示例#1
0
文件: upp.c 项目: mafheldt/usbpicprog
void ProcessIO(void)
{
	char oldPGDtris;
	char PIN;
	static byte counter=0;
	int nBytes;
	unsigned long address;
	
	// When the device is plugged in, the leds give the numbers 1, 2, 3, 4, 5. 
	//After configured state, the leds are controlled by the next lines in this function
	if((usb_device_state < CONFIGURED_STATE)||(UCONbits.SUSPND==1))
	{
		BlinkUSBStatus();
		return;
	}
	

	nBytes=USBGenRead((byte*)input_buffer,64);
	if(nBytes>0)
	{
		switch(input_buffer[0])
		{
			case CMD_ERASE:
				setLeds(LEDS_ON | LEDS_WR);
				output_buffer[0]=bulk_erase(picfamily,pictype,input_buffer[1]);
				counter=1;
				setLeds(LEDS_ON);
				break;
			case CMD_READ_ID:
				setLeds(LEDS_ON | LEDS_RD);
				switch(picfamily)
				{
					case PIC24:
					case dsPIC30:
						read_code(picfamily,pictype,0xFF0000,(unsigned char*)output_buffer,2,3);
						break;
					case PIC18:
					case PIC18J:
					case PIC18K:
						read_code(picfamily,pictype,0x3FFFFE,(unsigned char*)output_buffer,2,3);  //devid is at location 0x3ffffe   for PIC18 devices
						break;
					case PIC16:
						set_vdd_vpp(picfamily, pictype, 0);
						read_code(picfamily,pictype,0x2006,(unsigned char*)output_buffer,2,3);  //devid is at location 0x2006  for PIC16 devices
						break;
				}
				counter=2;
				setLeds(LEDS_ON);
				break;
			case CMD_WRITE_CODE:
				setLeds(LEDS_ON | LEDS_WR);
				address=((unsigned long)input_buffer[2])<<16|
						((unsigned long)input_buffer[3])<<8|
						((unsigned long)input_buffer[4]);
				output_buffer[0]=write_code(picfamily,pictype,address, (unsigned char*)(input_buffer+6),input_buffer[1],input_buffer[5]);
				counter=1;
				setLeds(LEDS_ON);
				break;
			case CMD_READ_CODE:
				setLeds(LEDS_ON | LEDS_RD);
				address=((unsigned long)input_buffer[2])<<16|
						((unsigned long)input_buffer[3])<<8|
						((unsigned long)input_buffer[4]);
				PIN=read_code(picfamily,pictype,address,(unsigned char*)output_buffer,input_buffer[1],input_buffer[5]);
				if(PIN==3)output_buffer[0]=0x3;
				counter=input_buffer[1];
				setLeds(LEDS_ON);
				break;
			case CMD_WRITE_DATA:
				setLeds(LEDS_ON | LEDS_WR);
				address=((unsigned long)input_buffer[2])<<16|
						((unsigned long)input_buffer[3])<<8|
						((unsigned long)input_buffer[4]);
				output_buffer[0]=write_data(picfamily,pictype,address, (unsigned char*)(input_buffer+6),input_buffer[1],input_buffer[5]); 
				counter=1;
				setLeds(LEDS_ON);
				break;
			case CMD_READ_DATA:
				setLeds(LEDS_ON | LEDS_RD);
				address=((unsigned long)input_buffer[2])<<16|
						((unsigned long)input_buffer[3])<<8|
						((unsigned long)input_buffer[4]);
				read_data(picfamily,pictype,address,(unsigned char*)output_buffer,input_buffer[1],input_buffer[5]); 
				counter=input_buffer[1];
				setLeds(LEDS_ON);
				break;
			case CMD_WRITE_CONFIG:
				setLeds(LEDS_ON | LEDS_WR);
				address=((unsigned long)input_buffer[2])<<16|
						((unsigned long)input_buffer[3])<<8|
						((unsigned long)input_buffer[4]);
				output_buffer[0]=write_config_bits(picfamily, pictype, address, (unsigned char*)(input_buffer+6),input_buffer[1],input_buffer[5]);
				counter=1;
				setLeds(LEDS_ON);
				break;
			case CMD_SET_PICTYPE:
				output_buffer[0]=set_pictype(input_buffer+1);
				//output_buffer[0]=1; //Ok
				counter=1;
				setLeds(LEDS_ON);
				break;
			case CMD_FIRMWARE_VERSION:
				strcpypgm2ram((char*)output_buffer,(const far rom char*)upp_version);
				counter=18;
				setLeds(LEDS_ON);

