示例#1
0
int
main (int argc, char* argv[])
{
    BoxLib::Initialize(argc,argv);

    // What time is it now?  We'll use this to compute total run time.
    Real strt_time = ParallelDescriptor::second();

    std::cout << std::setprecision(15);

    // ParmParse is way of reading inputs from the inputs file
    ParmParse pp;
    
    int verbose = 0;
    pp.query("verbose", verbose);
    
    // We need to get n_cell from the inputs file - this is the number of cells on each side of 
    //   a square (or cubic) domain.
    int n_cell;
    pp.get("n_cell",n_cell);

    int max_grid_size;
    pp.get("max_grid_size",max_grid_size);

    // Default plot_int to 1, allow us to set it to something else in the inputs file
    //  If plot_int < 0 then no plot files will be written
    int plot_int = 1;
    pp.query("plot_int",plot_int);

    // Default nsteps to 0, allow us to set it to something else in the inputs file
    int nsteps   = 0;
    pp.query("nsteps",nsteps);

    pp.query("do_tiling", do_tiling);

    // Define a single box covering the domain
    IntVect dom_lo(0,0,0);
    IntVect dom_hi(n_cell-1,n_cell-1,n_cell-1);
    Box domain(dom_lo,dom_hi);

    // Initialize the boxarray "bs" from the single box "bx"
    BoxArray bs(domain);

    // Break up boxarray "bs" into chunks no larger than "max_grid_size" along a direction
    bs.maxSize(max_grid_size);

    // This defines the physical size of the box.  Right now the box is [-1,1] in each direction.
    RealBox real_box;
    for (int n = 0; n < BL_SPACEDIM; n++) {
	real_box.setLo(n,-1.0);
	real_box.setHi(n, 1.0);
    }

    // This says we are using Cartesian coordinates
    int coord = 0;
    
    // This sets the boundary conditions to be doubly or triply periodic
    int is_per[BL_SPACEDIM];
    for (int i = 0; i < BL_SPACEDIM; i++) is_per[i] = 1; 
    
    // This defines a Geometry object which is useful for writing the plotfiles  
    Geometry geom(domain,&real_box,coord,is_per);

    // This defines the mesh spacing
    Real dx[BL_SPACEDIM];
    for ( int n=0; n<BL_SPACEDIM; n++ )
	dx[n] = ( geom.ProbHi(n) - geom.ProbLo(n) )/domain.length(n);

    // Nghost = number of ghost cells for each array 
    int Nghost = 1;

    // Ncomp = number of components for each array
    int Ncomp  = 1;
    pp.query("ncomp", Ncomp);

    // Allocate space for the old_phi and new_phi -- we define old_phi and new_phi as
    PArray < MultiFab > phis(2, PArrayManage);
    phis.set(0, new MultiFab(bs, Ncomp, Nghost));
    phis.set(1, new MultiFab(bs, Ncomp, Nghost));
    MultiFab* old_phi = &phis[0];
    MultiFab* new_phi = &phis[1];

    // Initialize both to zero (just because)
    old_phi->setVal(0.0);
    new_phi->setVal(0.0);

    // Initialize phi by calling a Fortran routine.
    // MFIter = MultiFab Iterator
#ifdef _OPENMP
#pragma omp parallel
#endif
    for ( MFIter mfi(*new_phi,true); mfi.isValid(); ++mfi )
    {
	const Box& bx = mfi.tilebox();

	init_phi(bx.loVect(),bx.hiVect(), 
		 BL_TO_FORTRAN((*new_phi)[mfi]),Ncomp,
		 dx,geom.ProbLo(),geom.ProbHi());
    }

    // Call the compute_dt routine to return a time step which we will pass to advance
    Real dt = compute_dt(dx[0]);

    // Write a plotfile of the initial data if plot_int > 0 (plot_int was defined in the inputs file)
    if (plot_int > 0) {
	int n = 0;
	const std::string& pltfile = BoxLib::Concatenate("plt",n,5);
	writePlotFile(pltfile, *new_phi, geom);
    }

