template<typename SparseMatrixType> void sparse_product() { typedef typename SparseMatrixType::Index Index; Index n = 100; const Index rows = internal::random<int>(1,n); const Index cols = internal::random<int>(1,n); const Index depth = internal::random<int>(1,n); typedef typename SparseMatrixType::Scalar Scalar; enum { Flags = SparseMatrixType::Flags }; double density = (std::max)(8./(rows*cols), 0.1); typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; typedef Matrix<Scalar,1,Dynamic> RowDenseVector; typedef SparseVector<Scalar,0,Index> ColSpVector; typedef SparseVector<Scalar,RowMajor,Index> RowSpVector; Scalar s1 = internal::random<Scalar>(); Scalar s2 = internal::random<Scalar>(); // test matrix-matrix product { DenseMatrix refMat2 = DenseMatrix::Zero(rows, depth); DenseMatrix refMat2t = DenseMatrix::Zero(depth, rows); DenseMatrix refMat3 = DenseMatrix::Zero(depth, cols); DenseMatrix refMat3t = DenseMatrix::Zero(cols, depth); DenseMatrix refMat4 = DenseMatrix::Zero(rows, cols); DenseMatrix refMat4t = DenseMatrix::Zero(cols, rows); DenseMatrix refMat5 = DenseMatrix::Random(depth, cols); DenseMatrix refMat6 = DenseMatrix::Random(rows, rows); DenseMatrix dm4 = DenseMatrix::Zero(rows, rows); // DenseVector dv1 = DenseVector::Random(rows); SparseMatrixType m2 (rows, depth); SparseMatrixType m2t(depth, rows); SparseMatrixType m3 (depth, cols); SparseMatrixType m3t(cols, depth); SparseMatrixType m4 (rows, cols); SparseMatrixType m4t(cols, rows); SparseMatrixType m6(rows, rows); initSparse(density, refMat2, m2); initSparse(density, refMat2t, m2t); initSparse(density, refMat3, m3); initSparse(density, refMat3t, m3t); initSparse(density, refMat4, m4); initSparse(density, refMat4t, m4t); initSparse(density, refMat6, m6); // int c = internal::random<int>(0,depth-1); // sparse * sparse VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3); VERIFY_IS_APPROX(m4=m2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3); VERIFY_IS_APPROX(m4=m2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose()); VERIFY_IS_APPROX(m4=m2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose()); VERIFY_IS_APPROX(m4 = m2*m3/s1, refMat4 = refMat2*refMat3/s1); VERIFY_IS_APPROX(m4 = m2*m3*s1, refMat4 = refMat2*refMat3*s1); VERIFY_IS_APPROX(m4 = s2*m2*m3*s1, refMat4 = s2*refMat2*refMat3*s1); VERIFY_IS_APPROX(m4=(m2*m3).pruned(0), refMat4=refMat2*refMat3); VERIFY_IS_APPROX(m4=(m2t.transpose()*m3).pruned(0), refMat4=refMat2t.transpose()*refMat3); VERIFY_IS_APPROX(m4=(m2t.transpose()*m3t.transpose()).pruned(0), refMat4=refMat2t.transpose()*refMat3t.transpose()); VERIFY_IS_APPROX(m4=(m2*m3t.transpose()).pruned(0), refMat4=refMat2*refMat3t.transpose()); // test aliasing m4 = m2; refMat4 = refMat2; VERIFY_IS_APPROX(m4=m4*m3, refMat4=refMat4*refMat3); // sparse * dense VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3); VERIFY_IS_APPROX(dm4=m2*refMat3t.transpose(), refMat4=refMat2*refMat3t.transpose()); VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3, refMat4=refMat2t.transpose()*refMat3); VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose()); VERIFY_IS_APPROX(dm4=m2*(refMat3+refMat3), refMat4=refMat2*(refMat3+refMat3)); VERIFY_IS_APPROX(dm4=m2t.transpose()*(refMat3+refMat5)*0.5, refMat4=refMat2t.transpose()*(refMat3+refMat5)*0.5); // dense * sparse VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3); VERIFY_IS_APPROX(dm4=refMat2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose()); VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3); VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose()); // sparse * dense and dense * sparse outer product test_outer<SparseMatrixType,DenseMatrix>::run(m2,m4,refMat2,refMat4); VERIFY_IS_APPROX(m6=m6*m6, refMat6=refMat6*refMat6); // sparse matrix * sparse vector ColSpVector cv0(cols), cv1; DenseVector dcv0(cols), dcv1; initSparse(2*density,dcv0, cv0); RowSpVector rv0(depth), rv1; RowDenseVector drv0(depth), drv1(rv1); initSparse(2*density,drv0, rv0); VERIFY_IS_APPROX(cv1=rv0*m3, dcv1=drv0*refMat3); VERIFY_IS_APPROX(rv1=rv0*m3, drv1=drv0*refMat3); VERIFY_IS_APPROX(cv1=m3*cv0, dcv1=refMat3*dcv0); VERIFY_IS_APPROX(cv1=m3t.adjoint()*cv0, dcv1=refMat3t.adjoint()*dcv0); VERIFY_IS_APPROX(rv1=m3*cv0, drv1=refMat3*dcv0); } // test matrix - diagonal product { DenseMatrix refM2 = DenseMatrix::Zero(rows, cols); DenseMatrix refM3 = DenseMatrix::Zero(rows, cols); DenseMatrix d3 = DenseMatrix::Zero(rows, cols); DiagonalMatrix<Scalar,Dynamic> d1(DenseVector::Random(cols)); DiagonalMatrix<Scalar,Dynamic> d2(DenseVector::Random(rows)); SparseMatrixType m2(rows, cols); SparseMatrixType m3(rows, cols); initSparse<Scalar>(density, refM2, m2); initSparse<Scalar>(density, refM3, m3); VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1); VERIFY_IS_APPROX(m3=m2.transpose()*d2, refM3=refM2.transpose()*d2); VERIFY_IS_APPROX(m3=d2*m2, refM3=d2*refM2); VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1*refM2.transpose()); // also check with a SparseWrapper: DenseVector v1 = DenseVector::Random(cols); DenseVector v2 = DenseVector::Random(rows); VERIFY_IS_APPROX(m3=m2*v1.asDiagonal(), refM3=refM2*v1.asDiagonal()); VERIFY_IS_APPROX(m3=m2.transpose()*v2.asDiagonal(), refM3=refM2.transpose()*v2.asDiagonal()); VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2, refM3=v2.asDiagonal()*refM2); VERIFY_IS_APPROX(m3=v1.asDiagonal()*m2.transpose(), refM3=v1.asDiagonal()*refM2.transpose()); VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2*v1.asDiagonal(), refM3=v2.asDiagonal()*refM2*v1.asDiagonal()); // evaluate to a dense matrix to check the .row() and .col() iterator functions VERIFY_IS_APPROX(d3=m2*d1, refM3=refM2*d1); VERIFY_IS_APPROX(d3=m2.transpose()*d2, refM3=refM2.transpose()*d2); VERIFY_IS_APPROX(d3=d2*m2, refM3=d2*refM2); VERIFY_IS_APPROX(d3=d1*m2.transpose(), refM3=d1*refM2.transpose()); } // test self adjoint products { DenseMatrix b = DenseMatrix::Random(rows, rows); DenseMatrix x = DenseMatrix::Random(rows, rows); DenseMatrix refX = DenseMatrix::Random(rows, rows); DenseMatrix refUp = DenseMatrix::Zero(rows, rows); DenseMatrix refLo = DenseMatrix::Zero(rows, rows); DenseMatrix refS = DenseMatrix::Zero(rows, rows); SparseMatrixType mUp(rows, rows); SparseMatrixType mLo(rows, rows); SparseMatrixType mS(rows, rows); do { initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular); } while (refUp.isZero()); refLo = refUp.adjoint(); mLo = mUp.adjoint(); refS = refUp + refLo; refS.diagonal() *= 0.5; mS = mUp + mLo; // TODO be able to address the diagonal.... for (int k=0; k<mS.outerSize(); ++k) for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it) if (it.index() == k) it.valueRef() *= 