				break;
			case CMD_DEBUG:
				setLeds(LEDS_ON | LEDS_WR | LEDS_RD);
				switch(input_buffer[1])
				{
					case 0:
						set_vdd_vpp(dsP30F, dsPIC30, 1);
						output_buffer[0]=1;
						counter=1;	
						break;
					case 1:
						set_vdd_vpp(dsP30F, dsPIC30, 0);
						output_buffer[0]=1;
						counter=1;	
						break;
					case 2:
						dspic_send_24_bits(((unsigned long)input_buffer[2])|
								((unsigned long)input_buffer[3])<<8|
								((unsigned long)input_buffer[4])<<16);
						output_buffer[0]=1;
						counter=1;
						break;
					case 3:
						nBytes =  dspic_read_16_bits(1);
						output_buffer[0]=(unsigned char)nBytes;
						output_buffer[1]=(unsigned char)(nBytes>>8);
						counter=2;
						break;
						
				}
				break;
			case CMD_GET_PIN_STATUS:
				switch(input_buffer[1])
				{
					case SUBCMD_PIN_PGC:
						if((!TRISPGC_LOW)&&(!PGC_LOW)) //3.3V levels
						{
							if(PGC) output_buffer[0] = PIN_STATE_3_3V;
							else output_buffer[0] = PIN_STATE_0V;
						}
						else	//5V levels
						{
							if(PGC) output_buffer[0] = PIN_STATE_5V;
							else output_buffer[0] = PIN_STATE_0V;
						}
						counter=1;
						break;
					case SUBCMD_PIN_PGD:
						if(TRISPGD)//PGD is input
						{
							if(PGD_READ) output_buffer[0] = PIN_STATE_5V;
							else output_buffer[0] = PIN_STATE_0V;
						}
						else
						{							
							if((!TRISPGD_LOW)&&(!PGD_LOW)) //3.3V levels
							{
								if(PGD) output_buffer[0] = PIN_STATE_3_3V;
								else output_buffer[0] = PIN_STATE_0V;
							}
							else	//5V levels
							{
								if(PGD) output_buffer[0] = PIN_STATE_5V;
								else output_buffer[0] = PIN_STATE_0V;
							}
						}
						counter=1;
						break;
					case SUBCMD_PIN_VDD:
						if(VDD) output_buffer[0] = PIN_STATE_FLOAT;
						else output_buffer[0] = PIN_STATE_5V;
						counter = 1;
						break;
					case SUBCMD_PIN_VPP:
						counter=1;
						if(!VPP){output_buffer[0] = PIN_STATE_12V;break;}
						if(VPP_RST){output_buffer[0] = PIN_STATE_0V;break;}
						if(VPP_RUN){output_buffer[0] = PIN_STATE_5V;break;}
						output_buffer[0] = PIN_STATE_FLOAT;
						break;
					case SUBCMD_PIN_VPP_VOLTAGE:
						ReadAdc(output_buffer);
						counter=2;
						break;
					default:
						output_buffer[0]=3;
						counter=1;
						break;
				}
				break;
			case CMD_SET_PIN_STATUS:
				switch(input_buffer[1])
				{
					case SUBCMD_PIN_PGC:
						switch(input_buffer[2])
						{
							case PIN_STATE_0V:
								TRISPGC = 0;
								PGC = 0;
								TRISPGC_LOW = 1;
								PGC_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_3_3V:
								TRISPGC = 0;
								PGC = 1;
								TRISPGC_LOW = 0;
								PGC_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_5V:
								TRISPGC = 0;
								PGC = 1;
								TRISPGC_LOW = 1;
								PGC_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							default:
								output_buffer[0]=3;
								break;
						}
						break;
					case SUBCMD_PIN_PGD:
						switch(input_buffer[2])
						{
							case PIN_STATE_0V:
								TRISPGD = 0;
								PGD = 0;
								TRISPGD_LOW = 1;
								PGD_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_3_3V:
								TRISPGD = 0;
								PGD = 1;
								TRISPGD_LOW = 0;
								PGD_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_5V:
								TRISPGD = 0;
								PGD = 1;
								TRISPGD_LOW = 1;
								PGD_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_INPUT:
								TRISPGD_LOW = 1;
								TRISPGD = 1;