    Real adv_start_time = ParallelDescriptor::second();

    for (int n = 1; n <= nsteps; n++)
    {
	// Swap the pointers so we don't have to allocate and de-allocate data
	std::swap(old_phi, new_phi);

	// new_phi = old_phi + dt * (something)
	advance(old_phi, new_phi, dx, dt, geom); 

	// Tell the I/O Processor to write out which step we're doing
	if (verbose && ParallelDescriptor::IOProcessor())
	    std::cout << "Advanced step " << n << std::endl;

	// Write a plotfile of the current data (plot_int was defined in the inputs file)
	if (plot_int > 0 && n%plot_int == 0) {
	    const std::string& pltfile = BoxLib::Concatenate("plt",n,5);
	    writePlotFile(pltfile, *new_phi, geom);
	}
    }

    // Call the timer again and compute the maximum difference between the start time and stop time
    //   over all processors
    Real advance_time = ParallelDescriptor::second() - adv_start_time;
    Real stop_time = ParallelDescriptor::second() - strt_time;
    const int IOProc = ParallelDescriptor::IOProcessorNumber();
    ParallelDescriptor::ReduceRealMax(stop_time,IOProc);
    ParallelDescriptor::ReduceRealMax(advance_time,IOProc);
    ParallelDescriptor::ReduceRealMax(kernel_time,IOProc);
    ParallelDescriptor::ReduceRealMax(FB_time,IOProc);
    
    // Tell the I/O Processor to write out the "run time"
    if (ParallelDescriptor::IOProcessor()) {
	std::cout << "Kernel    time = " << kernel_time << std::endl;
	std::cout << "FB        time = " << FB_time << std::endl;
	std::cout << "Advance   time = " << advance_time << std::endl;
	std::cout << "Total run time = " << stop_time << std::endl;
    }
    
    // Say goodbye to MPI, etc...
    BoxLib::Finalize();
}
示例#2
0
文件: main.cpp 项目: dwillcox/BoxLib
int
main (int argc, char* argv[])
{
  BoxLib::Initialize(argc,argv);

  // What time is it now?  We'll use this to compute total run time.
  Real strt_time = ParallelDescriptor::second();

  std::cout << std::setprecision(15);

  // ParmParse is way of reading inputs from the inputs file
  ParmParse pp;

  // We need to get n_cell from the inputs file - this is the number of cells on each side of 
  //   a square (or cubic) domain.
  int n_cell;
  pp.get("n_cell",n_cell);

  // Default nsteps to 0, allow us to set it to something else in the inputs file
  int max_grid_size;
  pp.get("max_grid_size",max_grid_size);

  // Default plot_int to 1, allow us to set it to something else in the inputs file
  //  If plot_int < 0 then no plot files will be written
  int plot_int = 1;
  pp.query("plot_int",plot_int);

  // Default nsteps to 0, allow us to set it to something else in the inputs file
  int nsteps   = 0;
  pp.query("nsteps",nsteps);

  // Define a single box covering the domain
#if (BL_SPACEDIM == 2)
  IntVect dom_lo(0,0);
  IntVect dom_hi(n_cell-1,n_cell-1);
#else
  IntVect dom_lo(0,0,0);
  IntVect dom_hi(n_cell-1,n_cell-1,n_cell-1);
#endif
  Box domain(dom_lo,dom_hi);

  // Initialize the boxarray "bs" from the single box "bx"
  BoxArray bs(domain);

  // Break up boxarray "bs" into chunks no larger than "max_grid_size" along a direction
  bs.maxSize(max_grid_size);

  // This defines the physical size of the box.  Right now the box is [-1,1] in each direction.
  RealBox real_box;
  for (int n = 0; n < BL_SPACEDIM; n++)
  {
     real_box.setLo(n,-1.0);
     real_box.setHi(n, 1.0);
  }

  // This says we are using Cartesian coordinates
  int coord = 0;

  // This sets the boundary conditions to be doubly or triply periodic
  int is_per[BL_SPACEDIM];
  for (int i = 0; i < BL_SPACEDIM; i++) is_per[i] = 1; 

