/* Subroutine */ int dsbevd_(char *jobz, char *uplo, integer *n, integer *kd, doublereal *ab, integer *ldab, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, integer *lwork, integer *iwork, integer *liwork, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, z_dim1, z_offset, i__1; doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ doublereal eps; integer inde; doublereal anrm, rmin, rmax; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *), dgemm_(char *, char *, integer *, integer *, integer * , doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); doublereal sigma; extern logical lsame_(char *, char *); integer iinfo, lwmin; logical lower, wantz; integer indwk2, llwrk2; extern doublereal dlamch_(char *); integer iscale; extern /* Subroutine */ int dlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); extern doublereal dlansb_(char *, char *, integer *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int dstedc_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, integer *), dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *); doublereal safmin; extern /* Subroutine */ int xerbla_(char *, integer *); doublereal bignum; extern /* Subroutine */ int dsbtrd_(char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *), dsterf_( integer *, doublereal *, doublereal *, integer *); integer indwrk, liwmin; doublereal smlnum; logical lquery; /* -- LAPACK driver routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DSBEVD computes all the eigenvalues and, optionally, eigenvectors of */ /* a real symmetric band matrix A. If eigenvectors are desired, it uses */ /* a divide and conquer algorithm. */ /* The divide and conquer algorithm makes very mild assumptions about */ /* floating point arithmetic. It will work on machines with a guard */ /* digit in add/subtract, or on those binary machines without guard */ /* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */ /* Cray-2. It could conceivably fail on hexadecimal or decimal machines */ /* without guard digits, but we know of none. */ /* Arguments */ /* ========= */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* KD (input) INTEGER */ /* The number of superdiagonals of the matrix A if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */ /* AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N) */ /* On entry, the upper or lower triangle of the symmetric band */ /* matrix A, stored in the first KD+1 rows of the array. The */ /* j-th column of A is stored in the j-th column of the array AB */ /* as follows: */ /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ /* On exit, AB is overwritten by values generated during the */ /* reduction to tridiagonal form. If UPLO = 'U', the first */ /* superdiagonal and the diagonal of the tridiagonal matrix T */ /* are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */ /* the diagonal and first subdiagonal of T are returned in the */ /* first two rows of AB. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KD + 1. */ /* W (output) DOUBLE PRECISION array, dimension (N) */ /* If INFO = 0, the eigenvalues in ascending order. */ /* Z (output) DOUBLE PRECISION array, dimension (LDZ, N) */ /* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */ /* eigenvectors of the matrix A, with the i-th column of Z */ /* holding the eigenvector associated with W(i). */ /* If JOBZ = 'N', then Z is not referenced. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1, and if */ /* JOBZ = 'V', LDZ >= max(1,N). */ /* WORK (workspace/output) DOUBLE PRECISION array, */ /* dimension (LWORK) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* IF N <= 1, LWORK must be at least 1. */ /* If JOBZ = 'N' and N > 2, LWORK must be at least 2*N. */ /* If JOBZ = 'V' and N > 2, LWORK must be at least */ /* ( 1 + 5*N + 2*N**2 ). */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal sizes of the WORK and IWORK */ /* arrays, returns these values as the first entries of the WORK */ /* and IWORK arrays, and no error message related to LWORK or */ /* LIWORK is issued by XERBLA. */ /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ /* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */ /* LIWORK (input) INTEGER */ /* The dimension of the array LIWORK. */ /* If JOBZ = 'N' or N <= 1, LIWORK must be at least 1. */ /* If JOBZ = 'V' and N > 2, LIWORK must be at least 3 + 5*N. */ /* If LIWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the optimal sizes of the WORK and */ /* IWORK arrays, returns these values as the first entries of */ /* the WORK and IWORK arrays, and no error message related to */ /* LWORK or LIWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, the algorithm failed to converge; i */ /* off-diagonal elements of an intermediate tridiagonal */ /* form did not converge to zero. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --iwork; /* Function Body */ wantz = lsame_(jobz, "V"); lower = lsame_(uplo, "L"); lquery = *lwork == -1 || *liwork == -1; *info = 0; if (*n <= 1) { liwmin = 1; lwmin = 1; } else { if (wantz) { liwmin = *n * 5 + 3; /* Computing 2nd power */ i__1 = *n; lwmin = *n * 5 + 1 + (i__1 * i__1 << 1); } else { liwmin = 1; lwmin = *n << 1; } } if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (lower || lsame_(uplo, "U"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*kd < 0) { *info = -4; } else if (*ldab < *kd + 1) { *info = -6; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -9; } if (*info == 0) { work[1] = (doublereal) lwmin; iwork[1] = liwmin; if (*lwork < lwmin && ! lquery) { *info = -11; } else if (*liwork < liwmin && ! lquery) { *info = -13; } } if (*info != 0) { i__1 = -(*info); xerbla_("DSBEVD", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { w[1] = ab[ab_dim1 + 1]; if (wantz) { z__[z_dim1 + 1] = 1.; } return 0; } /* Get machine constants. */ safmin = dlamch_("Safe minimum"); eps = dlamch_("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = sqrt(smlnum); rmax = sqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = dlansb_("M", uplo, n, kd, &ab[ab_offset], ldab, &work[1]); iscale = 0; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { if (lower) { dlascl_("B", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab, info); } else { dlascl_("Q", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab, info); } } /* Call DSBTRD to reduce symmetric band matrix to tridiagonal form. */ inde = 1; indwrk = inde + *n; indwk2 = indwrk + *n * *n; llwrk2 = *lwork - indwk2 + 1; dsbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[ z_offset], ldz, &work[indwrk], &iinfo); /* For eigenvalues only, call DSTERF. For eigenvectors, call SSTEDC. */ if (! wantz) { dsterf_(n, &w[1], &work[inde], info); } else { dstedc_("I", n, &w[1], &work[inde], &work[indwrk], n, &work[indwk2], & llwrk2, &iwork[1], liwork, info); dgemm_("N", "N", n, n, n, &c_b11, &z__[z_offset], ldz, &work[indwrk], n, &c_b18, &work[indwk2], n); dlacpy_("A", n, n, &work[indwk2], n, &z__[z_offset], ldz); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { d__1 = 1. / sigma; dscal_(n, &d__1, &w[1], &c__1); } work[1] = (doublereal) lwmin; iwork[1] = liwmin; return 0; /* End of DSBEVD */ } /* dsbevd_ */
/* Subroutine */ int dstevd_(char *jobz, integer *n, doublereal *d__, doublereal *e, doublereal *z__, integer *ldz, doublereal *work, integer *lwork, integer *iwork, integer *liwork, integer *info) { /* System generated locals */ integer z_dim1, z_offset, i__1; doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ doublereal eps, rmin, rmax, tnrm; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); doublereal sigma; extern logical lsame_(char *, char *); integer lwmin; logical wantz; extern doublereal dlamch_(char *); integer iscale; extern /* Subroutine */ int dstedc_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, integer *); doublereal safmin; extern /* Subroutine */ int xerbla_(char *, integer *); doublereal bignum; extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *); extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, integer *); integer liwmin; doublereal smlnum; logical lquery; /* -- LAPACK driver routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DSTEVD computes all eigenvalues and, optionally, eigenvectors of a */ /* real symmetric tridiagonal matrix. If eigenvectors are desired, it */ /* uses a divide and conquer algorithm. */ /* The divide and conquer algorithm makes very mild assumptions about */ /* floating point arithmetic. It will work on machines with a guard */ /* digit in add/subtract, or on those binary machines without guard */ /* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */ /* Cray-2. It could conceivably fail on hexadecimal or decimal machines */ /* without guard digits, but we know of none. */ /* Arguments */ /* ========= */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* N (input) INTEGER */ /* The order of the matrix. N >= 0. */ /* D (input/output) DOUBLE PRECISION array, dimension (N) */ /* On entry, the n diagonal elements of the tridiagonal matrix */ /* A. */ /* On exit, if INFO = 0, the eigenvalues in ascending order. */ /* E (input/output) DOUBLE PRECISION array, dimension (N-1) */ /* On entry, the (n-1) subdiagonal elements of the tridiagonal */ /* matrix A, stored in elements 1 to N-1 of E. */ /* On exit, the contents of E are destroyed. */ /* Z (output) DOUBLE PRECISION array, dimension (LDZ, N) */ /* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */ /* eigenvectors of the matrix A, with the i-th column of Z */ /* holding the eigenvector associated with D(i). */ /* If JOBZ = 'N', then Z is not referenced. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1, and if */ /* JOBZ = 'V', LDZ >= max(1,N). */ /* WORK (workspace/output) DOUBLE PRECISION array, */ /* dimension (LWORK) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* If JOBZ = 'N' or N <= 1 then LWORK must be at least 1. */ /* If JOBZ = 'V' and N > 1 then LWORK must be at least */ /* ( 1 + 4*N + N**2 ). */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal sizes of the WORK and IWORK */ /* arrays, returns these values as the first entries of the WORK */ /* and IWORK arrays, and no error message related to LWORK or */ /* LIWORK is issued by XERBLA. */ /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ /* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */ /* LIWORK (input) INTEGER */ /* The dimension of the array IWORK. */ /* If JOBZ = 'N' or N <= 1 then LIWORK must be at least 1. */ /* If JOBZ = 'V' and N > 1 then LIWORK must be at least 3+5*N. */ /* If LIWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the optimal sizes of the WORK and */ /* IWORK arrays, returns these values as the first entries of */ /* the WORK and IWORK arrays, and no error message related to */ /* LWORK or LIWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, the algorithm failed to converge; i */ /* off-diagonal elements of E did not converge to zero. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; --e; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --iwork; /* Function Body */ wantz = lsame_(jobz, "V"); lquery = *lwork == -1 || *liwork == -1; *info = 0; liwmin = 1; lwmin = 1; if (*n > 1 && wantz) { /* Computing 2nd power */ i__1 = *n; lwmin = (*n << 2) + 1 + i__1 * i__1; liwmin = *n * 5 + 3; } if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -6; } if (*info == 0) { work[1] = (doublereal) lwmin; iwork[1] = liwmin; if (*lwork < lwmin && ! lquery) { *info = -8; } else if (*liwork < liwmin && ! lquery) { *info = -10; } } if (*info != 0) { i__1 = -(*info); xerbla_("DSTEVD", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { if (wantz) { z__[z_dim1 + 1] = 1.; } return 0; } /* Get machine constants. */ safmin = dlamch_("Safe minimum"); eps = dlamch_("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = sqrt(smlnum); rmax = sqrt(bignum); /* Scale matrix to allowable range, if necessary. */ iscale = 0; tnrm = dlanst_("M", n, &d__[1], &e[1]); if (tnrm > 0. && tnrm < rmin) { iscale = 1; sigma = rmin / tnrm; } else if (tnrm > rmax) { iscale = 1; sigma = rmax / tnrm; } if (iscale == 1) { dscal_(n, &sigma, &d__[1], &c__1); i__1 = *n - 1; dscal_(&i__1, &sigma, &e[1], &c__1); } /* For eigenvalues only, call DSTERF. For eigenvalues and */ /* eigenvectors, call DSTEDC. */ if (! wantz) { dsterf_(n, &d__[1], &e[1], info); } else { dstedc_("I", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], lwork, &iwork[1], liwork, info); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { d__1 = 1. / sigma; dscal_(n, &d__1, &d__[1], &c__1); } work[1] = (doublereal) lwmin; iwork[1] = liwmin; return 0; /* End of DSTEVD */ } /* dstevd_ */
/* Subroutine */ int dspevd_(char *jobz, char *uplo, integer *n, doublereal * ap, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, integer *lwork, integer *iwork, integer *liwork, integer *info) { /* -- LAPACK driver routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= DSPEVD computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments ========= JOBZ (input) CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The order of the matrix A. N >= 0. AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the symmetric matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. On exit, AP is overwritten by values generated during the reduction to tridiagonal form. If UPLO = 'U', the diagonal and first superdiagonal of the tridiagonal matrix T overwrite the corresponding elements of A, and if UPLO = 'L', the diagonal and first subdiagonal of T overwrite the corresponding elements of A. W (output) DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. Z (output) DOUBLE PRECISION array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal eigenvectors of the matrix A, with the i-th column of Z holding the eigenvector associated with W(i). If JOBZ = 'N', then Z is not referenced. LDZ (input) INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N). WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. If N <= 1, LWORK must be at least 1. If JOBZ = 'N' and N > 1, LWORK must be at least 2*N. If JOBZ = 'V' and N > 1, LWORK must be at least 1 + 6*N + N**2. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. IWORK (workspace/output) INTEGER array, dimension (LIWORK) On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. LIWORK (input) INTEGER The dimension of the array IWORK. If JOBZ = 'N' or N <= 1, LIWORK must be at least 1. If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the IWORK array, returns this value as the first entry of the IWORK array, and no error message related to LIWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero. ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer z_dim1, z_offset, i__1; doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ static integer inde; static doublereal anrm, rmin, rmax; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); static doublereal sigma; extern logical lsame_(char *, char *); static integer iinfo, lwmin; static logical wantz; extern doublereal dlamch_(char *); static integer iscale; extern /* Subroutine */ int dstedc_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, integer *); static doublereal safmin; extern /* Subroutine */ int xerbla_(char *, integer *); static doublereal bignum; extern doublereal dlansp_(char *, char *, integer *, doublereal *, doublereal *); static integer indtau; extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, integer *); static integer indwrk, liwmin; extern /* Subroutine */ int dsptrd_(char *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *), dopmtr_(char *, char *, char *, integer *, integer *, doublereal * , doublereal *, doublereal *, integer *, doublereal *, integer *); static integer llwork; static doublereal smlnum; static logical lquery; static doublereal eps; #define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1] --ap; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1 * 1; z__ -= z_offset; --work; --iwork; /* Function Body */ wantz = lsame_(jobz, "V"); lquery = *lwork == -1 || *liwork == -1; *info = 0; if (*n <= 1) { liwmin = 1; lwmin = 1; } else { if (wantz) { liwmin = *n * 5 + 3; /* Computing 2nd power */ i__1 = *n; lwmin = *n * 6 + 1 + i__1 * i__1; } else { liwmin = 1; lwmin = *n << 1; } } if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (lsame_(uplo, "U") || lsame_(uplo, "L"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -7; } else if (*lwork < lwmin && ! lquery) { *info = -9; } else if (*liwork < liwmin && ! lquery) { *info = -11; } if (*info == 0) { work[1] = (doublereal) lwmin; iwork[1] = liwmin; } if (*info != 0) { i__1 = -(*info); xerbla_("DSPEVD", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { w[1] = ap[1]; if (wantz) { z___ref(1, 1) = 1.; } return 0; } /* Get machine constants. */ safmin = dlamch_("Safe minimum"); eps = dlamch_("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = sqrt(smlnum); rmax = sqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = dlansp_("M", uplo, n, &ap[1], &work[1]); iscale = 0; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { i__1 = *n * (*n + 1) / 2; dscal_(&i__1, &sigma, &ap[1], &c__1); } /* Call DSPTRD to reduce symmetric packed matrix to tridiagonal form. */ inde = 1; indtau = inde + *n; dsptrd_(uplo, n, &ap[1], &w[1], &work[inde], &work[indtau], &iinfo); /* For eigenvalues only, call DSTERF. For eigenvectors, first call DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the tridiagonal matrix, then call DOPMTR to multiply it by the Householder transformations represented in AP. */ if (! wantz) { dsterf_(n, &w[1], &work[inde], info); } else { indwrk = indtau + *n; llwork = *lwork - indwrk + 1; dstedc_("I", n, &w[1], &work[inde], &z__[z_offset], ldz, &work[indwrk] , &llwork, &iwork[1], liwork, info); dopmtr_("L", uplo, "N", n, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &work[indwrk], &iinfo); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { d__1 = 1. / sigma; dscal_(n, &d__1, &w[1], &c__1); } work[1] = (doublereal) lwmin; iwork[1] = liwmin; return 0; /* End of DSPEVD */ } /* dspevd_ */
/* Subroutine */ int dsbgvd_(char *jobz, char *uplo, integer *n, integer *ka, integer *kb, doublereal *ab, integer *ldab, doublereal *bb, integer * ldbb, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, integer *lwork, integer *iwork, integer *liwork, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1; /* Local variables */ integer inde; char vect[1]; extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); extern logical lsame_(char *, char *); integer iinfo, lwmin; logical upper, wantz; integer indwk2, llwrk2; extern /* Subroutine */ int dstedc_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, integer *), dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), xerbla_(char *, integer *), dpbstf_(char *, integer *, integer *, doublereal *, integer *, integer *), dsbtrd_(char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *), dsbgst_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *), dsterf_(integer *, doublereal *, doublereal *, integer *); integer indwrk, liwmin; logical lquery; /* -- LAPACK driver routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DSBGVD computes all the eigenvalues, and optionally, the eigenvectors */ /* of a real generalized symmetric-definite banded eigenproblem, of the */ /* form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric and */ /* banded, and B is also positive definite. If eigenvectors are */ /* desired, it uses a divide and conquer algorithm. */ /* The divide and conquer algorithm makes very mild assumptions about */ /* floating point arithmetic. It will work on machines with a guard */ /* digit in add/subtract, or on those binary machines without guard */ /* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */ /* Cray-2. It could conceivably fail on hexadecimal or decimal machines */ /* without guard digits, but we know of none. */ /* Arguments */ /* ========= */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangles of A and B are stored; */ /* = 'L': Lower triangles of A and B are stored. */ /* N (input) INTEGER */ /* The order of the matrices A and B. N >= 0. */ /* KA (input) INTEGER */ /* The number of superdiagonals of the matrix A if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */ /* KB (input) INTEGER */ /* The number of superdiagonals of the matrix B if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KB >= 0. */ /* AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N) */ /* On entry, the upper or lower triangle of the symmetric band */ /* matrix A, stored in the first ka+1 rows of the array. The */ /* j-th column of A is stored in the j-th column of the array AB */ /* as follows: */ /* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). */ /* On exit, the contents of AB are destroyed. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KA+1. */ /* BB (input/output) DOUBLE PRECISION array, dimension (LDBB, N) */ /* On entry, the upper or lower triangle of the symmetric band */ /* matrix B, stored in the first kb+1 rows of the array. The */ /* j-th column of B is stored in the j-th column of the array BB */ /* as follows: */ /* if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */ /* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). */ /* On exit, the factor S from the split Cholesky factorization */ /* B = S**T*S, as returned by DPBSTF. */ /* LDBB (input) INTEGER */ /* The leading dimension of the array BB. LDBB >= KB+1. */ /* W (output) DOUBLE PRECISION array, dimension (N) */ /* If INFO = 0, the eigenvalues in ascending order. */ /* Z (output) DOUBLE PRECISION array, dimension (LDZ, N) */ /* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */ /* eigenvectors, with the i-th column of Z holding the */ /* eigenvector associated with W(i). The eigenvectors are */ /* normalized so Z**T*B*Z = I. */ /* If JOBZ = 'N', then Z is not referenced. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1, and if */ /* JOBZ = 'V', LDZ >= max(1,N). */ /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* If N <= 1, LWORK >= 1. */ /* If JOBZ = 'N' and N > 1, LWORK >= 3*N. */ /* If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal sizes of the WORK and IWORK */ /* arrays, returns these values as the first entries of the WORK */ /* and IWORK arrays, and no error message related to LWORK or */ /* LIWORK is issued by XERBLA. */ /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ /* On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK. */ /* LIWORK (input) INTEGER */ /* The dimension of the array IWORK. */ /* If JOBZ = 'N' or N <= 1, LIWORK >= 1. */ /* If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. */ /* If LIWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the optimal sizes of the WORK and */ /* IWORK arrays, returns these values as the first entries of */ /* the WORK and IWORK arrays, and no error message related to */ /* LWORK or LIWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, and i is: */ /* <= N: the algorithm failed to converge: */ /* i off-diagonal elements of an intermediate */ /* tridiagonal form did not converge to zero; */ /* > N: if INFO = N + i, for 1 <= i <= N, then DPBSTF */ /* returned INFO = i: B is not positive definite. */ /* The factorization of B could not be completed and */ /* no eigenvalues or eigenvectors were computed. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; bb_dim1 = *ldbb; bb_offset = 1 + bb_dim1; bb -= bb_offset; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --iwork; /* Function Body */ wantz = lsame_(jobz, "V"); upper = lsame_(uplo, "U"); lquery = *lwork == -1 || *liwork == -1; *info = 0; if (*n <= 1) { liwmin = 1; lwmin = 1; } else if (wantz) { liwmin = *n * 5 + 3; /* Computing 2nd power */ i__1 = *n; lwmin = *n * 5 + 1 + (i__1 * i__1 << 1); } else { liwmin = 1; lwmin = *n << 1; } if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (upper || lsame_(uplo, "L"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*ka < 0) { *info = -4; } else if (*kb < 0 || *kb > *ka) { *info = -5; } else if (*ldab < *ka + 1) { *info = -7; } else if (*ldbb < *kb + 1) { *info = -9; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -12; } if (*info == 0) { work[1] = (doublereal) lwmin; iwork[1] = liwmin; if (*lwork < lwmin && ! lquery) { *info = -14; } else if (*liwork < liwmin && ! lquery) { *info = -16; } } if (*info != 0) { i__1 = -(*info); xerbla_("DSBGVD", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Form a split Cholesky factorization of B. */ dpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info); if (*info != 0) { *info = *n + *info; return 0; } /* Transform problem to standard eigenvalue problem. */ inde = 1; indwrk = inde + *n; indwk2 = indwrk + *n * *n; llwrk2 = *lwork - indwk2 + 1; dsbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, &z__[z_offset], ldz, &work[indwrk], &iinfo) ; /* Reduce to tridiagonal form. */ if (wantz) { *(unsigned char *)vect = 'U'; } else { *(unsigned char *)vect = 'N'; } dsbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[ z_offset], ldz, &work[indwrk], &iinfo); /* For eigenvalues only, call DSTERF. For eigenvectors, call SSTEDC. */ if (! wantz) { dsterf_(n, &w[1], &work[inde], info); } else { dstedc_("I", n, &w[1], &work[inde], &work[indwrk], n, &work[indwk2], & llwrk2, &iwork[1], liwork, info); dgemm_("N", "N", n, n, n, &c_b12, &z__[z_offset], ldz, &work[indwrk], n, &c_b13, &work[indwk2], n); dlacpy_("A", n, n, &work[indwk2], n, &z__[z_offset], ldz); } work[1] = (doublereal) lwmin; iwork[1] = liwmin; return 0; /* End of DSBGVD */ } /* dsbgvd_ */
/* Subroutine */ int dsyevd_(char *jobz, char *uplo, integer *n, doublereal * a, integer *lda, doublereal *w, doublereal *work, integer *lwork, integer *iwork, integer *liwork, integer *info, ftnlen jobz_len, ftnlen uplo_len) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ static doublereal eps; static integer inde; static doublereal anrm, rmin, rmax; static integer lopt; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); static doublereal sigma; extern logical lsame_(char *, char *, ftnlen, ftnlen); static integer iinfo, lwmin, liopt; static logical lower, wantz; static integer indwk2, llwrk2; extern doublereal dlamch_(char *, ftnlen); static integer iscale; extern /* Subroutine */ int dlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *, ftnlen), dstedc_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, integer *, ftnlen), dlacpy_( char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, ftnlen); static doublereal safmin; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); static doublereal bignum; static integer indtau; extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, integer *); extern doublereal dlansy_(char *, char *, integer *, doublereal *, integer *, doublereal *, ftnlen, ftnlen); static integer indwrk, liwmin; extern /* Subroutine */ int dormtr_(char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, ftnlen, ftnlen, ftnlen), dsytrd_(char *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *, ftnlen); static integer llwork; static doublereal smlnum; static logical lquery; /* -- LAPACK driver routine (version 3.0) -- */ /* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */ /* Courant Institute, Argonne National Lab, and Rice University */ /* June 30, 1999 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DSYEVD computes all eigenvalues and, optionally, eigenvectors of a */ /* real symmetric matrix A. If eigenvectors are desired, it uses a */ /* divide and conquer algorithm. */ /* The divide and conquer algorithm makes very mild assumptions about */ /* floating point arithmetic. It will work on machines with a guard */ /* digit in add/subtract, or on those binary machines without guard */ /* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */ /* Cray-2. It could conceivably fail on hexadecimal or decimal machines */ /* without guard digits, but we know of none. */ /* Because of large use of BLAS of level 3, DSYEVD needs N**2 more */ /* workspace than DSYEVX. */ /* Arguments */ /* ========= */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) */ /* On entry, the symmetric matrix A. If UPLO = 'U', the */ /* leading N-by-N upper triangular part of A contains the */ /* upper triangular part of the matrix A. If UPLO = 'L', */ /* the leading N-by-N lower triangular part of A contains */ /* the lower triangular part of the matrix A. */ /* On exit, if JOBZ = 'V', then if INFO = 0, A contains the */ /* orthonormal eigenvectors of the matrix A. */ /* If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') */ /* or the upper triangle (if UPLO='U') of A, including the */ /* diagonal, is destroyed. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* W (output) DOUBLE PRECISION array, dimension (N) */ /* If INFO = 0, the eigenvalues in ascending order. */ /* WORK (workspace/output) DOUBLE PRECISION array, */ /* dimension (LWORK) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* If N <= 1, LWORK must be at least 1. */ /* If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1. */ /* If JOBZ = 'V' and N > 1, LWORK must be at least */ /* 1 + 6*N + 2*N**2. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* IWORK (workspace/output) INTEGER array, dimension (LIWORK) */ /* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */ /* LIWORK (input) INTEGER */ /* The dimension of the array IWORK. */ /* If N <= 1, LIWORK must be at least 1. */ /* If JOBZ = 'N' and N > 1, LIWORK must be at least 1. */ /* If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. */ /* If LIWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the optimal size of the IWORK array, */ /* returns this value as the first entry of the IWORK array, and */ /* no error message related to LIWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, the algorithm failed to converge; i */ /* off-diagonal elements of an intermediate tridiagonal */ /* form did not converge to zero. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Jeff Rutter, Computer Science Division, University of California */ /* at Berkeley, USA */ /* Modified by Francoise Tisseur, University of Tennessee. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --w; --work; --iwork; /* Function Body */ wantz = lsame_(jobz, "V", (ftnlen)1, (ftnlen)1); lower = lsame_(uplo, "L", (ftnlen)1, (ftnlen)1); lquery = *lwork == -1 || *liwork == -1; *info = 0; if (*n <= 1) { liwmin = 1; lwmin = 1; lopt = lwmin; liopt = liwmin; } else { if (wantz) { liwmin = *n * 5 + 3; /* Computing 2nd power */ i__1 = *n; lwmin = *n * 6 + 1 + (i__1 * i__1 << 1); } else { liwmin = 1; lwmin = (*n << 1) + 1; } lopt = lwmin; liopt = liwmin; } if (! (wantz || lsame_(jobz, "N", (ftnlen)1, (ftnlen)1))) { *info = -1; } else if (! (lower || lsame_(uplo, "U", (ftnlen)1, (ftnlen)1))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*lwork < lwmin && ! lquery) { *info = -8; } else if (*liwork < liwmin && ! lquery) { *info = -10; } if (*info == 0) { work[1] = (doublereal) lopt; iwork[1] = liopt; } if (*info != 0) { i__1 = -(*info); xerbla_("DSYEVD", &i__1, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { w[1] = a[a_dim1 + 1]; if (wantz) { a[a_dim1 + 1] = 1.; } return 0; } /* Get machine constants. */ safmin = dlamch_("Safe minimum", (ftnlen)12); eps = dlamch_("Precision", (ftnlen)9); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = sqrt(smlnum); rmax = sqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = dlansy_("M", uplo, n, &a[a_offset], lda, &work[1], (ftnlen)1, ( ftnlen)1); iscale = 0; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { dlascl_(uplo, &c__0, &c__0, &c_b12, &sigma, n, n, &a[a_offset], lda, info, (ftnlen)1); } /* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */ inde = 1; indtau = inde + *n; indwrk = indtau + *n; llwork = *lwork - indwrk + 1; indwk2 = indwrk + *n * *n; llwrk2 = *lwork - indwk2 + 1; dsytrd_(uplo, n, &a[a_offset], lda, &w[1], &work[inde], &work[indtau], & work[indwrk], &llwork, &iinfo, (ftnlen)1); lopt = (integer) ((*n << 1) + work[indwrk]); /* For eigenvalues only, call DSTERF. For eigenvectors, first call */ /* DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the */ /* tridiagonal matrix, then call DORMTR to multiply it by the */ /* Householder transformations stored in A. */ if (! wantz) { dsterf_(n, &w[1], &work[inde], info); } else { dstedc_("I", n, &w[1], &work[inde], &work[indwrk], n, &work[indwk2], & llwrk2, &iwork[1], liwork, info, (ftnlen)1); dormtr_("L", uplo, "N", n, n, &a[a_offset], lda, &work[indtau], &work[ indwrk], n, &work[indwk2], &llwrk2, &iinfo, (ftnlen)1, ( ftnlen)1, (ftnlen)1); dlacpy_("A", n, n, &work[indwrk], n, &a[a_offset], lda, (ftnlen)1); /* Computing MAX */ /* Computing 2nd power */ i__3 = *n; i__1 = lopt, i__2 = *n * 6 + 1 + (i__3 * i__3 << 1); lopt = max(i__1,i__2); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { d__1 = 1. / sigma; dscal_(n, &d__1, &w[1], &c__1); } work[1] = (doublereal) lopt; iwork[1] = liopt; return 0; /* End of DSYEVD */ } /* dsyevd_ */