								output_buffer[0]=1;//ok
								break;
							default:
								output_buffer[0]=3;
								break;
						}
						break;
					case SUBCMD_PIN_VDD:
						switch(input_buffer[2])
						{
							case PIN_STATE_5V:
								VDD = 0;
								output_buffer[0]=1;
								break;
							case PIN_STATE_FLOAT:
								VDD = 1;
								output_buffer[0]=1;
								break;
							default:
								output_buffer[0]=3;
								break;
						}
						break;
					case SUBCMD_PIN_VPP:
						switch(input_buffer[2])
						{
							case PIN_STATE_0V:
								VPP = 1;
								VPP_RST = 1;
								VPP_RUN = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_5V:
								VPP = 1;
								VPP_RST = 0;
								VPP_RUN = 1;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_12V:
								VPP = 0;
								VPP_RST = 0;
								VPP_RUN = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_FLOAT:
								VPP = 1;
								VPP_RST = 0;
								VPP_RUN = 0;
								output_buffer[0]=1;//ok
								break;
							default:
								output_buffer[0]=3;
								break;
						}
						break;
					default:
						output_buffer[0]=3;
				}
				counter=1;
				break;
		}
	}
	if(counter != 0)
	{
		if(!mUSBGenTxIsBusy())
		USBGenWrite((byte*)&output_buffer,counter);
		counter=0;
	}
}//end ProcessIO
示例#2
0
void ProcessIO(void)
{
	char oldPGDtris;
	char PIN;
	static byte counter=0;
	int nBytes;
	unsigned long address;
	unsigned char i;
	
	input_buffer[0]=UART1RX(); //USBGenRead((byte*)input_buffer,64);
//	if(nBytes>0)
//	{
		switch(input_buffer[0])
		{
			case CMD_ERASE:
				setLeds(LEDS_ON | LEDS_WR);
				getBytes(1,1);//get more data, #bytes, where to insert in input buffer array
				output_buffer[0]=bulk_erase(picfamily,pictype,input_buffer[1]);
				counter=1;
				setLeds(LEDS_ON);
				break;
			case CMD_READ_ID:
				setLeds(LEDS_ON | LEDS_RD);
				switch(picfamily)
				{
					case DSPIC30:
						read_code(picfamily,pictype,0xFF0000,(unsigned char*)output_buffer,2,3);
						break;
					case PIC18:
						read_code(picfamily,pictype,0x3FFFFE,(unsigned char*)output_buffer,2,3);  //devid is at location 0x3ffffe   for PIC18 devices
						break;
					case PIC16:
						set_vdd_vpp(picfamily, pictype, 0);
						read_code(picfamily,pictype,0x2006,(unsigned char*)output_buffer,2,3);  //devid is at location 0x2006  for PIC16 devices
						break;
				}
				counter=2;
				setLeds(LEDS_ON);
				break;
			case CMD_WRITE_CODE:
				setLeds(LEDS_ON | LEDS_WR);
				address=((unsigned long)input_buffer[2])<<16|
						((unsigned long)input_buffer[3])<<8|
						((unsigned long)input_buffer[4]);
				output_buffer[0]=write_code(picfamily,pictype,address, (unsigned char*)(input_buffer+6),input_buffer[1],input_buffer[5]);
				counter=1;
				setLeds(LEDS_ON);
				break;
			case CMD_READ_CODE:
				setLeds(LEDS_ON | LEDS_RD);
				address=((unsigned long)input_buffer[2])<<16|
						((unsigned long)input_buffer[3])<<8|
						((unsigned long)input_buffer[4]);
				read_code(picfamily,pictype,address,(unsigned char*)output_buffer,input_buffer[1],input_buffer[5]);
				counter=input_buffer[1];
				setLeds(LEDS_ON);
				break;
			case CMD_WRITE_DATA:
				setLeds(LEDS_ON | LEDS_WR);
				address=((unsigned long)input_buffer[2])<<16|
						((unsigned long)input_buffer[3])<<8|
						((unsigned long)input_buffer[4]);
				output_buffer[0]=write_data(picfamily,pictype,address, (unsigned char*)(input_buffer+6),input_buffer[1],input_buffer[5]); 
				counter=1;
				setLeds(LEDS_ON);
				break;
