示例#1
0
文件: dgstrsL.c 项目: aceskpark/osfeo
void
dgstrsL(char *trans, SuperMatrix *L, int *perm_r, SuperMatrix *B, int *info)
{
/*
 * Purpose
 * =======
 *
 * DGSTRSL only performs the L-solve using the LU factorization computed
 * by DGSTRF.
 *
 * See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 * Arguments
 * =========
 *
 * trans   (input) char*
 *          Specifies the form of the system of equations:
 *          = 'N':  A * X = B  (No transpose)
 *          = 'T':  A'* X = B  (Transpose)
 *          = 'C':  A**H * X = B  (Conjugate transpose)
 *
 * L       (input) SuperMatrix*
 *         The factor L from the factorization Pr*A*Pc=L*U as computed by
 *         dgstrf(). Use compressed row subscripts storage for supernodes,
 *         i.e., L has types: Stype = SLU_SC, Dtype = SLU_D, Mtype = SLU_TRLU.
 *
 * U       (input) SuperMatrix*
 *         The factor U from the factorization Pr*A*Pc=L*U as computed by
 *         dgstrf(). Use column-wise storage scheme, i.e., U has types:
 *         Stype = SLU_NC, Dtype = SLU_D, Mtype = SLU_TRU.
 *
 * perm_r  (input) int*, dimension (L->nrow)
 *         Row permutation vector, which defines the permutation matrix Pr; 
 *         perm_r[i] = j means row i of A is in position j in Pr*A.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = SLU_DN, Dtype = SLU_D, Mtype = SLU_GE.
 *         On entry, the right hand side matrix.
 *         On exit, the solution matrix if info = 0;
 *
 * info    (output) int*
 * 	   = 0: successful exit
 *	   < 0: if info = -i, the i-th argument had an illegal value
 *
 */
#ifdef _CRAY
    _fcd ftcs1, ftcs2, ftcs3, ftcs4;
#endif
    int      incx = 1, incy = 1;
    double   alpha = 1.0, beta = 1.0;
    DNformat *Bstore;
    double   *Bmat;
    SCformat *Lstore;
    double   *Lval, *Uval;
    int      nrow, notran;
    int      fsupc, nsupr, nsupc, luptr, istart, irow;
    int      i, j, k, iptr, jcol, n, ldb, nrhs;
    double   *work, *work_col, *rhs_work, *soln;
    flops_t  solve_ops;
    extern SuperLUStat_t SuperLUStat;
    void dprint_soln();

    /* Test input parameters ... */
    *info = 0;
    Bstore = B->Store;
    ldb = Bstore->lda;
    nrhs = B->ncol;
    notran = lsame_(trans, "N");
    if ( !notran && !lsame_(trans, "T") && !lsame_(trans, "C") ) *info = -1;
    else if ( L->nrow != L->ncol || L->nrow < 0 ||
	      L->Stype != SLU_SC || L->Dtype != SLU_D || L->Mtype != SLU_TRLU )
	*info = -2;
    else if ( ldb < SUPERLU_MAX(0, L->nrow) ||
	      B->Stype != SLU_DN || B->Dtype != SLU_D || B->Mtype != SLU_GE )
	*info = -4;
    if ( *info ) {
	i = -(*info);
	xerbla_("dgstrsL", &i);
	return;
    }

    n = L->nrow;
    work = doubleCalloc(n * nrhs);
    if ( !work ) ABORT("Malloc fails for local work[].");
    soln = doubleMalloc(n);
    if ( !soln ) ABORT("Malloc fails for local soln[].");

    Bmat = Bstore->nzval;
    Lstore = L->Store;
    Lval = Lstore->nzval;
    solve_ops = 0;
    
    if ( notran ) {
	/* Permute right hand sides to form Pr*B */
	for (i = 0; i < nrhs; i++) {
	    rhs_work = &Bmat[i*ldb];
	    for (k = 0; k < n; k++) soln[perm_r[k]] = rhs_work[k];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}
	
	/* Forward solve PLy=Pb. */
	for (k = 0; k <= Lstore->nsuper; k++) {
	    fsupc = L_FST_SUPC(k);
	    istart = L_SUB_START(fsupc);
	    nsupr = L_SUB_START(fsupc+1) - istart;
	    nsupc = L_FST_SUPC(k+1) - fsupc;
	    nrow = nsupr - nsupc;

	    solve_ops += nsupc * (nsupc - 1) * nrhs;
	    solve_ops += 2 * nrow * nsupc * nrhs;
	    
	    if ( nsupc == 1 ) {
		for (j = 0; j < nrhs; j++) {
		    rhs_work = &Bmat[j*ldb];
	    	    luptr = L_NZ_START(fsupc);
		    for (iptr=istart+1; iptr < L_SUB_START(fsupc+1); iptr++){
			irow = L_SUB(iptr);
			++luptr;
			rhs_work[irow] -= rhs_work[fsupc] * Lval[luptr];
		    }
		}
	    } else {
	    	luptr = L_NZ_START(fsupc);
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
		ftcs1 = _cptofcd("L", strlen("L"));
		ftcs2 = _cptofcd("N", strlen("N"));
		ftcs3 = _cptofcd("U", strlen("U"));
		STRSM( ftcs1, ftcs1, ftcs2, ftcs3, &nsupc, &nrhs, &alpha,
		       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
		
		SGEMM( ftcs2, ftcs2, &nrow, &nrhs, &nsupc, &alpha, 
			&Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, 
			&beta, &work[0], &n );
#else
		dtrsm_("L", "L", "N", "U", &nsupc, &nrhs, &alpha,
		       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
		
		dgemm_( "N", "N", &nrow, &nrhs, &nsupc, &alpha, 
			&Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, 
			&beta, &work[0], &n );
#endif
		for (j = 0; j < nrhs; j++) {
		    rhs_work = &Bmat[j*ldb];
		    work_col = &work[j*n];
		    iptr = istart + nsupc;
		    for (i = 0; i < nrow; i++) {
			irow = L_SUB(iptr);
			rhs_work[irow] -= work_col[i]; /* Scatter */
			work_col[i] = 0.0;
			iptr++;
		    }
		}
#else		
		for (j = 0; j < nrhs; j++) {
		    rhs_work = &Bmat[j*ldb];
		    dlsolve (nsupr, nsupc, &Lval[luptr], &rhs_work[fsupc]);
		    dmatvec (nsupr, nrow, nsupc, &Lval[luptr+nsupc],
			    &rhs_work[fsupc], &work[0] );

		    iptr = istart + nsupc;
		    for (i = 0; i < nrow; i++) {
			irow = L_SUB(iptr);
			rhs_work[irow] -= work[i];
			work[i] = 0.0;
			iptr++;
		    }
		}
#endif		    
	    } /* else ... */
	} /* for L-solve */

#ifdef DEBUG
  	printf("After L-solve: y=\n");
	dprint_soln(n, nrhs, Bmat);
#endif
	
        SuperLUStat.ops[SOLVE] = solve_ops;

    } else { 
      printf("Transposed solve not implemented.\n");
      exit(0);
    }

    SUPERLU_FREE(work);
    SUPERLU_FREE(soln);
}
示例#2
0
/* Subroutine */ int dsygvx_(integer *itype, char *jobz, char *range, char *
	uplo, integer *n, doublereal *a, integer *lda, doublereal *b, integer 
	*ldb, doublereal *vl, doublereal *vu, integer *il, integer *iu, 
	doublereal *abstol, integer *m, doublereal *w, doublereal *z__, 
	integer *ldz, doublereal *work, integer *lwork, integer *iwork, 
	integer *ifail, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, z_dim1, z_offset, i__1, i__2;

    /* Local variables */
    integer nb;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *);
    char trans[1];
    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *);
    logical upper, wantz, alleig, indeig, valeig;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int dpotrf_(char *, integer *, doublereal *, 
	    integer *, integer *);
    integer lwkmin;
    extern /* Subroutine */ int dsygst_(integer *, char *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, integer *);
    integer lwkopt;
    logical lquery;
    extern /* Subroutine */ int dsyevx_(char *, char *, char *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, integer *, integer 
	    *);


/*  -- LAPACK driver routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSYGVX computes selected eigenvalues, and optionally, eigenvectors */
/*  of a real generalized symmetric-definite eigenproblem, of the form */
/*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A */
/*  and B are assumed to be symmetric and B is also positive definite. */
/*  Eigenvalues and eigenvectors can be selected by specifying either a */
/*  range of values or a range of indices for the desired eigenvalues. */

/*  Arguments */
/*  ========= */

/*  ITYPE   (input) INTEGER */
/*          Specifies the problem type to be solved: */
/*          = 1:  A*x = (lambda)*B*x */
/*          = 2:  A*B*x = (lambda)*x */
/*          = 3:  B*A*x = (lambda)*x */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found. */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found. */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A and B are stored; */
/*          = 'L':  Lower triangle of A and B are stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix pencil (A,B).  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of A contains the */
/*          upper triangular part of the matrix A.  If UPLO = 'L', */
/*          the leading N-by-N lower triangular part of A contains */
/*          the lower triangular part of the matrix A. */

/*          On exit, the lower triangle (if UPLO='L') or the upper */
/*          triangle (if UPLO='U') of A, including the diagonal, is */
/*          destroyed. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  B       (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
/*          On entry, the symmetric matrix B.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of B contains the */
/*          upper triangular part of the matrix B.  If UPLO = 'L', */
/*          the leading N-by-N lower triangular part of B contains */
/*          the lower triangular part of the matrix B. */

/*          On exit, if INFO <= N, the part of B containing the matrix is */
/*          overwritten by the triangular factor U or L from the Cholesky */
/*          factorization B = U**T*U or B = L*L**T. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  VL      (input) DOUBLE PRECISION */
/*  VU      (input) DOUBLE PRECISION */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) DOUBLE PRECISION */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   max( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less than */
/*          or equal to zero, then  EPS*|T|  will be used in its place, */
/*          where |T| is the 1-norm of the tridiagonal matrix obtained */
/*          by reducing A to tridiagonal form. */

/*          Eigenvalues will be computed most accurately when ABSTOL is */
/*          set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
/*          If this routine returns with INFO>0, indicating that some */
/*          eigenvectors did not converge, try setting ABSTOL to */
/*          2*DLAMCH('S'). */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) DOUBLE PRECISION array, dimension (N) */
/*          On normal exit, the first M elements contain the selected */
/*          eigenvalues in ascending order. */

/*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M)) */
/*          If JOBZ = 'N', then Z is not referenced. */
/*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/*          contain the orthonormal eigenvectors of the matrix A */
/*          corresponding to the selected eigenvalues, with the i-th */
/*          column of Z holding the eigenvector associated with W(i). */
/*          The eigenvectors are normalized as follows: */
/*          if ITYPE = 1 or 2, Z**T*B*Z = I; */
/*          if ITYPE = 3, Z**T*inv(B)*Z = I. */

/*          If an eigenvector fails to converge, then that column of Z */
/*          contains the latest approximation to the eigenvector, and the */
/*          index of the eigenvector is returned in IFAIL. */
/*          Note: the user must ensure that at least max(1,M) columns are */
/*          supplied in the array Z; if RANGE = 'V', the exact value of M */
/*          is not known in advance and an upper bound must be used. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The length of the array WORK.  LWORK >= max(1,8*N). */
/*          For optimal efficiency, LWORK >= (NB+3)*N, */
/*          where NB is the blocksize for DSYTRD returned by ILAENV. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  IWORK   (workspace) INTEGER array, dimension (5*N) */

/*  IFAIL   (output) INTEGER array, dimension (N) */
/*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
/*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
/*          indices of the eigenvectors that failed to converge. */
/*          If JOBZ = 'N', then IFAIL is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  DPOTRF or DSYEVX returned an error code: */
/*             <= N:  if INFO = i, DSYEVX failed to converge; */
/*                    i eigenvectors failed to converge.  Their indices */
/*                    are stored in array IFAIL. */
/*             > N:   if INFO = N + i, for 1 <= i <= N, then the leading */
/*                    minor of order i of B is not positive definite. */
/*                    The factorization of B could not be completed and */
/*                    no eigenvalues or eigenvectors were computed. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */

/* ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --iwork;
    --ifail;