  // This defines a Geometry object which is useful for writing the plotfiles  
  Geometry geom(domain,&real_box,coord,is_per);

  // This defines the mesh spacing
  Real dx[BL_SPACEDIM];
  for ( int n=0; n<BL_SPACEDIM; n++ )
      dx[n] = ( geom.ProbHi(n) - geom.ProbLo(n) )/domain.length(n);

  // Nghost = number of ghost cells for each array 
  int Nghost = 1;

  // Ncomp = number of components for each array
  int Ncomp  = 1;

  // Make sure we can fill the ghost cells from the adjacent grid
  if (Nghost > max_grid_size)
    std::cout <<  "NGHOST < MAX_GRID_SIZE --  grids are too small! " << std::endl;

  // Allocate space for the old_phi and new_phi -- we define old_phi and new_phi as
  //   pointers to the MultiFabs
  MultiFab* old_phi = new MultiFab(bs, Ncomp, Nghost);
  MultiFab* new_phi = new MultiFab(bs, Ncomp, Nghost);

  // Initialize both to zero (just because)
  old_phi->setVal(0.0);
  new_phi->setVal(0.0);

  // Initialize the old_phi by calling a Fortran routine.
  // MFIter = MultiFab Iterator
  for ( MFIter mfi(*new_phi); mfi.isValid(); ++mfi )
  {
    const Box& bx = mfi.validbox();

    FORT_INIT_PHI((*new_phi)[mfi].dataPtr(),
                     bx.loVect(),bx.hiVect(), &Nghost,
                     dx,geom.ProbLo(),geom.ProbHi());
  }

  // Call the compute_dt routine to return a time step which we will pass to advance
  Real dt = compute_dt(dx[0]);

  // Write a plotfile of the initial data if plot_int > 0 (plot_int was defined in the inputs file)
  if (plot_int > 0)
  {
     int n = 0;
     const std::string& pltfile = BoxLib::Concatenate("plt",n,5);
     writePlotFile(pltfile, *new_phi, geom);
  }

  // build the flux multifabs
  MultiFab* flux = new MultiFab[BL_SPACEDIM];
  for (int dir = 0; dir < BL_SPACEDIM; dir++)
    {
      BoxArray edge_grids(bs);
      // flux(dir) has one component, zero ghost cells, and is nodal in direction dir
      edge_grids.surroundingNodes(dir);
      flux[dir].define(edge_grids,1,0,Fab_allocate);
    }

  for (int n = 1; n <= nsteps; n++)
  {
     // Swap the pointers so we don't have to allocate and de-allocate data
     std::swap(old_phi, new_phi);

     // new_phi = old_phi + dt * (something)
     advance(old_phi, new_phi, flux, dx, dt, geom); 

     // Tell the I/O Processor to write out which step we're doing
     if (ParallelDescriptor::IOProcessor())
        std::cout << "Advanced step " << n << std::endl;

     // Write a plotfile of the current data (plot_int was defined in the inputs file)
     if (plot_int > 0 && n%plot_int == 0)
     {
        const std::string& pltfile = BoxLib::Concatenate("plt",n,5);
        writePlotFile(pltfile, *new_phi, geom);
     }
  }

  // Call the timer again and compute the maximum difference between the start time and stop time
  //   over all processors
  Real stop_time = ParallelDescriptor::second() - strt_time;
  const int IOProc = ParallelDescriptor::IOProcessorNumber();
  ParallelDescriptor::ReduceRealMax(stop_time,IOProc);

  // Tell the I/O Processor to write out the "run time"
  if (ParallelDescriptor::IOProcessor())
     std::cout << "Run time = " << stop_time << std::endl;
  
  // Say goodbye to MPI, etc...
  BoxLib::Finalize();

}
示例#3
0
void main_main ()
{
  // What time is it now?  We'll use this to compute total run time.
  Real strt_time = ParallelDescriptor::second();

  std::cout << std::setprecision(15);

  int n_cell, max_grid_size, nsteps, plot_int, is_periodic[BL_SPACEDIM];