			case CMD_READ_DATA:
				setLeds(LEDS_ON | LEDS_RD);
				address=((unsigned long)input_buffer[2])<<16|
						((unsigned long)input_buffer[3])<<8|
						((unsigned long)input_buffer[4]);
				read_data(picfamily,pictype,address,(unsigned char*)output_buffer,input_buffer[1],input_buffer[5]); 
				counter=input_buffer[1];
				setLeds(LEDS_ON);
				break;
			case CMD_WRITE_CONFIG:
				setLeds(LEDS_ON | LEDS_WR);
				address=((unsigned long)input_buffer[2])<<16|
						((unsigned long)input_buffer[3])<<8|
						((unsigned long)input_buffer[4]);
				output_buffer[0]=write_config_bits(picfamily, pictype, address, (unsigned char*)(input_buffer+6),input_buffer[1],input_buffer[5]);
				counter=1;
				setLeds(LEDS_ON);
				break;
			case CMD_SET_PICTYPE:
				output_buffer[0]=set_pictype(input_buffer+1);
				//output_buffer[0]=1; //Ok
				counter=1;
				setLeds(LEDS_ON);
				break;
			case CMD_FIRMWARE_VERSION:
				for(counter=0; counter<18; counter++)output_buffer[counter]=upp_version[counter];
				counter=18;
				setLeds(LEDS_ON);
				break;
			case CMD_DEBUG:
				setLeds(LEDS_ON | LEDS_WR | LEDS_RD);
				switch(input_buffer[1])
				{
					case 0:
						set_vdd_vpp(dsP30F, DSPIC30, 1);
						output_buffer[0]=1;
						counter=1;	
						break;
					case 1:
						set_vdd_vpp(dsP30F, DSPIC30, 0);
						output_buffer[0]=1;
						counter=1;	
						break;
					case 2:
						dspic_send_24_bits(((unsigned long)input_buffer[2])|
								((unsigned long)input_buffer[3])<<8|
								((unsigned long)input_buffer[4])<<16);
						output_buffer[0]=1;
						counter=1;
						break;
					case 3:
						nBytes =  dspic_read_16_bits();
						output_buffer[0]=(unsigned char)nBytes;
						output_buffer[1]=(unsigned char)(nBytes>>8);
						counter=2;
						break;
						
				}
				break;
			case CMD_GET_PIN_STATUS:
				switch(input_buffer[1])
				{
					case SUBCMD_PIN_PGC:
						if((!TRISPGC_LOW)&&(!PGC_LOW)) //3.3V levels
						{
							if(PGC) output_buffer[0] = PIN_STATE_3_3V;
							else output_buffer[0] = PIN_STATE_0V;
						}
						else	//5V levels
						{
							if(PGC) output_buffer[0] = PIN_STATE_5V;
							else output_buffer[0] = PIN_STATE_0V;
						}
						counter=1;
						break;
					case SUBCMD_PIN_PGD:
						if(TRISPGD)//PGD is input
						{
							if(PGD_READ) output_buffer[0] = PIN_STATE_5V;
							else output_buffer[0] = PIN_STATE_0V;
						}
						else
						{							
							if((!TRISPGD_LOW)&&(!PGD_LOW)) //3.3V levels
							{
								if(PGD) output_buffer[0] = PIN_STATE_3_3V;
								else output_buffer[0] = PIN_STATE_0V;
							}
							else	//5V levels
							{
								if(PGD) output_buffer[0] = PIN_STATE_5V;
								else output_buffer[0] = PIN_STATE_0V;
							}
						}
						counter=1;
						break;
					case SUBCMD_PIN_VDD:
						//if(VDD) output_buffer[0] = PIN_STATE_FLOAT;
						//else output_buffer[0] = PIN_STATE_5V;
						output_buffer[0] = PIN_STATE_5V;
						counter = 1;
						break;
					case SUBCMD_PIN_VPP:
						counter=1;
						if(!VPP){output_buffer[0] = PIN_STATE_12V;break;}
						if(VPP_RST){output_buffer[0] = PIN_STATE_0V;break;}
						if(VPP_RUN){output_buffer[0] = PIN_STATE_5V;break;}
						output_buffer[0] = PIN_STATE_FLOAT;
						break;
					case SUBCMD_PIN_VPP_VOLTAGE:
						ReadAdc(output_buffer);
						counter=2;
						break;
					default:
						output_buffer[0]=3;
						counter=1;
						break;
				}
				break;
			case CMD_SET_PIN_STATUS:
				switch(input_buffer[1])
				{
					case SUBCMD_PIN_PGC:
						switch(input_buffer[2])