/* Subroutine */ int zstedc_(char *compz, integer *n, doublereal *d__, doublereal *e, doublecomplex *z__, integer *ldz, doublecomplex *work, integer *lwork, doublereal *rwork, integer *lrwork, integer *iwork, integer *liwork, integer *info) { /* System generated locals */ integer z_dim1, z_offset, i__1, i__2, i__3, i__4; doublereal d__1, d__2; /* Builtin functions */ double log(doublereal); integer pow_ii(integer *, integer *); double sqrt(doublereal); /* Local variables */ integer i__, j, k, m; doublereal p; integer ii, ll, lgn; doublereal eps, tiny; extern logical lsame_(char *, char *); integer lwmin, start; extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlaed0_(integer *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, integer *, integer *); extern doublereal dlamch_(char *); extern /* Subroutine */ int dlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *), dstedc_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, integer *), dlaset_( char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); integer finish; extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *); extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, integer *), zlacrm_(integer *, integer *, doublecomplex *, integer *, doublereal *, integer *, doublecomplex *, integer *, doublereal *); integer liwmin, icompz; extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); doublereal orgnrm; integer lrwmin; logical lquery; integer smlsiz; extern /* Subroutine */ int zsteqr_(char *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublereal *, integer *); /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZSTEDC computes all eigenvalues and, optionally, eigenvectors of a */ /* symmetric tridiagonal matrix using the divide and conquer method. */ /* The eigenvectors of a full or band complex Hermitian matrix can also */ /* be found if ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this */ /* matrix to tridiagonal form. */ /* This code makes very mild assumptions about floating point */ /* arithmetic. It will work on machines with a guard digit in */ /* add/subtract, or on those binary machines without guard digits */ /* which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */ /* It could conceivably fail on hexadecimal or decimal machines */ /* without guard digits, but we know of none. See DLAED3 for details. */ /* Arguments */ /* ========= */ /* COMPZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only. */ /* = 'I': Compute eigenvectors of tridiagonal matrix also. */ /* = 'V': Compute eigenvectors of original Hermitian matrix */ /* also. On entry, Z contains the unitary matrix used */ /* to reduce the original matrix to tridiagonal form. */ /* N (input) INTEGER */ /* The dimension of the symmetric tridiagonal matrix. N >= 0. */ /* D (input/output) DOUBLE PRECISION array, dimension (N) */ /* On entry, the diagonal elements of the tridiagonal matrix. */ /* On exit, if INFO = 0, the eigenvalues in ascending order. */ /* E (input/output) DOUBLE PRECISION array, dimension (N-1) */ /* On entry, the subdiagonal elements of the tridiagonal matrix. */ /* On exit, E has been destroyed. */ /* Z (input/output) COMPLEX*16 array, dimension (LDZ,N) */ /* On entry, if COMPZ = 'V', then Z contains the unitary */ /* matrix used in the reduction to tridiagonal form. */ /* On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */ /* orthonormal eigenvectors of the original Hermitian matrix, */ /* and if COMPZ = 'I', Z contains the orthonormal eigenvectors */ /* of the symmetric tridiagonal matrix. */ /* If COMPZ = 'N', then Z is not referenced. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1. */ /* If eigenvectors are desired, then LDZ >= max(1,N). */ /* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1. */ /* If COMPZ = 'V' and N > 1, LWORK must be at least N*N. */ /* Note that for COMPZ = 'V', then if N is less than or */ /* equal to the minimum divide size, usually 25, then LWORK need */ /* only be 1. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal sizes of the WORK, RWORK and */ /* IWORK arrays, returns these values as the first entries of */ /* the WORK, RWORK and IWORK arrays, and no error message */ /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ /* RWORK (workspace/output) DOUBLE PRECISION array, */ /* dimension (LRWORK) */ /* On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */ /* LRWORK (input) INTEGER */ /* The dimension of the array RWORK. */ /* If COMPZ = 'N' or N <= 1, LRWORK must be at least 1. */ /* If COMPZ = 'V' and N > 1, LRWORK must be at least */ /* 1 + 3*N + 2*N*lg N + 3*N**2 , */ /* where lg( N ) = smallest integer k such */ /* that 2**k >= N. */ /* If COMPZ = 'I' and N > 1, LRWORK must be at least */ /* 1 + 4*N + 2*N**2 . */ /* Note that for COMPZ = 'I' or 'V', then if N is less than or */ /* equal to the minimum divide size, usually 25, then LRWORK */ /* need only be max(1,2*(N-1)). */ /* If LRWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the optimal sizes of the WORK, RWORK */ /* and IWORK arrays, returns these values as the first entries */ /* of the WORK, RWORK and IWORK arrays, and no error message */ /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ /* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */ /* LIWORK (input) INTEGER */ /* The dimension of the array IWORK. */ /* If COMPZ = 'N' or N <= 1, LIWORK must be at least 1. */ /* If COMPZ = 'V' or N > 1, LIWORK must be at least */ /* 6 + 6*N + 5*N*lg N. */ /* If COMPZ = 'I' or N > 1, LIWORK must be at least */ /* 3 + 5*N . */ /* Note that for COMPZ = 'I' or 'V', then if N is less than or */ /* equal to the minimum divide size, usually 25, then LIWORK */ /* need only be 1. */ /* If LIWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the optimal sizes of the WORK, RWORK */ /* and IWORK arrays, returns these values as the first entries */ /* of the WORK, RWORK and IWORK arrays, and no error message */ /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > 0: The algorithm failed to compute an eigenvalue while */ /* working on the submatrix lying in rows and columns */ /* INFO/(N+1) through