  // Boundary conditions
  Array<int> lo_bc(BL_SPACEDIM), hi_bc(BL_SPACEDIM);

  // inputs parameters
  {
    // ParmParse is way of reading inputs from the inputs file
    ParmParse pp;

    // We need to get n_cell from the inputs file - this is the number of cells on each side of 
    //   a square (or cubic) domain.
    pp.get("n_cell",n_cell);

    // Default nsteps to 0, allow us to set it to something else in the inputs file
    pp.get("max_grid_size",max_grid_size);

    // Default plot_int to 1, allow us to set it to something else in the inputs file
    //  If plot_int < 0 then no plot files will be written
    plot_int = 1;
    pp.query("plot_int",plot_int);

    // Default nsteps to 0, allow us to set it to something else in the inputs file
    nsteps = 0;
    pp.query("nsteps",nsteps);

    // Boundary conditions - default is periodic (INT_DIR)
    for (int i = 0; i < BL_SPACEDIM; ++i)
    {
      lo_bc[i] = hi_bc[i] = INT_DIR;   // periodic boundaries are interior boundaries
    }
    pp.queryarr("lo_bc",lo_bc,0,BL_SPACEDIM);
    pp.queryarr("hi_bc",hi_bc,0,BL_SPACEDIM);
  }

  // make BoxArray and Geometry
  BoxArray ba;
  Geometry geom;
  {
    IntVect dom_lo(IntVect(D_DECL(0,0,0)));
    IntVect dom_hi(IntVect(D_DECL(n_cell-1, n_cell-1, n_cell-1)));
    Box domain(dom_lo, dom_hi);

    // Initialize the boxarray "ba" from the single box "bx"
    ba.define(domain);
    // Break up boxarray "ba" into chunks no larger than "max_grid_size" along a direction
    ba.maxSize(max_grid_size);

    // This defines the physical size of the box.  Right now the box is [-1,1] in each direction.
    RealBox real_box;
    for (int n = 0; n < BL_SPACEDIM; n++) {
      real_box.setLo(n,-1.0);
      real_box.setHi(n, 1.0);
    }

    // This says we are using Cartesian coordinates
    int coord = 0;
	
    // This sets the boundary conditions to be doubly or triply periodic
    int is_periodic[BL_SPACEDIM];
    for (int i = 0; i < BL_SPACEDIM; i++)
    {
      is_periodic[i] = 0;
      if (lo_bc[i] == 0 && hi_bc[i] == 0) {
	is_periodic[i] = 1;
      }
    }

    // This defines a Geometry object
    geom.define(domain,&real_box,coord,is_periodic);
  }

  // Boundary conditions
  PhysBCFunct physbcf;
  BCRec bcr(&lo_bc[0], &hi_bc[0]);
  physbcf.define(geom, bcr, BndryFunctBase(phifill)); // phifill is a fortran function

  // define dx[]
  const Real* dx = geom.CellSize();

  // Nghost = number of ghost cells for each array 
  int Nghost = 1;

  // Ncomp = number of components for each array
  int Ncomp  = 1;

  // time = starting time in the simulation
  Real time = 0.0;
  
  // we allocate two phi multifabs; one will store the old state, the other the new
  // we swap the indices each time step to avoid copies of new into old
  PArray<MultiFab> phi(2, PArrayManage);
  phi.set(0, new MultiFab(ba, Ncomp, Nghost));
  phi.set(1, new MultiFab(ba, Ncomp, Nghost));

  // Initialize both to zero (just because)
  phi[0].setVal(0.0);
  phi[1].setVal(0.0);

  // Initialize phi[init_index] by calling a Fortran routine.
  // MFIter = MultiFab Iterator
  int init_index = 0;
  for ( MFIter mfi(phi[init_index]); mfi.isValid(); ++mfi )
  {
    const Box& bx = mfi.validbox();

    init_phi(phi[init_index][mfi].dataPtr(),
	     bx.loVect(), bx.hiVect(), &Nghost,
	     geom.CellSize(), geom.ProbLo(), geom.ProbHi());
  }