    /* Function Body */
    upper = lsame_(uplo, "U");
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");
    lquery = *lwork == -1;

    *info = 0;
    if (*itype < 1 || *itype > 3) {
	*info = -1;
    } else if (! (wantz || lsame_(jobz, "N"))) {
	*info = -2;
    } else if (! (alleig || valeig || indeig)) {
	*info = -3;
    } else if (! (upper || lsame_(uplo, "L"))) {
	*info = -4;
    } else if (*n < 0) {
	*info = -5;
    } else if (*lda < max(1,*n)) {
	*info = -7;
    } else if (*ldb < max(1,*n)) {
	*info = -9;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -11;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -12;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -13;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -18;
	}
    }

    if (*info == 0) {
/* Computing MAX */
	i__1 = 1, i__2 = *n << 3;
	lwkmin = max(i__1,i__2);
	nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
/* Computing MAX */
	i__1 = lwkmin, i__2 = (nb + 3) * *n;
	lwkopt = max(i__1,i__2);
	work[1] = (doublereal) lwkopt;

	if (*lwork < lwkmin && ! lquery) {
	    *info = -20;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSYGVX", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

/*     Form a Cholesky factorization of B. */

    dpotrf_(uplo, n, &b[b_offset], ldb, info);
    if (*info != 0) {
	*info = *n + *info;
	return 0;
    }

/*     Transform problem to standard eigenvalue problem and solve. */

    dsygst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
    dsyevx_(jobz, range, uplo, n, &a[a_offset], lda, vl, vu, il, iu, abstol, 
	    m, &w[1], &z__[z_offset], ldz, &work[1], lwork, &iwork[1], &ifail[
	    1], info);

    if (wantz) {

/*        Backtransform eigenvectors to the original problem. */

	if (*info > 0) {
	    *m = *info - 1;
	}
	if (*itype == 1 || *itype == 2) {

/*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
/*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */

	    if (upper) {
		*(unsigned char *)trans = 'N';
	    } else {
		*(unsigned char *)trans = 'T';
	    }

	    dtrsm_("Left", uplo, trans, "Non-unit", n, m, &c_b19, &b[b_offset]
, ldb, &z__[z_offset], ldz);

	} else if (*itype == 3) {

/*           For B*A*x=(lambda)*x; */
/*           backtransform eigenvectors: x = L*y or U'*y */

	    if (upper) {
		*(unsigned char *)trans = 'T';
	    } else {
		*(unsigned char *)trans = 'N';
	    }

	    dtrmm_("Left", uplo, trans, "Non-unit", n, m, &c_b19, &b[b_offset]
, ldb, &z__[z_offset], ldz);
	}
    }

/*     Set WORK(1) to optimal workspace size. */

    work[1] = (doublereal) lwkopt;

    return 0;

/*     End of DSYGVX */

} /* dsygvx_ */
示例#3
0
/* Subroutine */ int dgetri_(integer *n, doublereal *a, integer *lda, integer
                             *ipiv, doublereal *work, integer *lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;

    /* Local variables */
    integer i__, j, jb, nb, jj, jp, nn, iws;
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
                                       integer *, doublereal *, doublereal *, integer *, doublereal *,
                                       integer *, doublereal *, doublereal *, integer *),
                                               dgemv_(char *, integer *, integer *, doublereal *, doublereal *,
                                                       integer *, doublereal *, integer *, doublereal *, doublereal *,
                                                       integer *);
    integer nbmin;
    extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
                                       doublereal *, integer *), dtrsm_(char *, char *, char *, char *,
                                               integer *, integer *, doublereal *, doublereal *, integer *,
                                               doublereal *, integer *), xerbla_(
                                                       char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
                           integer *, integer *);
    integer ldwork;
    extern /* Subroutine */ int dtrtri_(char *, char *, integer *, doublereal
                                        *, integer *, integer *);
    integer lwkopt;
    logical lquery;


    /*  -- LAPACK routine (version 3.1) -- */
    /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
    /*     November 2006 */

    /*     .. Scalar Arguments .. */
    /*     .. */
    /*     .. Array Arguments .. */
    /*     .. */

    /*  Purpose */
    /*  ======= */

    /*  DGETRI computes the inverse of a matrix using the LU factorization */
    /*  computed by DGETRF. */

    /*  This method inverts U and then computes inv(A) by solving the system */
    /*  inv(A)*L = inv(U) for inv(A). */

    /*  Arguments */
    /*  ========= */

    /*  N       (input) INTEGER */
    /*          The order of the matrix A.  N >= 0. */

    /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
    /*          On entry, the factors L and U from the factorization */
    /*          A = P*L*U as computed by DGETRF. */
    /*          On exit, if INFO = 0, the inverse of the original matrix A. */

    /*  LDA     (input) INTEGER */
    /*          The leading dimension of the array A.  LDA >= max(1,N). */

    /*  IPIV    (input) INTEGER array, dimension (N) */
    /*          The pivot indices from DGETRF; for 1<=i<=N, row i of the */
    /*          matrix was interchanged with row IPIV(i). */

    /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
    /*          On exit, if INFO=0, then WORK(1) returns the optimal LWORK. */

    /*  LWORK   (input) INTEGER */
    /*          The dimension of the array WORK.  LWORK >= max(1,N). */
    /*          For optimal performance LWORK >= N*NB, where NB is */
    /*          the optimal blocksize returned by ILAENV. */

    /*          If LWORK = -1, then a workspace query is assumed; the routine */
    /*          only calculates the optimal size of the WORK array, returns */
    /*          this value as the first entry of the WORK array, and no error */
    /*          message related to LWORK is issued by XERBLA. */

    /*  INFO    (output) INTEGER */
    /*          = 0:  successful exit */
    /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
    /*          > 0:  if INFO = i, U(i,i) is exactly zero; the matrix is */
    /*                singular and its inverse could not be computed. */

    /*  ===================================================================== */

    /*     .. Parameters .. */
    /*     .. */
    /*     .. Local Scalars .. */
    /*     .. */
    /*     .. External Functions .. */
    /*     .. */
    /*     .. External Subroutines .. */
    /*     .. */
    /*     .. Intrinsic Functions .. */
    /*     .. */
    /*     .. Executable Statements .. */

    /*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --ipiv;
    --work;

    /* Function Body */
    *info = 0;
    nb = ilaenv_(&c__1, "DGETRI", " ", n, &c_n1, &c_n1, &c_n1);
    lwkopt = *n * nb;
    work[1] = (doublereal) lwkopt;
    lquery = *lwork == -1;
    if (*n < 0) {
        *info = -1;
    } else if (*lda < max(1,*n)) {
        *info = -3;
    } else if (*lwork < max(1,*n) && ! lquery) {
        *info = -6;
    }
    if (*info != 0) {
        i__1 = -(*info);
        xerbla_("DGETRI", &i__1);
        return 0;
    } else if (lquery) {
        return 0;
    }

    /*     Quick return if possible */

    if (*n == 0) {
        return 0;
    }

    /*     Form inv(U).  If INFO > 0 from DTRTRI, then U is singular, */
    /*     and the inverse is not computed. */

    dtrtri_("Upper", "Non-unit", n, &a[a_offset], lda, info);
    if (*info > 0) {
        return 0;
    }

    nbmin = 2;
    ldwork = *n;
    if (nb > 1 && nb < *n) {
        /* Computing MAX */
        i__1 = ldwork * nb;
        iws = max(i__1,1);
        if (*lwork < iws) {
            nb = *lwork / ldwork;
            /* Computing MAX */
            i__1 = 2, i__2 = ilaenv_(&c__2, "DGETRI", " ", n, &c_n1, &c_n1, &
                                     c_n1);
            nbmin = max(i__1,i__2);
        }
    } else {
        iws = *n;
    }

    /*     Solve the equation inv(A)*L = inv(U) for inv(A). */

    if (nb < nbmin || nb >= *n) {

        /*        Use unblocked code. */

        for (j = *n; j >= 1; --j) {

            /*           Copy current column of L to WORK and replace with zeros. */

            i__1 = *n;
            for (i__ = j + 1; i__ <= i__1; ++i__) {
                work[i__] = a[i__ + j * a_dim1];
                a[i__ + j * a_dim1] = 0.;
                /* L10: */
            }

            /*           Compute current column of inv(A). */

            if (j < *n) {
                i__1 = *n - j;
                dgemv_("No transpose", n, &i__1, &c_b20, &a[(j + 1) * a_dim1
                        + 1], lda, &work[j + 1], &c__1, &c_b22, &a[j * a_dim1
                                + 1], &c__1);
            }
            /* L20: */
        }
    } else {

        /*        Use blocked code. */

        nn = (*n - 1) / nb * nb + 1;
        i__1 = -nb;
        for (j = nn; i__1 < 0 ? j >= 1 : j <= 1; j += i__1) {
            /* Computing MIN */
            i__2 = nb, i__3 = *n - j + 1;
            jb = min(i__2,i__3);

            /*           Copy current block column of L to WORK and replace with */
            /*           zeros. */

            i__2 = j + jb - 1;
            for (jj = j; jj <= i__2; ++jj) {
                i__3 = *n;
                for (i__ = jj + 1; i__ <= i__3; ++i__) {
                    work[i__ + (jj - j) * ldwork] = a[i__ + jj * a_dim1];
                    a[i__ + jj * a_dim1] = 0.;
                    /* L30: */
                }
                /* L40: */
            }

            /*           Compute current block column of inv(A). */

            if (j + jb <= *n) {
                i__2 = *n - j - jb + 1;
                dgemm_("No transpose", "No transpose", n, &jb, &i__2, &c_b20,
                       &a[(j + jb) * a_dim1 + 1], lda, &work[j + jb], &
                       ldwork, &c_b22, &a[j * a_dim1 + 1], lda);
            }
            dtrsm_("Right", "Lower", "No transpose", "Unit", n, &jb, &c_b22, &
                   work[j], &ldwork, &a[j * a_dim1 + 1], lda);
            /* L50: */
        }
    }

    /*     Apply column interchanges. */

    for (j = *n - 1; j >= 1; --j) {
        jp = ipiv[j];
        if (jp != j) {
            dswap_(n, &a[j * a_dim1 + 1], &c__1, &a[jp * a_dim1 + 1], &c__1);
        }
        /* L60: */
    }

    work[1] = (doublereal) iws;
    return 0;

    /*     End of DGETRI */

} /* dgetri_ */
示例#4
0
文件: dgeqls.c 项目: zangel/uquad
/* Subroutine */ int dgeqls_(integer *m, integer *n, integer *nrhs, 
	doublereal *a, integer *lda, doublereal *tau, doublereal *b, integer *
	ldb, doublereal *work, integer *lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1;

    /* Local variables */
    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *), xerbla_(
	    char *, integer *), dormql_(char *, char *, integer *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, integer *);


#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]


/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    Solve the least squares problem   
        min || A*X - B ||   
    using the QL factorization   
        A = Q*L   
    computed by DGEQLF.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A.  M >= N >= 0.   

    NRHS    (input) INTEGER   
            The number of columns of B.  NRHS >= 0.   

    A       (input) DOUBLE PRECISION array, dimension (LDA,N)   
            Details of the QL factorization of the original matrix A as   
            returned by DGEQLF.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= M.   

    TAU     (input) DOUBLE PRECISION array, dimension (N)   
            Details of the orthogonal matrix Q.   

    B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)   
            On entry, the m-by-nrhs right hand side matrix B.   
            On exit, the n-by-nrhs solution matrix X, stored in rows   
            m-n+1:m.   

    LDB     (input) INTEGER   
            The leading dimension of the array B. LDB >= M.   

    WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK)   

    LWORK   (input) INTEGER   
            The length of the array WORK.  LWORK must be at least NRHS,   
            and should be at least NRHS*NB, where NB is the block size   
            for this environment.   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   


       Test the input arguments.   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --tau;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --work;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0 || *n > *m) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else if (*ldb < max(1,*m)) {
	*info = -8;
    } else if (*lwork < 1 || *lwork < *nrhs && *m > 0 && *n > 0) {
	*info = -10;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGEQLS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0 || *m == 0) {
	return 0;
    }

/*     B := Q' * B */

    dormql_("Left", "Transpose", m, nrhs, n, &a[a_offset], lda, &tau[1], &b[
	    b_offset], ldb, &work[1], lwork, info);

/*     Solve L*X = B(m-n+1:m,:) */

    dtrsm_("Left", "Lower", "No transpose", "Non-unit", n, nrhs, &c_b9, &
	    a_ref(*m - *n + 1, 1), lda, &b_ref(*m - *n + 1, 1), ldb);

    return 0;

/*     End of DGEQLS */

} /* dgeqls_ */
示例#5
0
/* Subroutine */ int dgbtrf_(integer *m, integer *n, integer *kl, integer *ku, 
	 doublereal *ab, integer *ldab, integer *ipiv, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6;
    doublereal d__1;

    /* Local variables */
    integer i__, j, i2, i3, j2, j3, k2, jb, nb, ii, jj, jm, ip, jp, km, ju, 
	    kv, nw;
    extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    doublereal temp;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *), dgemm_(char *, char *, integer *, integer *, integer *
, doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *), dcopy_(
	    integer *, doublereal *, integer *, doublereal *, integer *), 
	    dswap_(integer *, doublereal *, integer *, doublereal *, integer *
);
    doublereal work13[4160]	/* was [65][64] */, work31[4160]	/* 
	    was [65][64] */;
    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *), dgbtf2_(
	    integer *, integer *, integer *, integer *, doublereal *, integer 
	    *, integer *, integer *);
    extern integer idamax_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int dlaswp_(integer *, doublereal *, integer *, 
	    integer *, integer *, integer *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DGBTRF computes an LU factorization of a real m-by-n band matrix A */
/*  using partial pivoting with row interchanges. */

/*  This is the blocked version of the algorithm, calling Level 3 BLAS. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  KL      (input) INTEGER */
/*          The number of subdiagonals within the band of A.  KL >= 0. */

/*  KU      (input) INTEGER */
/*          The number of superdiagonals within the band of A.  KU >= 0. */

/*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
/*          On entry, the matrix A in band storage, in rows KL+1 to */
/*          2*KL+KU+1; rows 1 to KL of the array need not be set. */
/*          The j-th column of A is stored in the j-th column of the */
/*          array AB as follows: */
/*          AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl) */

/*          On exit, details of the factorization: U is stored as an */
/*          upper triangular band matrix with KL+KU superdiagonals in */
/*          rows 1 to KL+KU+1, and the multipliers used during the */
/*          factorization are stored in rows KL+KU+2 to 2*KL+KU+1. */
/*          See below for further details. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1. */

/*  IPIV    (output) INTEGER array, dimension (min(M,N)) */
/*          The pivot indices; for 1 <= i <= min(M,N), row i of the */
/*          matrix was interchanged with row IPIV(i). */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */
/*          > 0: if INFO = +i, U(i,i) is exactly zero. The factorization */
/*               has been completed, but the factor U is exactly */
/*               singular, and division by zero will occur if it is used */
/*               to solve a system of equations. */

/*  Further Details */
/*  =============== */

/*  The band storage scheme is illustrated by the following example, when */
/*  M = N = 6, KL = 2, KU = 1: */

/*  On entry:                       On exit: */

/*      *    *    *    +    +    +       *    *    *   u14  u25  u36 */
/*      *    *    +    +    +    +       *    *   u13  u24  u35  u46 */
/*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56 */
/*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66 */
/*     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   * */
/*     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    * */

/*  Array elements marked * are not used by the routine; elements marked */
/*  + need not be set on entry, but are required by the routine to store */
/*  elements of U because of fill-in resulting from the row interchanges. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     KV is the number of superdiagonals in the factor U, allowing for */
/*     fill-in */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --ipiv;

    /* Function Body */
    kv = *ku + *kl;

/*     Test the input parameters. */

    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*kl < 0) {
	*info = -3;
    } else if (*ku < 0) {
	*info = -4;
    } else if (*ldab < *kl + kv + 1) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGBTRF", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0) {
	return 0;
    }

/*     Determine the block size for this environment */

    nb = ilaenv_(&c__1, "DGBTRF", " ", m, n, kl, ku);

/*     The block size must not exceed the limit set by the size of the */
/*     local arrays WORK13 and WORK31. */

    nb = min(nb,64);

    if (nb <= 1 || nb > *kl) {

/*        Use unblocked code */

	dgbtf2_(m, n, kl, ku, &ab[ab_offset], ldab, &ipiv[1], info);
    } else {

/*        Use blocked code */

/*        Zero the superdiagonal elements of the work array WORK13 */

	i__1 = nb;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = j - 1;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		work13[i__ + j * 65 - 66] = 0.;
/* L10: */
	    }
/* L20: */
	}

/*        Zero the subdiagonal elements of the work array WORK31 */

	i__1 = nb;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = nb;
	    for (i__ = j + 1; i__ <= i__2; ++i__) {
		work31[i__ + j * 65 - 66] = 0.;
/* L30: */
	    }
/* L40: */
	}

/*        Gaussian elimination with partial pivoting */

/*        Set fill-in elements in columns KU+2 to KV to zero */

	i__1 = min(kv,*n);
	for (j = *ku + 2; j <= i__1; ++j) {
	    i__2 = *kl;
	    for (i__ = kv - j + 2; i__ <= i__2; ++i__) {
		ab[i__ + j * ab_dim1] = 0.;
/* L50: */
	    }
/* L60: */
	}

/*        JU is the index of the last column affected by the current */
/*        stage of the factorization */

	ju = 1;

	i__1 = min(*m,*n);
	i__2 = nb;
	for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
/* Computing MIN */
	    i__3 = nb, i__4 = min(*m,*n) - j + 1;
	    jb = min(i__3,i__4);

/*           The active part of the matrix is partitioned */

/*              A11   A12   A13 */
/*              A21   A22   A23 */
/*              A31   A32   A33 */

/*           Here A11, A21 and A31 denote the current block of JB columns */
/*           which is about to be factorized. The number of rows in the */
/*           partitioning are JB, I2, I3 respectively, and the numbers */
/*           of columns are JB, J2, J3. The superdiagonal elements of A13 */
/*           and the subdiagonal elements of A31 lie outside the band. */

/* Computing MIN */
	    i__3 = *kl - jb, i__4 = *m - j - jb + 1;
	    i2 = min(i__3,i__4);
/* Computing MIN */
	    i__3 = jb, i__4 = *m - j - *kl + 1;
	    i3 = min(i__3,i__4);

/*           J2 and J3 are computed after JU has been updated. */

/*           Factorize the current block of JB columns */

	    i__3 = j + jb - 1;
	    for (jj = j; jj <= i__3; ++jj) {

/*              Set fill-in elements in column JJ+KV to zero */

		if (jj + kv <= *n) {
		    i__4 = *kl;
		    for (i__ = 1; i__ <= i__4; ++i__) {
			ab[i__ + (jj + kv) * ab_dim1] = 0.;
/* L70: */
		    }
		}

/*              Find pivot and test for singularity. KM is the number of */
/*              subdiagonal elements in the current column. */

/* Computing MIN */
		i__4 = *kl, i__5 = *m - jj;
		km = min(i__4,i__5);
		i__4 = km + 1;
		jp = idamax_(&i__4, &ab[kv + 1 + jj * ab_dim1], &c__1);
		ipiv[jj] = jp + jj - j;
		if (ab[kv + jp + jj * ab_dim1] != 0.) {
/* Computing MAX */
/* Computing MIN */
		    i__6 = jj + *ku + jp - 1;
		    i__4 = ju, i__5 = min(i__6,*n);
		    ju = max(i__4,i__5);
		    if (jp != 1) {

/*                    Apply interchange to columns J to J+JB-1 */

			if (jp + jj - 1 < j + *kl) {

			    i__4 = *ldab - 1;
			    i__5 = *ldab - 1;
			    dswap_(&jb, &ab[kv + 1 + jj - j + j * ab_dim1], &
				    i__4, &ab[kv + jp + jj - j + j * ab_dim1], 
				     &i__5);
			} else {

/*                       The interchange affects columns J to JJ-1 of A31 */
/*                       which are stored in the work array WORK31 */

			    i__4 = jj - j;
			    i__5 = *ldab - 1;
			    dswap_(&i__4, &ab[kv + 1 + jj - j + j * ab_dim1], 
				    &i__5, &work31[jp + jj - j - *kl - 1], &
				    c__65);
			    i__4 = j + jb - jj;
			    i__5 = *ldab - 1;
			    i__6 = *ldab - 1;
			    dswap_(&i__4, &ab[kv + 1 + jj * ab_dim1], &i__5, &
				    ab[kv + jp + jj * ab_dim1], &i__6);
			}
		    }

/*                 Compute multipliers */

		    d__1 = 1. / ab[kv + 1 + jj * ab_dim1];
		    dscal_(&km, &d__1, &ab[kv + 2 + jj * ab_dim1], &c__1);

/*                 Update trailing submatrix within the band and within */
/*                 the current block. JM is the index of the last column */
/*                 which needs to be updated. */

/* Computing MIN */
		    i__4 = ju, i__5 = j + jb - 1;
		    jm = min(i__4,i__5);
		    if (jm > jj) {
			i__4 = jm - jj;
			i__5 = *ldab - 1;
			i__6 = *ldab - 1;
			dger_(&km, &i__4, &c_b18, &ab[kv + 2 + jj * ab_dim1], 
				&c__1, &ab[kv + (jj + 1) * ab_dim1], &i__5, &
				ab[kv + 1 + (jj + 1) * ab_dim1], &i__6);
		    }
		} else {

/*                 If pivot is zero, set INFO to the index of the pivot */
/*                 unless a zero pivot has already been found. */

		    if (*info == 0) {
			*info = jj;
		    }
		}

/*              Copy current column of A31 into the work array WORK31 */

/* Computing MIN */
		i__4 = jj - j + 1;
		nw = min(i__4,i3);
		if (nw > 0) {
		    dcopy_(&nw, &ab[kv + *kl + 1 - jj + j + jj * ab_dim1], &
			    c__1, &work31[(jj - j + 1) * 65 - 65], &c__1);
		}
/* L80: */
	    }
	    if (j + jb <= *n) {

/*              Apply the row interchanges to the other blocks. */

/* Computing MIN */
		i__3 = ju - j + 1;
		j2 = min(i__3,kv) - jb;
/* Computing MAX */
		i__3 = 0, i__4 = ju - j - kv + 1;
		j3 = max(i__3,i__4);

/*              Use DLASWP to apply the row interchanges to A12, A22, and */
/*              A32. */

		i__3 = *ldab - 1;
		dlaswp_(&j2, &ab[kv + 1 - jb + (j + jb) * ab_dim1], &i__3, &
			c__1, &jb, &ipiv[j], &c__1);

/*              Adjust the pivot indices. */

		i__3 = j + jb - 1;
		for (i__ = j; i__ <= i__3; ++i__) {
		    ipiv[i__] = ipiv[i__] + j - 1;
/* L90: */
		}

/*              Apply the row interchanges to A13, A23, and A33 */
/*              columnwise. */

		k2 = j - 1 + jb + j2;
		i__3 = j3;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    jj = k2 + i__;
		    i__4 = j + jb - 1;
		    for (ii = j + i__ - 1; ii <= i__4; ++ii) {
			ip = ipiv[ii];
			if (ip != ii) {
			    temp = ab[kv + 1 + ii - jj + jj * ab_dim1];
			    ab[kv + 1 + ii - jj + jj * ab_dim1] = ab[kv + 1 + 
				    ip - jj + jj * ab_dim1];
			    ab[kv + 1 + ip - jj + jj * ab_dim1] = temp;
			}
/* L100: */
		    }
/* L110: */
		}