						{
							case PIN_STATE_0V:
								TRISPGC = 0;
								PGC = 0;
								TRISPGC_LOW = 1;
								PGC_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_3_3V:
								TRISPGC = 0;
								PGC = 1;
								TRISPGC_LOW = 0;
								PGC_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_5V:
								TRISPGC = 0;
								PGC = 1;
								TRISPGC_LOW = 1;
								PGC_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							default:
								output_buffer[0]=3;
								break;
						}
						break;
					case SUBCMD_PIN_PGD:
						switch(input_buffer[2])
						{
							case PIN_STATE_0V:
								TRISPGD = 0;
								PGD = 0;
								TRISPGD_LOW = 1;
								PGD_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_3_3V:
								TRISPGD = 0;
								PGD = 1;
								TRISPGD_LOW = 0;
								PGD_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_5V:
								TRISPGD = 0;
								PGD = 1;
								TRISPGD_LOW = 1;
								PGD_LOW = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_INPUT:
								TRISPGD_LOW = 1;
								TRISPGD = 1;
								output_buffer[0]=1;//ok
								break;
							default:
								output_buffer[0]=3;
								break;
						}
						break;
					case SUBCMD_PIN_VDD:
						switch(input_buffer[2])
						{
							case PIN_STATE_5V:
								//VDD = 0;
								output_buffer[0]=1;
								break;
							case PIN_STATE_FLOAT:
								//VDD = 1;
								output_buffer[0]=1;
								break;
							default:
								output_buffer[0]=3;
								break;
						}
						break;
					case SUBCMD_PIN_VPP:
						switch(input_buffer[2])
						{
							case PIN_STATE_0V:
								VPP = 1;
								VPP_RST = 1;
								VPP_RUN = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_5V:
								VPP = 1;
								VPP_RST = 0;
								VPP_RUN = 1;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_12V:
								VPP = 0;
								VPP_RST = 0;
								VPP_RUN = 0;
								output_buffer[0]=1;//ok
								break;
							case PIN_STATE_FLOAT:
								VPP = 1;
								VPP_RST = 0;
								VPP_RUN = 0;
								output_buffer[0]=1;//ok
								break;
							default:
								output_buffer[0]=3;
								break;
						}
						break;
					default:
						output_buffer[0]=3;
				}
				counter=1;
				break;
		}
	//} //if nBytes>0
	if(counter != 0)
	{
		//if(!mUSBGenTxIsBusy())
		//USBGenWrite((byte*)&output_buffer,counter);
		for(i=0; i<counter; i++) UART1TX(output_buffer[i]);
		counter=0;
	}
}//end ProcessIO
示例#3
0
void write_code_P24FXXKAXXX( unsigned long address, unsigned char* data, char blocksize, char lastblock )
{
	unsigned int i, payload;
	char blockcounter;
	dspic_send_24_bits( 0x000000 ); //NOP
	//Step 1: Exit the Reset vector.
	dspic_send_24_bits( 0x040200 ); //GOTO 0x200
	dspic_send_24_bits( 0x000000 ); //NOP
	//Step 2: Set the NVMCON to program 32 instruction words.
	dspic_send_24_bits( 0x24004A ); //MOV #0x4004, W10
	dspic_send_24_bits( 0x883B0A ); //MOV W10, NVMCON


	for( blockcounter = 0; blockcounter < blocksize; blockcounter += 12 )
	{
		//Step 3: Initialize the write pointer (W7) for TBLWT instruction.
		dspic_send_24_bits( 0x200000 | (((((blockcounter + address) * 2) / 3) & 0xFF0000) >> 12) ); //MOV #<DestinationAddress23:16>, W0
		dspic_send_24_bits( 0x880190 ); //MOV W0, TBLPAG
		dspic_send_24_bits( 0x200007 | (((((blockcounter + address) * 2) / 3) & 0x00FFFF) << 4) ); //MOV #<DestinationAddress15:0>, W7
		//Step 4: Initialize the read pointer (W6) and load W0:W5 with the next 4 instruction words to program.