  // compute the time step
  Real dt = 0.9*dx[0]*dx[0] / (2.0*BL_SPACEDIM);

  // Write a plotfile of the initial data if plot_int > 0 (plot_int was defined in the inputs file)
  if (plot_int > 0)
  {
    int n = 0;
    const std::string& pltfile = BoxLib::Concatenate("plt",n,5);
    writePlotFile(pltfile, phi[init_index], geom, time);
  }

  // build the flux multifabs
  PArray<MultiFab> flux(BL_SPACEDIM, PArrayManage);
  for (int dir = 0; dir < BL_SPACEDIM; dir++)
  {
    // flux(dir) has one component, zero ghost cells, and is nodal in direction dir
    BoxArray edge_ba = ba;
    edge_ba.surroundingNodes(dir);
    flux.set(dir, new MultiFab(edge_ba, 1, 0));
  }

  int old_index = init_index;
  for (int n = 1; n <= nsteps; n++, old_index = 1 - old_index)
  {
    int new_index = 1 - old_index;

    // new_phi = old_phi + dt * (something)
    advance(phi[old_index], phi[new_index], flux, time, dt, geom, physbcf, bcr); 
    time = time + dt;

    // Tell the I/O Processor to write out which step we're doing
    if (ParallelDescriptor::IOProcessor())
      std::cout << "Advanced step " << n << std::endl;

    // Write a plotfile of the current data (plot_int was defined in the inputs file)
    if (plot_int > 0 && n%plot_int == 0)
    {
      const std::string& pltfile = BoxLib::Concatenate("plt",n,5);
      writePlotFile(pltfile, phi[new_index], geom, time);
    }
  }

  // Call the timer again and compute the maximum difference between the start time and stop time
  //   over all processors
  Real stop_time = ParallelDescriptor::second() - strt_time;
  const int IOProc = ParallelDescriptor::IOProcessorNumber();
  ParallelDescriptor::ReduceRealMax(stop_time,IOProc);

  // Tell the I/O Processor to write out the "run time"
  if (ParallelDescriptor::IOProcessor()) {
    std::cout << "Run time = " << stop_time << std::endl;
  }
}
示例#4
0
文件: main.cpp 项目: qinyubo/BoxLib
int main(int argc, char* argv[])
{
  BoxLib::Initialize(argc,argv);

  BL_PROFILE_VAR("main()", pmain);

  std::cout << std::setprecision(15);

  ParmParse ppmg("mg");  
  ppmg.query("v", verbose);
  ppmg.query("maxorder", maxorder);
  
  ParmParse pp;

  {
    std::string solver_type_s;
    pp.get("solver_type",solver_type_s);
    if (solver_type_s == "BoxLib_C") {
      solver_type = BoxLib_C;
    }
    else if (solver_type_s == "BoxLib_C4") {
      solver_type = BoxLib_C4;
    }
    else if (solver_type_s == "BoxLib_F") {
#ifdef USE_F90_SOLVERS
      solver_type = BoxLib_F;      
#else
      BoxLib::Error("Set USE_FORTRAN=TRUE in GNUmakefile");
#endif
    }
    else if (solver_type_s == "Hypre") {
#ifdef USEHYPRE
      solver_type = Hypre;
#else
      BoxLib::Error("Set USE_HYPRE=TRUE in GNUmakefile");
#endif
    }
    else if (solver_type_s == "All") {
      solver_type = All;
    }  
    else {
      if (ParallelDescriptor::IOProcessor()) {
	std::cout << "Don't know this solver type: " << solver_type << std::endl;
      }
      BoxLib::Error("");
    }
  }