/*              Update the relevant part of the trailing submatrix */

		if (j2 > 0) {

/*                 Update A12 */

		    i__3 = *ldab - 1;
		    i__4 = *ldab - 1;
		    dtrsm_("Left", "Lower", "No transpose", "Unit", &jb, &j2, 
			    &c_b31, &ab[kv + 1 + j * ab_dim1], &i__3, &ab[kv 
			    + 1 - jb + (j + jb) * ab_dim1], &i__4);

		    if (i2 > 0) {

/*                    Update A22 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			i__5 = *ldab - 1;
			dgemm_("No transpose", "No transpose", &i2, &j2, &jb, 
				&c_b18, &ab[kv + 1 + jb + j * ab_dim1], &i__3, 
				 &ab[kv + 1 - jb + (j + jb) * ab_dim1], &i__4, 
				 &c_b31, &ab[kv + 1 + (j + jb) * ab_dim1], &
				i__5);
		    }

		    if (i3 > 0) {

/*                    Update A32 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			dgemm_("No transpose", "No transpose", &i3, &j2, &jb, 
				&c_b18, work31, &c__65, &ab[kv + 1 - jb + (j 
				+ jb) * ab_dim1], &i__3, &c_b31, &ab[kv + *kl 
				+ 1 - jb + (j + jb) * ab_dim1], &i__4);
		    }
		}

		if (j3 > 0) {

/*                 Copy the lower triangle of A13 into the work array */
/*                 WORK13 */

		    i__3 = j3;
		    for (jj = 1; jj <= i__3; ++jj) {
			i__4 = jb;
			for (ii = jj; ii <= i__4; ++ii) {
			    work13[ii + jj * 65 - 66] = ab[ii - jj + 1 + (jj 
				    + j + kv - 1) * ab_dim1];
/* L120: */
			}
/* L130: */
		    }

/*                 Update A13 in the work array */

		    i__3 = *ldab - 1;
		    dtrsm_("Left", "Lower", "No transpose", "Unit", &jb, &j3, 
			    &c_b31, &ab[kv + 1 + j * ab_dim1], &i__3, work13, 
			    &c__65);

		    if (i2 > 0) {

/*                    Update A23 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			dgemm_("No transpose", "No transpose", &i2, &j3, &jb, 
				&c_b18, &ab[kv + 1 + jb + j * ab_dim1], &i__3, 
				 work13, &c__65, &c_b31, &ab[jb + 1 + (j + kv)
				 * ab_dim1], &i__4);
		    }

		    if (i3 > 0) {

/*                    Update A33 */

			i__3 = *ldab - 1;
			dgemm_("No transpose", "No transpose", &i3, &j3, &jb, 
				&c_b18, work31, &c__65, work13, &c__65, &
				c_b31, &ab[*kl + 1 + (j + kv) * ab_dim1], &
				i__3);
		    }

/*                 Copy the lower triangle of A13 back into place */

		    i__3 = j3;
		    for (jj = 1; jj <= i__3; ++jj) {
			i__4 = jb;
			for (ii = jj; ii <= i__4; ++ii) {
			    ab[ii - jj + 1 + (jj + j + kv - 1) * ab_dim1] = 
				    work13[ii + jj * 65 - 66];
/* L140: */
			}
/* L150: */
		    }
		}
	    } else {

/*              Adjust the pivot indices. */

		i__3 = j + jb - 1;
		for (i__ = j; i__ <= i__3; ++i__) {
		    ipiv[i__] = ipiv[i__] + j - 1;
/* L160: */
		}
	    }

/*           Partially undo the interchanges in the current block to */
/*           restore the upper triangular form of A31 and copy the upper */
/*           triangle of A31 back into place */

	    i__3 = j;
	    for (jj = j + jb - 1; jj >= i__3; --jj) {
		jp = ipiv[jj] - jj + 1;
		if (jp != 1) {

/*                 Apply interchange to columns J to JJ-1 */

		    if (jp + jj - 1 < j + *kl) {

/*                    The interchange does not affect A31 */

			i__4 = jj - j;
			i__5 = *ldab - 1;
			i__6 = *ldab - 1;
			dswap_(&i__4, &ab[kv + 1 + jj - j + j * ab_dim1], &
				i__5, &ab[kv + jp + jj - j + j * ab_dim1], &
				i__6);
		    } else {

/*                    The interchange does affect A31 */

			i__4 = jj - j;
			i__5 = *ldab - 1;
			dswap_(&i__4, &ab[kv + 1 + jj - j + j * ab_dim1], &
				i__5, &work31[jp + jj - j - *kl - 1], &c__65);
		    }
		}

/*              Copy the current column of A31 back into place */

/* Computing MIN */
		i__4 = i3, i__5 = jj - j + 1;
		nw = min(i__4,i__5);
		if (nw > 0) {
		    dcopy_(&nw, &work31[(jj - j + 1) * 65 - 65], &c__1, &ab[
			    kv + *kl + 1 - jj + j + jj * ab_dim1], &c__1);
		}
/* L170: */
	    }
/* L180: */
	}
    }

    return 0;

/*     End of DGBTRF */

} /* dgbtrf_ */
示例#6
0
文件: dpbtrf.c 项目: otoauler/sdkpub
/* Subroutine */ int dpbtrf_(char *uplo, integer *n, integer *kd, doublereal *
                             ab, integer *ldab, integer *info)
{
    /*  -- LAPACK routine (version 3.0) --
           Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
           Courant Institute, Argonne National Lab, and Rice University
           March 31, 1993


        Purpose
        =======

        DPBTRF computes the Cholesky factorization of a real symmetric
        positive definite band matrix A.

        The factorization has the form
           A = U**T * U,  if UPLO = 'U', or
           A = L  * L**T,  if UPLO = 'L',
        where U is an upper triangular matrix and L is lower triangular.

        Arguments
        =========

        UPLO    (input) CHARACTER*1
                = 'U':  Upper triangle of A is stored;
                = 'L':  Lower triangle of A is stored.

        N       (input) INTEGER
                The order of the matrix A.  N >= 0.

        KD      (input) INTEGER
                The number of superdiagonals of the matrix A if UPLO = 'U',
                or the number of subdiagonals if UPLO = 'L'.  KD >= 0.

        AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
                On entry, the upper or lower triangle of the symmetric band
                matrix A, stored in the first KD+1 rows of the array.  The
                j-th column of A is stored in the j-th column of the array AB
                as follows:
                if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).

                On exit, if INFO = 0, the triangular factor U or L from the
                Cholesky factorization A = U**T*U or A = L*L**T of the band
                matrix A, in the same storage format as A.

        LDAB    (input) INTEGER
                The leading dimension of the array AB.  LDAB >= KD+1.

        INFO    (output) INTEGER
                = 0:  successful exit
                < 0:  if INFO = -i, the i-th argument had an illegal value
                > 0:  if INFO = i, the leading minor of order i is not
                      positive definite, and the factorization could not be
                      completed.

        Further Details
        ===============

        The band storage scheme is illustrated by the following example, when
        N = 6, KD = 2, and UPLO = 'U':

        On entry:                       On exit:

            *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46
            *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
           a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66

        Similarly, if UPLO = 'L' the format of A is as follows:

        On entry:                       On exit:

           a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66
           a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *
           a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *

        Array elements marked * are not used by the routine.

        Contributed by
        Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989

        =====================================================================


           Test the input parameters.

           Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c_n1 = -1;
    static doublereal c_b18 = 1.;
    static doublereal c_b21 = -1.;
    static integer c__33 = 33;

    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
    /* Local variables */
    static doublereal work[1056]	/* was [33][32] */;
    static integer i__, j;
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
                                       integer *, doublereal *, doublereal *, integer *, doublereal *,
                                       integer *, doublereal *, doublereal *, integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *,
                                       integer *, integer *, doublereal *, doublereal *, integer *,
                                       doublereal *, integer *);
    static integer i2, i3;
    extern /* Subroutine */ int dsyrk_(char *, char *, integer *, integer *,
                                       doublereal *, doublereal *, integer *, doublereal *, doublereal *,
                                       integer *), dpbtf2_(char *, integer *, integer *,
                                               doublereal *, integer *, integer *), dpotf2_(char *,
                                                       integer *, doublereal *, integer *, integer *);
    static integer ib, nb, ii, jj;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
                           integer *, integer *, ftnlen, ftnlen);
#define work_ref(a_1,a_2) work[(a_2)*33 + a_1 - 34]
#define ab_ref(a_1,a_2) ab[(a_2)*ab_dim1 + a_1]


    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1 * 1;
    ab -= ab_offset;

    /* Function Body */
    *info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
        *info = -1;
    } else if (*n < 0) {
        *info = -2;
    } else if (*kd < 0) {
        *info = -3;
    } else if (*ldab < *kd + 1) {
        *info = -5;
    }
    if (*info != 0) {
        i__1 = -(*info);
        xerbla_("DPBTRF", &i__1);
        return 0;
    }

    /*     Quick return if possible */

    if (*n == 0) {
        return 0;
    }

    /*     Determine the block size for this environment */

    nb = ilaenv_(&c__1, "DPBTRF", uplo, n, kd, &c_n1, &c_n1, (ftnlen)6, (
                     ftnlen)1);

    /*     The block size must not exceed the semi-bandwidth KD, and must not
           exceed the limit set by the size of the local array WORK. */

    nb = min(nb,32);

    if (nb <= 1 || nb > *kd) {

        /*        Use unblocked code */

        dpbtf2_(uplo, n, kd, &ab[ab_offset], ldab, info);
    } else {

        /*        Use blocked code */

        if (lsame_(uplo, "U")) {

            /*           Compute the Cholesky factorization of a symmetric band
                         matrix, given the upper triangle of the matrix in band
                         storage.

                         Zero the upper triangle of the work array. */

            i__1 = nb;
            for (j = 1; j <= i__1; ++j) {
                i__2 = j - 1;
                for (i__ = 1; i__ <= i__2; ++i__) {
                    work_ref(i__, j) = 0.;
                    /* L10: */
                }
                /* L20: */
            }

            /*           Process the band matrix one diagonal block at a time. */

            i__1 = *n;
            i__2 = nb;
            for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
                /* Computing MIN */
                i__3 = nb, i__4 = *n - i__ + 1;
                ib = min(i__3,i__4);

                /*              Factorize the diagonal block */

                i__3 = *ldab - 1;
                dpotf2_(uplo, &ib, &ab_ref(*kd + 1, i__), &i__3, &ii);
                if (ii != 0) {
                    *info = i__ + ii - 1;
                    goto L150;
                }
                if (i__ + ib <= *n) {

                    /*                 Update the relevant part of the trailing submatrix.
                                       If A11 denotes the diagonal block which has just been
                                       factorized, then we need to update the remaining
                                       blocks in the diagram:

                                          A11   A12   A13
                                                A22   A23
                                                      A33

                                       The numbers of rows and columns in the partitioning
                                       are IB, I2, I3 respectively. The blocks A12, A22 and
                                       A23 are empty if IB = KD. The upper triangle of A13
                                       lies outside the band.

                       Computing MIN */
                    i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
                    i2 = min(i__3,i__4);
                    /* Computing MIN */
                    i__3 = ib, i__4 = *n - i__ - *kd + 1;
                    i3 = min(i__3,i__4);

                    if (i2 > 0) {

                        /*                    Update A12 */

                        i__3 = *ldab - 1;
                        i__4 = *ldab - 1;
                        dtrsm_("Left", "Upper", "Transpose", "Non-unit", &ib,
                               &i2, &c_b18, &ab_ref(*kd + 1, i__), &i__3, &
                               ab_ref(*kd + 1 - ib, i__ + ib), &i__4);

                        /*                    Update A22 */

                        i__3 = *ldab - 1;
                        i__4 = *ldab - 1;
                        dsyrk_("Upper", "Transpose", &i2, &ib, &c_b21, &
                               ab_ref(*kd + 1 - ib, i__ + ib), &i__3, &c_b18,
                               &ab_ref(*kd + 1, i__ + ib), &i__4);
                    }

                    if (i3 > 0) {

                        /*                    Copy the lower triangle of A13 into the work array. */

                        i__3 = i3;
                        for (jj = 1; jj <= i__3; ++jj) {
                            i__4 = ib;
                            for (ii = jj; ii <= i__4; ++ii) {
                                work_ref(ii, jj) = ab_ref(ii - jj + 1, jj +
                                                          i__ + *kd - 1);
                                /* L30: */
                            }
                            /* L40: */
                        }

                        /*                    Update A13 (in the work array). */

                        i__3 = *ldab - 1;
                        dtrsm_("Left", "Upper", "Transpose", "Non-unit", &ib,
                               &i3, &c_b18, &ab_ref(*kd + 1, i__), &i__3,
                               work, &c__33);

                        /*                    Update A23 */

                        if (i2 > 0) {
                            i__3 = *ldab - 1;
                            i__4 = *ldab - 1;
                            dgemm_("Transpose", "No Transpose", &i2, &i3, &ib,
                                   &c_b21, &ab_ref(*kd + 1 - ib, i__ + ib),
                                   &i__3, work, &c__33, &c_b18, &ab_ref(ib +
                                           1, i__ + *kd), &i__4);
                        }

                        /*                    Update A33 */

                        i__3 = *ldab - 1;
                        dsyrk_("Upper", "Transpose", &i3, &ib, &c_b21, work, &
                               c__33, &c_b18, &ab_ref(*kd + 1, i__ + *kd), &
                               i__3);

                        /*                    Copy the lower triangle of A13 back into place. */

                        i__3 = i3;
                        for (jj = 1; jj <= i__3; ++jj) {
                            i__4 = ib;
                            for (ii = jj; ii <= i__4; ++ii) {
                                ab_ref(ii - jj + 1, jj + i__ + *kd - 1) =
                                    work_ref(ii, jj);
                                /* L50: */
                            }
                            /* L60: */
                        }
                    }
                }
                /* L70: */
            }
        } else {

            /*           Compute the Cholesky factorization of a symmetric band
                         matrix, given the lower triangle of the matrix in band
                         storage.