mod(INFO,N+1). */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Jeff Rutter, Computer Science Division, University of California */ /* at Berkeley, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; --e; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --rwork; --iwork; /* Function Body */ *info = 0; lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1; if (lsame_(compz, "N")) { icompz = 0; } else if (lsame_(compz, "V")) { icompz = 1; } else if (lsame_(compz, "I")) { icompz = 2; } else { icompz = -1; } if (icompz < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) { *info = -6; } if (*info == 0) { /* Compute the workspace requirements */ smlsiz = ilaenv_(&c__9, "ZSTEDC", " ", &c__0, &c__0, &c__0, &c__0); if (*n <= 1 || icompz == 0) { lwmin = 1; liwmin = 1; lrwmin = 1; } else if (*n <= smlsiz) { lwmin = 1; liwmin = 1; lrwmin = *n - 1 << 1; } else if (icompz == 1) { lgn = (integer) (log((doublereal) (*n)) / log(2.)); if (pow_ii(&c__2, &lgn) < *n) { ++lgn; } if (pow_ii(&c__2, &lgn) < *n) { ++lgn; } lwmin = *n * *n; /* Computing 2nd power */ i__1 = *n; lrwmin = *n * 3 + 1 + (*n << 1) * lgn + i__1 * i__1 * 3; liwmin = *n * 6 + 6 + *n * 5 * lgn; } else if (icompz == 2) { lwmin = 1; /* Computing 2nd power */ i__1 = *n; lrwmin = (*n << 2) + 1 + (i__1 * i__1 << 1); liwmin = *n * 5 + 3; } work[1].r = (doublereal) lwmin, work[1].i = 0.; rwork[1] = (doublereal) lrwmin; iwork[1] = liwmin; if (*lwork < lwmin && ! lquery) { *info = -8; } else if (*lrwork < lrwmin && ! lquery) { *info = -10; } else if (*liwork < liwmin && ! lquery) { *info = -12; } } if (*info != 0) { i__1 = -(*info); xerbla_("ZSTEDC", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { if (icompz != 0) { i__1 = z_dim1 + 1; z__[i__1].r = 1., z__[i__1].i = 0.; } return 0; } /* If the following conditional clause is removed, then the routine */ /* will use the Divide and Conquer routine to compute only the */ /* eigenvalues, which requires (3N + 3N**2) real workspace and */ /* (2 + 5N + 2N lg(N)) integer workspace. */ /* Since on many architectures DSTERF is much faster than any other */ /* algorithm for finding eigenvalues only, it is used here */ /* as the default. If the conditional clause is removed, then */ /* information on the size of workspace needs to be changed. */ /* If COMPZ = 'N', use DSTERF to compute the eigenvalues. */ if (icompz == 0) { dsterf_(n, &d__[1], &e[1], info); goto L70; } /* If N is smaller than the minimum divide size (SMLSIZ+1), then */ /* solve the problem with another solver. */ if (*n <= smlsiz) { zsteqr_(compz, n, &d__[1], &e[1], &z__[z_offset], ldz, &rwork[1], info); } else { /* If COMPZ = 'I', we simply call DSTEDC instead. */ if (icompz == 2) { dlaset_("Full", n, n, &c_b17, &c_b18, &rwork[1], n); ll = *n * *n + 1; i__1 = *lrwork - ll + 1; dstedc_("I", n, &d__[1], &e[1], &rwork[1], n, &rwork[ll], &i__1, & iwork[1], liwork, info); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * z_dim1; i__4 = (j - 1) * *n + i__; z__[i__3].r = rwork[i__4], z__[i__3].i = 0.; /* L10: */ } /* L20: */ } goto L70; } /* From now on, only option left to be handled is COMPZ = 'V', */ /* i.e. ICOMPZ = 1. */ /* Scale. */ orgnrm = dlanst_("M", n, &d__[1], &e[1]); if (orgnrm == 0.) { goto L70; } eps = dlamch_("Epsilon"); start = 1; /* while ( START <= N ) */ L30: if (start <= *n) { /* Let FINISH be the position of the next subdiagonal entry */ /* such that E( FINISH ) <= TINY or FINISH = N if no such */ /* subdiagonal exists. The matrix identified by the elements */ /* between START and FINISH constitutes an independent */ /* sub-problem. */ finish = start; L40: if (finish < *n) { tiny = eps * sqrt((d__1 = d__[finish], abs(d__1))) * sqrt(( d__2 = d__[finish + 1], abs(d__2))); if ((d__1 = e[finish], abs(d__1)) > tiny) { ++finish; goto L40; } } /* (Sub) Problem determined. Compute its size and solve it. */ m = finish - start + 1; if (m > smlsiz) { /* Scale. */ orgnrm = dlanst_("M", &m, &d__[start], &e[start]); dlascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &m, &c__1, &d__[ start], &m, info); i__1 = m - 1; i__2 = m - 1; dlascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &i__1, &c__1, &e[ start], &i__2, info); zlaed0_(n, &m, &d__[start], &e[start], &z__[start * z_dim1 + 1], ldz, &work[1], n, &rwork[1], &iwork[1], info); if (*info > 0) { *info = (*info / (m + 1) + start - 1) * (*n + 1) + *info % (m + 1) + start - 1; goto L70; } /* Scale back. */ dlascl_("G", &c__0, &c__0, &c_b18, &orgnrm, &m, &c__1, &d__[ start], &m, info); } else { dsteqr_("I", &m, &d__[start], &e[start], &rwork[1], &m, & rwork[m * m + 1], info); zlacrm_(n, &m, &z__[start * z_dim1 + 1], ldz, &rwork[1], &m, & work[1], n, &rwork[m * m + 1]); zlacpy_("A", n, &m, &work[1], n, &z__[start * z_dim1 + 1], ldz); if (*info > 0) { *info = start * (*n + 1) + finish; goto L70; } } start = finish + 1; goto L30; } /* endwhile */ /* If the problem split any number of times, then the eigenvalues */ /* will not be properly ordered. Here we permute the eigenvalues */ /* (and the associated eigenvectors) into ascending order. */ if (m != *n) { /* Use Selection Sort to minimize swaps of eigenvectors */ i__1 = *n; for (ii = 2; ii <= i__1; ++ii) { i__ = ii - 1; k = i__; p = d__[i__]; i__2 = *n; for (j = ii; j <= i__2; ++j) { if (d__[j] < p) { k = j; p = d__[j]; } /* L50: */ } if (k != i__) { d__[k] = d__[i__]; d__[i__] = p; zswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1], &c__1); } /* L60: */ } } } L70: work[1].r = (doublereal) lwmin, work[1].i = 0.; rwork[1] = (doublereal) lrwmin; iwork[1] = liwmin; return 0; /* End of ZSTEDC */ } /* zstedc_ */