  {
    std::string bc_type_s;
    pp.get("bc_type",bc_type_s);
    if (bc_type_s == "Dirichlet") {
      bc_type = Dirichlet;
#ifdef USEHPGMG
      domain_boundary_condition = BC_DIRICHLET;
#endif
    }
    else if (bc_type_s == "Neumann") {
      bc_type = Neumann;
#ifdef USEHPGMG
      BoxLib::Error("HPGMG does not support Neumann boundary conditions");
#endif
    }
    else if (bc_type_s == "Periodic") {
      bc_type = Periodic;
#ifdef USEHPGMG
      domain_boundary_condition = BC_PERIODIC;
#endif
    }
    else {
      if (ParallelDescriptor::IOProcessor()) {
	std::cout << "Don't know this boundary type: " << bc_type << std::endl;
      }
      BoxLib::Error("");
    }
  }

  pp.query("tol_rel", tolerance_rel);
  pp.query("tol_abs", tolerance_abs);
  pp.query("maxiter", maxiter);
  pp.query("plot_rhs" , plot_rhs);
  pp.query("plot_beta", plot_beta);
  pp.query("plot_soln", plot_soln);
  pp.query("plot_asol", plot_asol);
  pp.query("plot_err", plot_err);
  pp.query("comp_norm", comp_norm);

  Real a, b;
  pp.get("a",  a);
  pp.get("b",  b);

  pp.get("n_cell",n_cell);
  pp.get("max_grid_size",max_grid_size);

  // Define a single box covering the domain
  IntVect dom_lo(D_DECL(0,0,0));
  IntVect dom_hi(D_DECL(n_cell-1,n_cell-1,n_cell-1));
  Box domain(dom_lo,dom_hi);

  // Initialize the boxarray "bs" from the single box "bx"
  BoxArray bs(domain);

  // Break up boxarray "bs" into chunks no larger than "max_grid_size" along a direction
  bs.maxSize(max_grid_size);

  // This defines the physical size of the box.  Right now the box is [0,1] in each direction.
  RealBox real_box;
  for (int n = 0; n < BL_SPACEDIM; n++) {
    real_box.setLo(n, 0.0);
    real_box.setHi(n, 1.0);
  }
 
  // This says we are using Cartesian coordinates
  int coord = 0;
  
  // This sets the boundary conditions to be periodic or not
  Array<int> is_per(BL_SPACEDIM,1);
  
  if (bc_type == Dirichlet || bc_type == Neumann) {
    if (ParallelDescriptor::IOProcessor()) {
      std::cout << "Using Dirichlet or Neumann boundary conditions." << std::endl;
    }
    for (int n = 0; n < BL_SPACEDIM; n++) is_per[n] = 0;
  } 
  else {
    if (ParallelDescriptor::IOProcessor()) {
      std::cout << "Using periodic boundary conditions." << std::endl;
    }
    for (int n = 0; n < BL_SPACEDIM; n++) is_per[n] = 1;
  }
 
  // This defines a Geometry object which is useful for writing the plotfiles
  Geometry geom(domain,&real_box,coord,is_per.dataPtr());

  for ( int n=0; n<BL_SPACEDIM; n++ ) {
    dx[n] = ( geom.ProbHi(n) - geom.ProbLo(n) )/domain.length(n);
  }

  if (ParallelDescriptor::IOProcessor()) {
    std::cout << "Grid resolution : " << n_cell << " (cells)" << std::endl;
    std::cout << "Domain size     : " << real_box.hi(0) - real_box.lo(0) << " (length unit) " << std::endl;
    std::cout << "Max_grid_size   : " << max_grid_size << " (cells)" << std::endl;
    std::cout << "Number of grids : " << bs.size() << std::endl;
  }

  // Allocate and define the right hand side.
  bool do_4th = (solver_type==BoxLib_C4 || solver_type==All);
  int ngr = (do_4th ? 1 : 0);
  MultiFab rhs(bs, Ncomp, ngr); 
  setup_rhs(rhs, geom);

  // Set up the Helmholtz operator coefficients.
  MultiFab alpha(bs, Ncomp, 0);
  PArray<MultiFab> beta(BL_SPACEDIM, PArrayManage);
  for ( int n=0; n<BL_SPACEDIM; ++n ) {
    BoxArray bx(bs);
    beta.set(n, new MultiFab(bx.surroundingNodes(n), Ncomp, 0, Fab_allocate));
  }

  // The way HPGMG stores face-centered data is completely different than the
  // way BoxLib does it, and translating between the two directly via indexing
  // magic is a nightmare. Happily, the way this tutorial calculates
  // face-centered values is by first calculating cell-centered values and then
  // interpolating to the cell faces. HPGMG can do the same thing, so rather
  // than converting directly from BoxLib's face-centered data to HPGMG's, just
  // give HPGMG the cell-centered data and let it interpolate itself.