		for( i = 0; i < 6; i++ )
		{
			dspic_send_24_bits( 0x200000 | (((unsigned long) data[blockcounter + (i * 2)]) << 4)
					| (((unsigned long) data[blockcounter + (i * 2) + 1]) << 12)
					| ((unsigned long) i) );
			/**
			 MOV #<LSW0>, W0
			 MOV #<MSB1:MSB0>, W1
			 MOV #<LSW1>, W2
			 MOV #<LSW2>, W3
			 MOV #<MSB3:MSB2>, W4
			 MOV #<LSW3>, W5
			 */
		}
		//Step 5: Set the read pointer (W6) and load the (next set of) write latches.
		dspic_send_24_bits( 0xEB0300 ); //CLR W6
		dspic_send_24_bits( 0x000000 ); //NOP
		dspic_send_24_bits( 0xBB0BB6 ); //TBLWTL [W6++], [W7]
		dspic_send_24_bits( 0x000000 ); //NOP
		dspic_send_24_bits( 0x000000 ); //NOP
		dspic_send_24_bits( 0xBBDBB6 ); //TBLWTH.B [W6++], [W7++]
		dspic_send_24_bits( 0x000000 ); //NOP
		dspic_send_24_bits( 0x000000 ); //NOP
		dspic_send_24_bits( 0xBBEBB6 ); //TBLWTH.B [W6++], [++W7]
		dspic_send_24_bits( 0x000000 ); //NOP
		dspic_send_24_bits( 0x000000 ); //NOP
		dspic_send_24_bits( 0xBB1BB6 ); //TBLWTL [W6++], [W7++]
		dspic_send_24_bits( 0x000000 ); //NOP
		dspic_send_24_bits( 0x000000 ); //NOP
		dspic_send_24_bits( 0xBB0BB6 ); //TBLWTL [W6++], [W7]
		dspic_send_24_bits( 0x000000 ); //NOP
		dspic_send_24_bits( 0x000000 ); //NOP
		dspic_send_24_bits( 0xBBDBB6 ); //TBLWTH.B [W6++], [W7++]
		dspic_send_24_bits( 0x000000 ); //NOP
		dspic_send_24_bits( 0x000000 ); //NOP
		dspic_send_24_bits( 0xBBEBB6 ); //TBLWTH.B [W6++], [++W7]
		dspic_send_24_bits( 0x000000 ); //NOP
		dspic_send_24_bits( 0x000000 ); //NOP
		dspic_send_24_bits( 0xBB1BB6 ); //TBLWTL [W6++], [W7++]
		dspic_send_24_bits( 0x000000 ); //NOP
		dspic_send_24_bits( 0x000000 ); //NOP
	}//Step 6: Repeat steps 3-5 eight times to load the write latches for 32 instructions.
	//if((address%96)==64)
	//{
	//Step 7: Unlock the NVMCON for writing.
	dspic_send_24_bits( 0xA8E761 ); //BSET NVMCON, #WR
	dspic_send_24_bits( 0x000000 ); //NOP
	dspic_send_24_bits( 0x000000 ); //NOP
	//Step 8: CHECK bit 15 of NVMCON


	for( i = 0; i < 20; i++ )
	{
		//step 5
		dspic_send_24_bits( 0x000000 ); //NOP
		dspic_send_24_bits( 0x040200 ); //GOTO 0x200
		dspic_send_24_bits( 0x000000 ); //NOP
		dspic_send_24_bits( 0x803B02 ); //MOV NVMCON, W2
		dspic_send_24_bits( 0x883C22 ); //MOV W2, VISI
		dspic_send_24_bits( 0x000000 ); //NOP
		payload = dspic_read_16_bits( is3_3V() );
		dspic_send_24_bits( 0x000000 ); //NOP
		if( (payload && 0x8000) == 0 )
			break; //programming completed
		DelayMs( 1 );

	}//step 8: repeat step 5-7
	//Step 9: Reset device internal PC.
	dspic_send_24_bits( 0x040200 ); //GOTO 0x200
	dspic_send_24_bits( 0x000000 ); //NOP
}