(d1,pnorm) <= epsmch * xnorm) {
                info = 3;
            }
            if (nslow2 == 5) {
                info = 4;
            }
            if (nslow1 == 10) {
                info = 5;
            }
            if (info != 0) {
                goto TERMINATE;
            }

/*           criterion for recalculating jacobian. */

            if (ncfail == 2) {
                goto TERMINATE_INNER_LOOP;
            }

/*           calculate the rank one modification to the jacobian */
/*           and update qtf if necessary. */

            for (j = 1; j <= n; ++j) {
                sum = 0.;
                for (i = 1; i <= n; ++i) {
                    sum += fjac[i + j * fjac_dim1] * wa4[i];
                }
                wa2[j] = (sum - wa3[j]) / pnorm;
                wa1[j] = diag[j] * (diag[j] * wa1[j] / pnorm);
                if (ratio >= p0001) {
                    qtf[j] = sum;
                }
            }

/*           compute the qr factorization of the updated jacobian. */

            r1updt(n, n, &r[1], lr, &wa1[1], &wa2[1], &wa3[1], &sing);
            r1mpyq(n, n, &fjac[fjac_offset], ldfjac, &wa2[1], &wa3[1]);
            r1mpyq(1, n, &qtf[1], 1, &wa2[1], &wa3[1]);

/*           end of the inner loop. */

            jeval = FALSE_;
        }
TERMINATE_INNER_LOOP:
        ;
/*        end of the outer loop. */

    }
TERMINATE:

/*     termination, either normal or user imposed. */

    if (iflag < 0) {
	info = iflag;
    }
    if (nprint > 0) {
	(*fcn)(p, n, &x[1], &fvec[1], &fjac[fjac_offset], ldfjac, 0);
    }
    return info;

/*     last card of subroutine hybrj. */

} /* hybrj_ */