  MultiFab beta_cc(bs,Ncomp,1); // cell-centered beta
  setup_coeffs(bs, alpha, beta, geom, beta_cc);

  MultiFab alpha4, beta4;
  if (do_4th) {
    alpha4.define(bs, Ncomp, 4, Fab_allocate);
    beta4.define(bs, Ncomp, 3, Fab_allocate);
    setup_coeffs4(bs, alpha4, beta4, geom);
  }

  MultiFab anaSoln;
  if (comp_norm || plot_err || plot_asol) {
    anaSoln.define(bs, Ncomp, 0, Fab_allocate);
    compute_analyticSolution(anaSoln,Array<Real>(BL_SPACEDIM,0.5));
    
    if (plot_asol) {
      writePlotFile("ASOL", anaSoln, geom);
    }
  }

  // Allocate the solution array 
  // Set the number of ghost cells in the solution array.
  MultiFab soln(bs, Ncomp, 1);
  MultiFab soln4;
  if (do_4th) {
    soln4.define(bs, Ncomp, 3, Fab_allocate);
  }
  MultiFab gphi(bs, BL_SPACEDIM, 0);

#ifdef USEHYPRE
  if (solver_type == Hypre || solver_type == All) {
    if (ParallelDescriptor::IOProcessor()) {
      std::cout << "----------------------------------------" << std::endl;
      std::cout << "Solving with Hypre " << std::endl;
    }

    solve(soln, anaSoln, gphi, a, b, alpha, beta, beta_cc, rhs, bs, geom, Hypre);
  }
#endif

  if (solver_type == BoxLib_C || solver_type == All) {
    if (ParallelDescriptor::IOProcessor()) {
      std::cout << "----------------------------------------" << std::endl;
      std::cout << "Solving with BoxLib C++ solver " << std::endl;
    }
    solve(soln, anaSoln, gphi, a, b, alpha, beta, beta_cc, rhs, bs, geom, BoxLib_C);
  }

  if (solver_type == BoxLib_C4 || solver_type == All) {
    if (ParallelDescriptor::IOProcessor()) {
      std::cout << "----------------------------------------" << std::endl;
      std::cout << "Solving with BoxLib C++ 4th order solver " << std::endl;
    }

    solve4(soln4, anaSoln, a, b, alpha4, beta4, rhs, bs, geom);
  }

#ifdef USE_F90_SOLVERS
  if (solver_type == BoxLib_F || solver_type == All) {
    if (ParallelDescriptor::IOProcessor()) {
      std::cout << "----------------------------------------" << std::endl;
      std::cout << "Solving with BoxLib F90 solver " << std::endl;
    }

    solve(soln, anaSoln, gphi, a, b, alpha, beta, beta_cc, rhs, bs, geom, BoxLib_F);
  }
#endif

#ifdef USEHPGMG
  if (solver_type == HPGMG || solver_type == All) {
    if (ParallelDescriptor::IOProcessor()) {
      std::cout << "----------------------------------------" << std::endl;
      std::cout << "Solving with HPGMG solver " << std::endl;
    }

    solve(soln, anaSoln, gphi, a, b, alpha, beta, beta_cc, rhs, bs, geom, HPGMG);
  }
#endif

  if (ParallelDescriptor::IOProcessor()) {
    std::cout << "----------------------------------------" << std::endl;
  }
  
  BL_PROFILE_VAR_STOP(pmain);

  BoxLib::Finalize();
}