0.5; VERIFY_IS_APPROX(refS.adjoint(), refS); VERIFY_IS_APPROX(mS.adjoint(), mS); VERIFY_IS_APPROX(mS, refS); VERIFY_IS_APPROX(x=mS*b, refX=refS*b); VERIFY_IS_APPROX(x=mUp.template selfadjointView<Upper>()*b, refX=refS*b); VERIFY_IS_APPROX(x=mLo.template selfadjointView<Lower>()*b, refX=refS*b); VERIFY_IS_APPROX(x=mS.template selfadjointView<Upper|Lower>()*b, refX=refS*b); // sparse selfadjointView * sparse SparseMatrixType mSres(rows,rows); VERIFY_IS_APPROX(mSres = mLo.template selfadjointView<Lower>()*mS, refX = refLo.template selfadjointView<Lower>()*refS); // sparse * sparse selfadjointview VERIFY_IS_APPROX(mSres = mS * mLo.template selfadjointView<Lower>(), refX = refS * refLo.template selfadjointView<Lower>()); } }
void testStlDriver() { const int numPatches = 200000; // 200000 const int patchWidth = 9; const int numFeatures = 50; const double lambda = 0.0005f; const double epsilon = 1e-2; Config config; config.setValue("addBiasTerm", false); config.setValue("meanStddNormalize", false); config.setValue("configurePolicyTesting", false); config.setValue("trainingMeanAndStdd", false); updateMNISTConfig(config); if (false) { MNISTSamplePatchesUnlabeledDataFunction mnistUnlabeled(numPatches, patchWidth); SoftICACostFunction sfc(numFeatures, lambda, epsilon); LIBLBFGSOptimizer lbfgs(200); // 1000 Driver drv1(&config, &mnistUnlabeled, &sfc, &lbfgs); const Vector_t optThetaRica = drv1.drive(); Matrix_t Wrica( Eigen::Map<const Matrix_t>(optThetaRica.data(), numFeatures, pow(patchWidth, 2))); std::ofstream ofs_wrica("../W2.txt"); ofs_wrica << Wrica << std::endl; } Matrix_t Wrica; // debug: read off the values std::ifstream in("/home/sam/School/online/stanford_dl_ex/W2.txt"); if (in.is_open()) { std::string str; int nbRows = 0; while (std::getline(in, str)) { if (str.size() == 0) continue; std::istringstream iss(str); std::vector<double> tokens // { std::istream_iterator<double> { iss }, std::istream_iterator<double> { } }; Wrica.conservativeResize(nbRows + 1, tokens.size()); for (size_t i = 0; i < tokens.size(); ++i) Wrica(nbRows, i) = tokens[i]; ++nbRows; } } else { std::cerr << "file W.txt failed" << std::endl; exit(EXIT_FAILURE); } const int imageDim = 28; Eigen::Vector2i imageConfig; imageConfig << imageDim, imageDim; const int numFilters = numFeatures; const int poolDim = 5; const int filterDim = patchWidth; const int convDim = (imageDim - filterDim + 1); assert(convDim % poolDim == 0); const int outputDim = (convDim / poolDim); StlFilterFunction stlFilterFunction(filterDim, Wrica); SigmoidFunction sigmoidFunction; ConvolutionFunction convolutionFunction(&stlFilterFunction, &sigmoidFunction); MeanPoolFunction meanPoolFunction(numFilters, outputDim); MNISTSamplePatchesLabeledDataFunction mnistLabeled(&convolutionFunction, &meanPoolFunction, imageConfig, numFilters, poolDim, outputDim); SoftmaxCostFunction mnistcf(0.01f); LIBLBFGSOptimizer lbfgs2(300); config.setValue("configurePolicyTesting", false); config.setValue("trainingMeanAndStdd", true); config.setValue("meanStddNormalize", true); config.setValue("addBiasTerm", true); config.setValue("numGrd", true); config.setValue("training_accuracy", true); config.setValue("testing_accuracy", true); //config.setValue("addBiasTerm", false); Driver drv2(&config, &mnistLabeled, &mnistcf, &lbfgs2); drv2.drive(); }