                         Zero the lower triangle of the work array. */

            i__2 = nb;
            for (j = 1; j <= i__2; ++j) {
                i__1 = nb;
                for (i__ = j + 1; i__ <= i__1; ++i__) {
                    work_ref(i__, j) = 0.;
                    /* L80: */
                }
                /* L90: */
            }

            /*           Process the band matrix one diagonal block at a time. */

            i__2 = *n;
            i__1 = nb;
            for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
                /* Computing MIN */
                i__3 = nb, i__4 = *n - i__ + 1;
                ib = min(i__3,i__4);

                /*              Factorize the diagonal block */

                i__3 = *ldab - 1;
                dpotf2_(uplo, &ib, &ab_ref(1, i__), &i__3, &ii);
                if (ii != 0) {
                    *info = i__ + ii - 1;
                    goto L150;
                }
                if (i__ + ib <= *n) {

                    /*                 Update the relevant part of the trailing submatrix.
                                       If A11 denotes the diagonal block which has just been
                                       factorized, then we need to update the remaining
                                       blocks in the diagram:

                                          A11
                                          A21   A22
                                          A31   A32   A33

                                       The numbers of rows and columns in the partitioning
                                       are IB, I2, I3 respectively. The blocks A21, A22 and
                                       A32 are empty if IB = KD. The lower triangle of A31
                                       lies outside the band.

                       Computing MIN */
                    i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
                    i2 = min(i__3,i__4);
                    /* Computing MIN */
                    i__3 = ib, i__4 = *n - i__ - *kd + 1;
                    i3 = min(i__3,i__4);

                    if (i2 > 0) {

                        /*                    Update A21 */

                        i__3 = *ldab - 1;
                        i__4 = *ldab - 1;
                        dtrsm_("Right", "Lower", "Transpose", "Non-unit", &i2,
                               &ib, &c_b18, &ab_ref(1, i__), &i__3, &ab_ref(
                                   ib + 1, i__), &i__4);

                        /*                    Update A22 */

                        i__3 = *ldab - 1;
                        i__4 = *ldab - 1;
                        dsyrk_("Lower", "No Transpose", &i2, &ib, &c_b21, &
                               ab_ref(ib + 1, i__), &i__3, &c_b18, &ab_ref(1,
                                       i__ + ib), &i__4);
                    }

                    if (i3 > 0) {

                        /*                    Copy the upper triangle of A31 into the work array. */

                        i__3 = ib;
                        for (jj = 1; jj <= i__3; ++jj) {
                            i__4 = min(jj,i3);
                            for (ii = 1; ii <= i__4; ++ii) {
                                work_ref(ii, jj) = ab_ref(*kd + 1 - jj + ii,
                                                          jj + i__ - 1);
                                /* L100: */
                            }
                            /* L110: */
                        }

                        /*                    Update A31 (in the work array). */

                        i__3 = *ldab - 1;
                        dtrsm_("Right", "Lower", "Transpose", "Non-unit", &i3,
                               &ib, &c_b18, &ab_ref(1, i__), &i__3, work, &
                               c__33);

                        /*                    Update A32 */

                        if (i2 > 0) {
                            i__3 = *ldab - 1;
                            i__4 = *ldab - 1;
                            dgemm_("No transpose", "Transpose", &i3, &i2, &ib,
                                   &c_b21, work, &c__33, &ab_ref(ib + 1,
                                                                 i__), &i__3, &c_b18, &ab_ref(*kd + 1 - ib,
                                                                         i__ + ib), &i__4);
                        }

                        /*                    Update A33 */

                        i__3 = *ldab - 1;
                        dsyrk_("Lower", "No Transpose", &i3, &ib, &c_b21,
                               work, &c__33, &c_b18, &ab_ref(1, i__ + *kd), &
                               i__3);

                        /*                    Copy the upper triangle of A31 back into place. */

                        i__3 = ib;
                        for (jj = 1; jj <= i__3; ++jj) {
                            i__4 = min(jj,i3);
                            for (ii = 1; ii <= i__4; ++ii) {
                                ab_ref(*kd + 1 - jj + ii, jj + i__ - 1) =
                                    work_ref(ii, jj);
                                /* L120: */
                            }
                            /* L130: */
                        }
                    }
                }
                /* L140: */
            }
        }
    }
    return 0;

L150:
    return 0;

    /*     End of DPBTRF */

} /* dpbtrf_ */
示例#7
0
/* Subroutine */ int dtrtri_(char *uplo, char *diag, integer *n, doublereal *
	a, integer *lda, integer *info)
{
    /* System generated locals */
    address a__1[2];
    integer a_dim1, a_offset, i__1, i__2[2], i__3, i__4, i__5;
    char ch__1[2];

    /* Local variables */
    integer j, jb, nb, nn;
    logical upper;
    logical nounit;

/*  -- LAPACK routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  DTRTRI computes the inverse of a real upper or lower triangular */
/*  matrix A. */

/*  This is the Level 3 BLAS version of the algorithm. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  A is upper triangular; */
/*          = 'L':  A is lower triangular. */

/*  DIAG    (input) CHARACTER*1 */
/*          = 'N':  A is non-unit triangular; */
/*          = 'U':  A is unit triangular. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the triangular matrix A.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of the array A contains */
/*          the upper triangular matrix, and the strictly lower */
/*          triangular part of A is not referenced.  If UPLO = 'L', the */
/*          leading N-by-N lower triangular part of the array A contains */
/*          the lower triangular matrix, and the strictly upper */
/*          triangular part of A is not referenced.  If DIAG = 'U', the */
/*          diagonal elements of A are also not referenced and are */
/*          assumed to be 1. */
/*          On exit, the (triangular) inverse of the original matrix, in */
/*          the same storage format. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */
/*          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular */
/*               matrix is singular and its inverse can not be computed. */

/*  ===================================================================== */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    nounit = lsame_(diag, "N");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (! nounit && ! lsame_(diag, "U")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DTRTRI", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Check for singularity if non-unit. */

    if (nounit) {
	i__1 = *n;
	for (*info = 1; *info <= i__1; ++(*info)) {
	    if (a[*info + *info * a_dim1] == 0.) {
		return 0;
	    }
	}
	*info = 0;
    }

/*     Determine the block size for this environment. */

/* Writing concatenation */
    i__2[0] = 1, a__1[0] = uplo;
    i__2[1] = 1, a__1[1] = diag;
    s_cat(ch__1, a__1, i__2, &c__2, (ftnlen)2);
    nb = ilaenv_(&c__1, "DTRTRI", ch__1, n, &c_n1, &c_n1, &c_n1);
    if (nb <= 1 || nb >= *n) {

/*        Use unblocked code */

	dtrti2_(uplo, diag, n, &a[a_offset], lda, info);
    } else {

/*        Use blocked code */

	if (upper) {

/*           Compute inverse of upper triangular matrix */

	    i__1 = *n;
	    i__3 = nb;
	    for (j = 1; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
/* Computing MIN */
		i__4 = nb, i__5 = *n - j + 1;
		jb = min(i__4,i__5);

/*              Compute rows 1:j-1 of current block column */

		i__4 = j - 1;
		dtrmm_("Left", "Upper", "No transpose", diag, &i__4, &jb, &
			c_b18, &a[a_offset], lda, &a[j * a_dim1 + 1], lda);
		i__4 = j - 1;
		dtrsm_("Right", "Upper", "No transpose", diag, &i__4, &jb, &
			c_b22, &a[j + j * a_dim1], lda, &a[j * a_dim1 + 1], 
			lda);

/*              Compute inverse of current diagonal block */

		dtrti2_("Upper", diag, &jb, &a[j + j * a_dim1], lda, info);
	    }
	} else {

/*           Compute inverse of lower triangular matrix */

	    nn = (*n - 1) / nb * nb + 1;
	    i__3 = -nb;
	    for (j = nn; i__3 < 0 ? j >= 1 : j <= 1; j += i__3) {
/* Computing MIN */
		i__1 = nb, i__4 = *n - j + 1;
		jb = min(i__1,i__4);
		if (j + jb <= *n) {

/*                 Compute rows j+jb:n of current block column */

		    i__1 = *n - j - jb + 1;
		    dtrmm_("Left", "Lower", "No transpose", diag, &i__1, &jb, 
			    &c_b18, &a[j + jb + (j + jb) * a_dim1], lda, &a[j 
			    + jb + j * a_dim1], lda);
		    i__1 = *n - j - jb + 1;
		    dtrsm_("Right", "Lower", "No transpose", diag, &i__1, &jb, 
			     &c_b22, &a[j + j * a_dim1], lda, &a[j + jb + j * 
			    a_dim1], lda);
		}

/*              Compute inverse of current diagonal block */

		dtrti2_("Lower", diag, &jb, &a[j + j * a_dim1], lda, info);
	    }
	}
    }

    return 0;

/*     End of DTRTRI */

} /* dtrtri_ */
示例#8
0
文件: dgstrs.c 项目: sourekj/Packages
void
dgstrs(trans_t trans, SuperMatrix *L, SuperMatrix *U, 
       int *perm_r, int *perm_c, SuperMatrix *B, Gstat_t *Gstat, int *info)
{
/*
 * -- SuperLU MT routine (version 2.0) --
 * Lawrence Berkeley National Lab, Univ. of California Berkeley,
 * and Xerox Palo Alto Research Center.
 * September 10, 2007
 *
 *
 * Purpose
 * =======
 *
 * dgstrs() solves a system of linear equations A*X=B or A'*X=B
 * with A sparse and B dense, using the LU factorization computed by
 * pdgstrf().
 *
 * Arguments
 * =========
 *
 * trans   (input) Specifies the form of the system of equations:
 *          = NOTRANS: A * X = B  (No transpose)
 *          = TRANS:   A'* X = B  (Transpose)
 *
 * L       (input) SuperMatrix*
 *         The factor L from the factorization Pr*A*Pc=L*U as computed by
 *         pdgstrf(). Use compressed row subscripts storage for supernodes,
 *         i.e., L has types: Stype = SCP, Dtype = _D, Mtype = TRLU.
 *
 * U       (input) SuperMatrix*
 *         The factor U from the factorization Pr*A*Pc=L*U as computed by
 *         pdgstrf(). Use column-wise storage scheme, i.e., U has types:
 *         Stype = NCP, Dtype = _D, Mtype = TRU.
 *
 * perm_r  (input) int*
 *         Row permutation vector of size L->nrow, which defines the
 *         permutation matrix Pr; perm_r[i] = j means row i of A is in
 *         position j in Pr*A.
 *
 * perm_c  (int*) dimension A->ncol
 *	   Column permutation vector, which defines the 
 *         permutation matrix Pc; perm_c[i] = j means column i of A is 
 *         in position j in A*Pc.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = DN, Dtype = _D, Mtype = GE.
 *         On entry, the right hand side matrix.
 *         On exit, the solution matrix if info = 0;
 *
 * Gstat   (output) Gstat_t*
 *          Record all the statistics about the triangular solves; 
 *          See Gstat_t structure defined in slu_mt_util.h.
 *
 * info    (output) Diagnostics
 * 	   = 0: successful exit
 *	   < 0: if info = -i, the i-th argument had an illegal value
 *
 */
#if ( MACH==CRAY_PVP )
    _fcd ftcs1, ftcs2, ftcs3, ftcs4;
#endif

#ifdef USE_VENDOR_BLAS
    int      incx = 1, incy = 1;
    double   alpha = 1.0, beta = 1.0;
#endif

    register int j, k, jcol, iptr, luptr, ksupno, istart, irow, bptr;
    register int fsupc, nsuper;
    int      i, n, nsupc, nsupr, nrow, nrhs, ldb;
    int      *supno;
    DNformat *Bstore;
    SCPformat *Lstore;
    NCPformat *Ustore;
    double   *Lval, *Uval, *Bmat;
    double   *work, *work_col, *rhs_work, *soln;
    flops_t  solve_ops;
    void dprint_soln();

    /* Test input parameters ... */
    *info = 0;
    Bstore = B->Store;
    ldb = Bstore->lda;
    nrhs = B->ncol;
    if ( trans != NOTRANS && trans != TRANS ) *info = -1;
    else if ( L->nrow != L->ncol || L->nrow < 0 ) *info = -3;
    else if ( U->nrow != U->ncol || U->nrow < 0 ) *info = -4;
    else if ( ldb < SUPERLU_MAX(0, L->nrow) ) *info = -6;
    if ( *info ) {
        i = -(*info);
	xerbla_("dgstrs", &i);
	return;
    }

    n = L->nrow;
    work = doubleCalloc(n * nrhs);
    if ( !work ) SUPERLU_ABORT("Malloc fails for local work[].");
    soln = doubleMalloc(n);
    if ( !soln ) SUPERLU_ABORT("Malloc fails for local soln[].");

    Bmat = Bstore->nzval;
    Lstore = L->Store;
    Lval = Lstore->nzval;
    Ustore = U->Store;
    Uval = Ustore->nzval;
    supno = Lstore->col_to_sup;
    nsuper = Lstore->nsuper;
    solve_ops = 0;
    
    if ( trans == NOTRANS ) {
	/* Permute right hand sides to form Pr*B */
	for (i = 0, bptr = 0; i < nrhs; i++, bptr += ldb) {
	    rhs_work = &Bmat[bptr];
	    for (k = 0; k < n; k++) soln[perm_r[k]] = rhs_work[k];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}
	
	/* Forward solve PLy=Pb. */
/*>>	for (k = 0; k < n; k += nsupc) {
	    ksupno = supno[k];
*/
	for (ksupno = 0; ksupno <= nsuper; ++ksupno) {
	    fsupc = L_FST_SUPC(ksupno);
	    istart = L_SUB_START(fsupc);
	    nsupr = L_SUB_END(fsupc) - istart;
	    nsupc = L_LAST_SUPC(ksupno) - fsupc;
	    nrow = nsupr - nsupc;

	    solve_ops += nsupc * (nsupc - 1) * nrhs;
	    solve_ops += 2 * nrow * nsupc * nrhs;
	    
	    if ( nsupc == 1 ) {
		for (j = 0, bptr = 0; j < nrhs; j++, bptr += ldb) {
		    rhs_work = &Bmat[bptr];
	    	    luptr = L_NZ_START(fsupc);
		    for (iptr=istart+1; iptr < L_SUB_END(fsupc); iptr++){
			irow = L_SUB(iptr);
			++luptr;
                        rhs_work[irow] -= rhs_work[fsupc] * Lval[luptr];
		    }
		}
	    } else {
	    	luptr = L_NZ_START(fsupc);
#ifdef USE_VENDOR_BLAS
#if ( MACH==CRAY_PVP )
		ftcs1 = _cptofcd("L", strlen("L"));
		ftcs2 = _cptofcd("N", strlen("N"));
		ftcs3 = _cptofcd("U", strlen("U"));
 		STRSM(ftcs1, ftcs1, ftcs2, ftcs3, &nsupc, &nrhs, &alpha,
		      &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
		
		SGEMM(ftcs2, ftcs2,  &nrow, &nrhs, &nsupc, &alpha, 
		      &Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, 
		      &beta, &work[0], &n );
#else
 		dtrsm_("L", "L", "N", "U", &nsupc, &nrhs, &alpha,
		       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
		
		dgemm_( "N", "N", &nrow, &nrhs, &nsupc, &alpha, 
			&Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, 
			&beta, &work[0], &n );
#endif
		for (j = 0, bptr = 0; j < nrhs; j++, bptr += ldb) {
		    rhs_work = &Bmat[bptr];
		    work_col = &work[j*n];
		    iptr = istart + nsupc;
		    for (i = 0; i < nrow; i++) {
			irow = L_SUB(iptr);
                        rhs_work[irow] -= work_col[i]; /* Scatter */
                        work_col[i] = 0.0;
			iptr++;
		    }
		}
#else		
		for (j = 0, bptr = 0; j < nrhs; j++, bptr += ldb) {
		    rhs_work = &Bmat[bptr];
		    dlsolve (nsupr, nsupc, &Lval[luptr], &rhs_work[fsupc]);
		    dmatvec (nsupr, nrow, nsupc, &Lval[luptr+nsupc],
			     &rhs_work[fsupc], &work[0] );

		    iptr = istart + nsupc;
		    for (i = 0; i < nrow; i++) {
			irow = L_SUB(iptr);
                        rhs_work[irow] -= work[i];
                        work[i] = 0.0;
			iptr++;
		    }
		}
#endif		    
	    } /* if-else: nsupc == 1 ... */
	} /* for L-solve */

#if ( DEBUGlevel>=2 )
  	printf("After L-solve: y=\n");
	dprint_soln(n, nrhs, Bmat);
#endif

	/*
	 * Back solve Ux=y.
	 */
/*>>	for (k = n-1; k >= 0; k -= nsupc) {
	    ksupno = supno[k];
*/
	for (ksupno = nsuper; ksupno >= 0; --ksupno) {
	    fsupc = L_FST_SUPC(ksupno);
	    istart = L_SUB_START(fsupc);
	    nsupr = L_SUB_END(fsupc) - istart;
	    nsupc = L_LAST_SUPC(ksupno) - fsupc;
	    luptr = L_NZ_START(fsupc);

	    solve_ops += nsupc * (nsupc + 1) * nrhs;

	    /* dense triangular matrix */
	    if ( nsupc == 1 ) {
		rhs_work = &Bmat[0];
		for (j = 0; j < nrhs; j++) {
                    rhs_work[fsupc] /= Lval[luptr];
		    rhs_work += ldb;
		}
	    } else {
#ifdef USE_VENDOR_BLAS
#if ( MACH==CRAY_PVP )
		ftcs1 = _cptofcd("L", strlen("L"));
		ftcs2 = _cptofcd("U", strlen("U"));
		ftcs3 = _cptofcd("N", strlen("N"));
		STRSM(ftcs1, ftcs2, ftcs3, ftcs3, &nsupc, &nrhs, &alpha,
		      &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
#else
		dtrsm_("L", "U", "N", "N", &nsupc, &nrhs, &alpha,
		       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
#endif
#else		
		for (j = 0, bptr = fsupc; j < nrhs; j++, bptr += ldb) {
		    dusolve (nsupr, nsupc, &Lval[luptr], &Bmat[bptr]);
		}
#endif		
	    }

	    /* matrix-vector update */
	    for (j = 0, bptr = 0; j < nrhs; ++j, bptr += ldb) {
		rhs_work = &Bmat[bptr];
		for (jcol = fsupc; jcol < fsupc + nsupc; jcol++) {
                    solve_ops += 2*(U_NZ_END(jcol) - U_NZ_START(jcol));
		    for (i = U_NZ_START(jcol); i < U_NZ_END(jcol); i++ ){
			irow = U_SUB(i);
                        rhs_work[irow] -= rhs_work[jcol] * Uval[i];
		    }
		}
	    }
	    
	} /* for U-solve */

#if ( DEBUGlevel>=2 )
  	printf("After U-solve: x=\n");
	dprint_soln(n, nrhs, Bmat);
#endif

	/* Compute the final solution X <= Pc*X. */
	for (i = 0, bptr = 0; i < nrhs; i++, bptr += ldb) {
	    rhs_work = &Bmat[bptr];
	    for (k = 0; k < n; k++) soln[k] = rhs_work[perm_c[k]];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}
	
    } else { /* Solve A'*X=B */
	/* Permute right hand sides to form Pc'*B. */
	for (i = 0, bptr = 0; i < nrhs; i++, bptr += ldb) {
	    rhs_work = &Bmat[bptr];
	    for (k = 0; k < n; k++) soln[perm_c[k]] = rhs_work[k];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}
	
        for (k = 0; k < nrhs; ++k) {

            /* Multiply by inv(U'). */
            sp_dtrsv("U", "T", "N", L, U, &Bmat[k*ldb], info);

            /* Multiply by inv(L'). */
            sp_dtrsv("L", "T", "U", L, U, &Bmat[k*ldb], info);

        }
	/* Compute the final solution X <= Pr'*X (=inv(Pr)*X) */
	for (i = 0, bptr = 0; i < nrhs; i++, bptr += ldb) {
	    rhs_work = &Bmat[bptr];
	    for (k = 0; k < n; k++) soln[k] = rhs_work[perm_r[k]];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}

    } /* if-else trans */

    Gstat->ops[TRISOLVE] = solve_ops;
    SUPERLU_FREE(work);
    SUPERLU_FREE(soln);
}
示例#9
0
/* Subroutine */ int dpbtrf_(char *uplo, integer *n, integer *kd, doublereal *
	ab, integer *ldab, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;

    /* Local variables */
    integer i__, j, i2, i3, ib, nb, ii, jj;
    doublereal work[1056]	/* was [33][32] */;

/*  -- LAPACK routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  DPBTRF computes the Cholesky factorization of a real symmetric */
/*  positive definite band matrix A. */

/*  The factorization has the form */
/*     A = U**T * U,  if UPLO = 'U', or */
/*     A = L  * L**T,  if UPLO = 'L', */
/*  where U is an upper triangular matrix and L is lower triangular. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */

/*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
/*          On entry, the upper or lower triangle of the symmetric band */
/*          matrix A, stored in the first KD+1 rows of the array.  The */
/*          j-th column of A is stored in the j-th column of the array AB */
/*          as follows: */
/*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */

/*          On exit, if INFO = 0, the triangular factor U or L from the */
/*          Cholesky factorization A = U**T*U or A = L*L**T of the band */
/*          matrix A, in the same storage format as A. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KD+1. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the leading minor of order i is not */
/*                positive definite, and the factorization could not be */
/*                completed. */

/*  Further Details */
/*  =============== */

/*  The band storage scheme is illustrated by the following example, when */
/*  N = 6, KD = 2, and UPLO = 'U': */

/*  On entry:                       On exit: */

/*      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46 */
/*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56 */
/*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66 */

/*  Similarly, if UPLO = 'L' the format of A is as follows: */

/*  On entry:                       On exit: */

/*     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66 */
/*     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   * */
/*     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    * */

/*  Array elements marked * are not used by the routine. */

/*  Contributed by */
/*  Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989 */

/*  ===================================================================== */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;

    /* Function Body */
    *info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*kd < 0) {
	*info = -3;
    } else if (*ldab < *kd + 1) {
	*info = -5;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DPBTRF", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Determine the block size for this environment */

    nb = ilaenv_(&c__1, "DPBTRF", uplo, n, kd, &c_n1, &c_n1);

/*     The block size must not exceed the semi-bandwidth KD, and must not */
/*     exceed the limit set by the size of the local array WORK. */

    nb = min(nb,32);

    if (nb <= 1 || nb > *kd) {

/*        Use unblocked code */

	dpbtf2_(uplo, n, kd, &ab[ab_offset], ldab, info);
    } else {

/*        Use blocked code */

	if (lsame_(uplo, "U")) {

/*           Compute the Cholesky factorization of a symmetric band */
/*           matrix, given the upper triangle of the matrix in band */
/*           storage. */

/*           Zero the upper triangle of the work array. */

	    i__1 = nb;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j - 1;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    work[i__ + j * 33 - 34] = 0.;
		}
	    }

/*           Process the band matrix one diagonal block at a time. */

	    i__1 = *n;
	    i__2 = nb;
	    for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
		i__3 = nb, i__4 = *n - i__ + 1;
		ib = min(i__3,i__4);

/*              Factorize the diagonal block */

		i__3 = *ldab - 1;
		dpotf2_(uplo, &ib, &ab[*kd + 1 + i__ * ab_dim1], &i__3, &ii);
		if (ii != 0) {
		    *info = i__ + ii - 1;
		    goto L150;
		}
		if (i__ + ib <= *n) {

/*                 Update the relevant part of the trailing submatrix. */
/*                 If A11 denotes the diagonal block which has just been */
/*                 factorized, then we need to update the remaining */
/*                 blocks in the diagram: */

/*                    A11   A12   A13 */
/*                          A22   A23 */
/*                                A33 */

/*                 The numbers of rows and columns in the partitioning */
/*                 are IB, I2, I3 respectively. The blocks A12, A22 and */
/*                 A23 are empty if IB = KD. The upper triangle of A13 */
/*                 lies outside the band. */

/* Computing MIN */
		    i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
		    i2 = min(i__3,i__4);
/* Computing MIN */
		    i__3 = ib, i__4 = *n - i__ - *kd + 1;
		    i3 = min(i__3,i__4);

		    if (i2 > 0) {

/*                    Update A12 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			dtrsm_("Left", "Upper", "Transpose", "Non-unit", &ib, 
				&i2, &c_b18, &ab[*kd + 1 + i__ * ab_dim1], &
				i__3, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1]
, &i__4);

/*                    Update A22 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			dsyrk_("Upper", "Transpose", &i2, &ib, &c_b21, &ab[*
				kd + 1 - ib + (i__ + ib) * ab_dim1], &i__3, &
				c_b18, &ab[*kd + 1 + (i__ + ib) * ab_dim1], &
				i__4);
		    }

		    if (i3 > 0) {

/*                    Copy the lower triangle of A13 into the work array. */

			i__3 = i3;
			for (jj = 1; jj <= i__3; ++jj) {
			    i__4 = ib;
			    for (ii = jj; ii <= i__4; ++ii) {
				work[ii + jj * 33 - 34] = ab[ii - jj + 1 + (
					jj + i__ + *kd - 1) * ab_dim1];
			    }
			}

/*                    Update A13 (in the work array). */

			i__3 = *ldab - 1;
			dtrsm_("Left", "Upper", "Transpose", "Non-unit", &ib, 
				&i3, &c_b18, &ab[*kd + 1 + i__ * ab_dim1], &
				i__3, work, &c__33);

/*                    Update A23 */

			if (i2 > 0) {
			    i__3 = *ldab - 1;
			    i__4 = *ldab - 1;
			    dgemm_("Transpose", "No Transpose", &i2, &i3, &ib, 
				     &c_b21, &ab[*kd + 1 - ib + (i__ + ib) * 
				    ab_dim1], &i__3, work, &c__33, &c_b18, &
				    ab[ib + 1 + (i__ + *kd) * ab_dim1], &i__4);
			}

/*                    Update A33 */

			i__3 = *ldab - 1;
			dsyrk_("Upper", "Transpose", &i3, &ib, &c_b21, work, &
				c__33, &c_b18, &ab[*kd + 1 + (i__ + *kd) * 
				ab_dim1], &i__3);

/*                    Copy the lower triangle of A13 back into place. */

			i__3 = i3;
			for (jj = 1; jj <= i__3; ++jj) {
			    i__4 = ib;
			    for (ii = jj; ii <= i__4; ++ii) {
				ab[ii - jj + 1 + (jj + i__ + *kd - 1) * 
					ab_dim1] = work[ii + jj * 33 - 34];
			    }
			}
		    }
		}
	    }
	} else {

/*           Compute the Cholesky factorization of a symmetric band */
/*           matrix, given the lower triangle of the matrix in band */
/*           storage. */

/*           Zero the lower triangle of the work array. */

	    i__2 = nb;
	    for (j = 1; j <= i__2; ++j) {
		i__1 = nb;
		for (i__ = j + 1; i__ <= i__1; ++i__) {
		    work[i__ + j * 33 - 34] = 0.;
		}
	    }

/*           Process the band matrix one diagonal block at a time. */

	    i__2 = *n;
	    i__1 = nb;
	    for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
/* Computing MIN */
		i__3 = nb, i__4 = *n - i__ + 1;
		ib = min(i__3,i__4);

/*              Factorize the diagonal block */

		i__3 = *ldab - 1;
		dpotf2_(uplo, &ib, &ab[i__ * ab_dim1 + 1], &i__3, &ii);
		if (ii != 0) {
		    *info = i__ + ii - 1;
		    goto L150;
		}
		if (i__ + ib <= *n) {

/*                 Update the relevant part of the trailing submatrix. */
/*                 If A11 denotes the diagonal block which has just been */
/*                 factorized, then we need to update the remaining */
/*                 blocks in the diagram: */

/*                    A11 */
/*                    A21   A22 */
/*                    A31   A32   A33 */

/*                 The numbers of rows and columns in the partitioning */
/*                 are IB, I2, I3 respectively. The blocks A21, A22 and */
/*                 A32 are empty if IB = KD. The lower triangle of A31 */
/*                 lies outside the band. */

/* Computing MIN */
		    i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
		    i2 = min(i__3,i__4);
/* Computing MIN */
		    i__3 = ib, i__4 = *n - i__ - *kd + 1;
		    i3 = min(i__3,i__4);

		    if (i2 > 0) {

/*                    Update A21 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			dtrsm_("Right", "Lower", "Transpose", "Non-unit", &i2, 
				 &ib, &c_b18, &ab[i__ * ab_dim1 + 1], &i__3, &
				ab[ib + 1 + i__ * ab_dim1], &i__4);

/*                    Update A22 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			dsyrk_("Lower", "No Transpose", &i2, &ib, &c_b21, &ab[
				ib + 1 + i__ * ab_dim1], &i__3, &c_b18, &ab[(
				i__ + ib) * ab_dim1 + 1], &i__4);
		    }

		    if (i3 > 0) {

/*                    Copy the upper triangle of A31 into the work array. */

			i__3 = ib;
			for (jj = 1; jj <= i__3; ++jj) {
			    i__4 = min(jj,i3);
			    for (ii = 1; ii <= i__4; ++ii) {
				work[ii + jj * 33 - 34] = ab[*kd + 1 - jj + 
					ii + (jj + i__ - 1) * ab_dim1];
			    }
			}

/*                    Update A31 (in the work array). */

			i__3 = *ldab - 1;
			dtrsm_("Right", "Lower", "Transpose", "Non-unit", &i3, 
				 &ib, &c_b18, &ab[i__ * ab_dim1 + 1], &i__3, 
				work, &c__33);

/*                    Update A32 */

			if (i2 > 0) {
			    i__3 = *ldab - 1;
			    i__4 = *ldab - 1;
			    dgemm_("No transpose", "Transpose", &i3, &i2, &ib, 
				     &c_b21, work, &c__33, &ab[ib + 1 + i__ * 
				    ab_dim1], &i__3, &c_b18, &ab[*kd + 1 - ib 
				    + (i__ + ib) * ab_dim1], &i__4);
			}

/*                    Update A33 */

			i__3 = *ldab - 1;
			dsyrk_("Lower", "No Transpose", &i3, &ib, &c_b21, 
				work, &c__33, &c_b18, &ab[(i__ + *kd) * 
				ab_dim1 + 1], &i__3);

/*                    Copy the upper triangle of A31 back into place. */

			i__3 = ib;
			for (jj = 1; jj <= i__3; ++jj) {
			    i__4 = min(jj,i3);
			    for (ii = 1; ii <= i__4; ++ii) {
				ab[*kd + 1 - jj + ii + (jj + i__ - 1) * 
					ab_dim1] = work[ii + jj * 33 - 34];
			    }
			}
		    }
		}
	    }
	}
    }
    return 0;

L150:
    return 0;

/*     End of DPBTRF */

} /* dpbtrf_ */
示例#10
0
/* Subroutine */ int dtrtrs_(char *uplo, char *trans, char *diag, integer *n, 
	integer *nrhs, doublereal *a, integer *lda, doublereal *b, integer *
	ldb, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1;

    /* Local variables */
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *), xerbla_(
	    char *, integer *);
    logical nounit;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DTRTRS solves a triangular system of the form */

/*     A * X = B  or  A**T * X = B, */

/*  where A is a triangular matrix of order N, and B is an N-by-NRHS */
/*  matrix.  A check is made to verify that A is nonsingular. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  A is upper triangular; */
/*          = 'L':  A is lower triangular. */

/*  TRANS   (input) CHARACTER*1 */
/*          Specifies the form of the system of equations: */
/*          = 'N':  A * X = B  (No transpose) */
/*          = 'T':  A**T * X = B  (Transpose) */
/*          = 'C':  A**H * X = B  (Conjugate transpose = Transpose) */

/*  DIAG    (input) CHARACTER*1 */
/*          = 'N':  A is non-unit triangular; */
/*          = 'U':  A is unit triangular. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrix B.  NRHS >= 0. */

/*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) */
/*          The triangular matrix A.  If UPLO = 'U', the leading N-by-N */
/*          upper triangular part of the array A contains the upper */
/*          triangular matrix, and the strictly lower triangular part of */
/*          A is not referenced.  If UPLO = 'L', the leading N-by-N lower */
/*          triangular part of the array A contains the lower triangular */
/*          matrix, and the strictly upper triangular part of A is not */
/*          referenced.  If DIAG = 'U', the diagonal elements of A are */
/*          also not referenced and are assumed to be 1. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/*          On entry, the right hand side matrix B. */
/*          On exit, if INFO = 0, the solution matrix X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */
/*          > 0: if INFO = i, the i-th diagonal element of A is zero, */
/*               indicating that the matrix is singular and the solutions */
/*               X have not been computed. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    nounit = lsame_(diag, "N");
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (! lsame_(trans, "N") && ! lsame_(trans, 
	    "T") && ! lsame_(trans, "C")) {
	*info = -2;
    } else if (! nounit && ! lsame_(diag, "U")) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*nrhs < 0) {
	*info = -5;
    } else if (*lda < max(1,*n)) {
	*info = -7;
    } else if (*ldb < max(1,*n)) {
	*info = -9;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DTRTRS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Check for singularity. */

    if (nounit) {
	i__1 = *n;
	for (*info = 1; *info <= i__1; ++(*info)) {
	    if (a[*info + *info * a_dim1] == 0.) {
		return 0;
	    }
/* L10: */
	}
    }
    *info = 0;

/*     Solve A * x = b  or  A' * x = b. */

    dtrsm_("Left", uplo, trans, diag, n, nrhs, &c_b12, &a[a_offset], lda, &b[
	    b_offset], ldb);

    return 0;

/*     End of DTRTRS */

} /* dtrtrs_ */
示例#11
0
void
pdgstrsL(int_t n, LUstruct_t *LUstruct, 
	 ScalePermstruct_t *ScalePermstruct,
	 gridinfo_t *grid, double *B,
	 int_t m_loc, int_t fst_row, int_t ldb, int nrhs,
	 SOLVEstruct_t *SOLVEstruct,
	 SuperLUStat_t *stat, int *info)
{
    Glu_persist_t *Glu_persist = LUstruct->Glu_persist;
    LocalLU_t *Llu = LUstruct->Llu;
    double alpha = 1.0;
    double zero = 0.0;
    double *lsum;  /* Local running sum of the updates to B-components */
    double *x;     /* X component at step k. */
		    /* NOTE: x and lsum are of same size. */
    double *lusup, *dest;
    double *recvbuf, *tempv;
    double *rtemp; /* Result of full matrix-vector multiply. */
    int_t  **Ufstnz_br_ptr = Llu->Ufstnz_br_ptr;
    int_t  iam, kcol, krow, mycol, myrow;
    int_t  i, ii, il, j, jj, k, lb, ljb, lk, lptr, luptr;
    int_t  nb, nlb, nub, nsupers;
    int_t  *xsup, *supno, *lsub, *usub;
    int_t  *ilsum;    /* Starting position of each supernode in lsum (LOCAL)*/
    int_t  Pc, Pr;
    int    knsupc, nsupr;
    int    ldalsum;   /* Number of lsum entries locally owned. */
    int    maxrecvsz, p, pi;
    int_t  **Lrowind_bc_ptr;
    double **Lnzval_bc_ptr;
    MPI_Status status;
#ifdef ISEND_IRECV
    MPI_Request *send_req, recv_req;
#endif
    pxgstrs_comm_t *gstrs_comm = SOLVEstruct->gstrs_comm;

    /*-- Counts used for L-solve --*/
    int_t  *fmod;         /* Modification count for L-solve --
                             Count the number of local block products to
                             be summed into lsum[lk]. */
    int_t  **fsendx_plist = Llu->fsendx_plist;
    int_t  nfrecvx = Llu->nfrecvx; /* Number of X components to be recv'd. */
    int_t  *frecv;        /* Count of lsum[lk] contributions to be received
                             from processes in this row. 
                             It is only valid on the diagonal processes. */
    int_t  nfrecvmod = 0; /* Count of total modifications to be recv'd. */
    int_t  nleaf = 0, nroot = 0;

    double t;
#if ( DEBUGlevel>=2 )
    int_t Ublocks = 0;
#endif

    int_t *mod_bit = Llu->mod_bit; /* flag contribution from each row block */
 
    t = SuperLU_timer_();

    /* Test input parameters. */
    *info = 0;
    if ( n < 0 ) *info = -1;
    else if ( nrhs < 0 ) *info = -9;
    if ( *info ) {
	pxerbla("PDGSTRS", grid, -*info);
	return;
    }
	
    /*
     * Initialization.
     */
    iam = grid->iam;
    Pc = grid->npcol;
    Pr = grid->nprow;
    myrow = MYROW( iam, grid );
    mycol = MYCOL( iam, grid );
    xsup = Glu_persist->xsup;
    supno = Glu_persist->supno;
    nsupers = supno[n-1] + 1;
    Lrowind_bc_ptr = Llu->Lrowind_bc_ptr;
    Lnzval_bc_ptr = Llu->Lnzval_bc_ptr;
    nlb = CEILING( nsupers, Pr ); /* Number of local block rows. */

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC(iam, "Enter pdgstrsL()");
#endif

    stat->ops[SOLVE] = 0.0;
    Llu->SolveMsgSent = 0;

    /* Save the count to be altered so it can be used by
       subsequent call to PDGSTRS. */
    if ( !(fmod = intMalloc_dist(nlb)) )
	ABORT("Calloc fails for fmod[].");
    for (i = 0; i < nlb; ++i) fmod[i] = Llu->fmod[i];
    if ( !(frecv = intMalloc_dist(nlb)) )
	ABORT("Malloc fails for frecv[].");
    Llu->frecv = frecv;

#ifdef ISEND_IRECV
    k = SUPERLU_MAX( Llu->nfsendx, Llu->nbsendx ) + nlb;
    if ( !(send_req = (MPI_Request*) SUPERLU_MALLOC(k*sizeof(MPI_Request))) )
	ABORT("Malloc fails for send_req[].");
#endif

#ifdef _CRAY
    ftcs1 = _cptofcd("L", strlen("L"));
    ftcs2 = _cptofcd("N", strlen("N"));
    ftcs3 = _cptofcd("U", strlen("U"));
#endif


    /* Obtain ilsum[] and ldalsum for process column 0. */
    ilsum = Llu->ilsum;
    ldalsum = Llu->ldalsum;

    /* Allocate working storage. */
    knsupc = sp_ienv_dist(3);
    maxrecvsz = knsupc * nrhs + SUPERLU_MAX( XK_H, LSUM_H );
    if ( !(lsum = doubleCalloc_dist(((size_t)ldalsum)*nrhs + nlb*LSUM_H)) )
	ABORT("Calloc fails for lsum[].");
    if ( !(x = doubleMalloc_dist(ldalsum * nrhs + nlb * XK_H)) )
	ABORT("Malloc fails for x[].");
    if ( !(recvbuf = doubleMalloc_dist(maxrecvsz)) )
	ABORT("Malloc fails for recvbuf[].");
    if ( !(rtemp = doubleCalloc_dist(maxrecvsz)) )
	ABORT("Malloc fails for rtemp[].");

    
    /*---------------------------------------------------
     * Forward solve Ly = b.
     *---------------------------------------------------*/
    /* Redistribute B into X on the diagonal processes. */
    pdReDistribute_B_to_X(B, m_loc, nrhs, ldb, fst_row, ilsum, x, 
			  ScalePermstruct, Glu_persist, grid, SOLVEstruct);

    /* Set up the headers in lsum[]. */
    ii = 0;
    for (k = 0; k < nsupers; ++k) {
	knsupc = SuperSize( k );
	krow = PROW( k, grid );
	if ( myrow == krow ) {
	    lk = LBi( k, grid );   /* Local block number. */
	    il = LSUM_BLK( lk );
	    lsum[il - LSUM_H] = k; /* Block number prepended in the header. */
	}
	ii += knsupc;
    }

    /*
     * Compute frecv[] and nfrecvmod counts on the diagonal processes.
     */
    {
	superlu_scope_t *scp = &grid->rscp;

	for (k = 0; k < nlb; ++k) mod_bit[k] = 0;
	for (k = 0; k < nsupers; ++k) {
	    krow = PROW( k, grid );
	    if ( myrow == krow ) {
		lk = LBi( k, grid );    /* local block number */
		kcol = PCOL( k, grid );
		if ( mycol != kcol && fmod[lk] )
		    mod_bit[lk] = 1;  /* contribution from off-diagonal */
	    }
	}
	/*PrintInt10("mod_bit", nlb, mod_bit);*/
	
#if ( PROFlevel>=2 )
	t_reduce_tmp = SuperLU_timer_();
#endif
	/* Every process receives the count, but it is only useful on the
	   diagonal processes.  */
	MPI_Allreduce( mod_bit, frecv, nlb, mpi_int_t, MPI_SUM, scp->comm );

#if ( PROFlevel>=2 )
	t_reduce += SuperLU_timer_() - t_reduce_tmp;
#endif

	for (k = 0; k < nsupers; ++k) {
	    krow = PROW( k, grid );
	    if ( myrow == krow ) {
		lk = LBi( k, grid );    /* local block number */
		kcol = PCOL( k, grid );
		if ( mycol == kcol ) { /* diagonal process */
		    nfrecvmod += frecv[lk];
		    if ( !frecv[lk] && !fmod[lk] ) ++nleaf;
		}
	    }
	}

    }

    /* ---------------------------------------------------------
       Solve the leaf nodes first by all the diagonal processes.
       --------------------------------------------------------- */
#if ( DEBUGlevel>=2 )
    printf("(%2d) nleaf %4d\n", iam, nleaf);
#endif
    for (k = 0; k < nsupers && nleaf; ++k) {
	krow = PROW( k, grid );
	kcol = PCOL( k, grid );
	if ( myrow == krow && mycol == kcol ) { /* Diagonal process */
	    knsupc = SuperSize( k );
	    lk = LBi( k, grid );
	    if ( frecv[lk]==0 && fmod[lk]==0 ) {
		fmod[lk] = -1;  /* Do not solve X[k] in the future. */
		ii = X_BLK( lk );
		lk = LBj( k, grid ); /* Local block number, column-wise. */
		lsub = Lrowind_bc_ptr[lk];
		lusup = Lnzval_bc_ptr[lk];
		nsupr = lsub[1];
#ifdef _CRAY
		STRSM(ftcs1, ftcs1, ftcs2, ftcs3, &knsupc, &nrhs, &alpha,
		      lusup, &nsupr, &x[ii], &knsupc);
#elif defined (USE_VENDOR_BLAS)
		dtrsm_("L", "L", "N", "U", &knsupc, &nrhs, &alpha, 
		       lusup, &nsupr, &x[ii], &knsupc, 1, 1, 1, 1);
#else
		dtrsm_("L", "L", "N", "U", &knsupc, &nrhs, &alpha, 
		       lusup, &nsupr, &x[ii], &knsupc);
#endif
		stat->ops[SOLVE] += knsupc * (knsupc - 1) * nrhs;
		--nleaf;
#if ( DEBUGlevel>=2 )
		printf("(%2d) Solve X[%2d]\n", iam, k);
#endif
		
		/*
		 * Send Xk to process column Pc[k].
		 */
		for (p = 0; p < Pr; ++p) {
		    if ( fsendx_plist[lk][p] != EMPTY ) {
			pi = PNUM( p, kcol, grid );
#ifdef ISEND_IRECV
			MPI_Isend( &x[ii - XK_H], knsupc * nrhs + XK_H,
				   MPI_DOUBLE, pi, Xk, grid->comm,
                                   &send_req[Llu->SolveMsgSent++]);
#else
			MPI_Send( &x[ii - XK_H], knsupc * nrhs + XK_H,
				 MPI_DOUBLE, pi, Xk, grid->comm );
#endif
#if ( DEBUGlevel>=2 )
			printf("(%2d) Sent X[%2.0f] to P %2d\n",
			       iam, x[ii-XK_H], pi);
#endif
		    }
		}
		/*
		 * Perform local block modifications: lsum[i] -= L_i,k * X[k]
		 */
		nb = lsub[0] - 1;
		lptr = BC_HEADER + LB_DESCRIPTOR + knsupc;
		luptr = knsupc; /* Skip diagonal block L(k,k). */
		
		dlsum_fmod(lsum, x, &x[ii], rtemp, nrhs, knsupc, k,
			   fmod, nb, lptr, luptr, xsup, grid, Llu, 
			   send_req, stat);
	    }
	} /* if diagonal process ... */
    } /* for k ... */

    /* -----------------------------------------------------------
       Compute the internal nodes asynchronously by all processes.
       ----------------------------------------------------------- */
#if ( DEBUGlevel>=2 )
    printf("(%2d) nfrecvx %4d,  nfrecvmod %4d,  nleaf %4d\n",
	   iam, nfrecvx, nfrecvmod, nleaf);
#endif

    while ( nfrecvx || nfrecvmod ) { /* While not finished. */

	/* Receive a message. */
#ifdef ISEND_IRECV
	/* -MPI- FATAL: Remote protocol queue full */
	MPI_Irecv( recvbuf, maxrecvsz, MPI_DOUBLE,
                 MPI_ANY_SOURCE, MPI_ANY_TAG, grid->comm, &recv_req );
	MPI_Wait( &recv_req, &status );
#else
	MPI_Recv( recvbuf, maxrecvsz, MPI_DOUBLE,
                  MPI_ANY_SOURCE, MPI_ANY_TAG, grid->comm, &status );
#endif

	k = *recvbuf;

#if ( DEBUGlevel>=2 )
	printf("(%2d) Recv'd block %d, tag %2d\n", iam, k, status.MPI_TAG);
#endif
	
	switch ( status.MPI_TAG ) {
	  case Xk:
	      --nfrecvx;
	      lk = LBj( k, grid ); /* Local block number, column-wise. */
	      lsub = Lrowind_bc_ptr[lk];
	      lusup = Lnzval_bc_ptr[lk];
	      if ( lsub ) {
		  nb   = lsub[0];
		  lptr = BC_HEADER;
		  luptr = 0;
		  knsupc = SuperSize( k );

		  /*
		   * Perform local block modifications: lsum[i] -= L_i,k * X[k]
		   */
		  dlsum_fmod(lsum, x, &recvbuf[XK_H], rtemp, nrhs, knsupc, k,
			     fmod, nb, lptr, luptr, xsup, grid, Llu, 
			     send_req, stat);
	      } /* if lsub */

	      break;

	  case LSUM: /* Receiver must be a diagonal process */
	      --nfrecvmod;
	      lk = LBi( k, grid ); /* Local block number, row-wise. */
	      ii = X_BLK( lk );
	      knsupc = SuperSize( k );
	      tempv = &recvbuf[LSUM_H];
	      RHS_ITERATE(j) {
		  for (i = 0; i < knsupc; ++i)
		      x[i + ii + j*knsupc] += tempv[i + j*knsupc];
	      }

	      if ( (--frecv[lk])==0 && fmod[lk]==0 ) {
		  fmod[lk] = -1; /* Do not solve X[k] in the future. */
		  lk = LBj( k, grid ); /* Local block number, column-wise. */
		  lsub = Lrowind_bc_ptr[lk];
		  lusup = Lnzval_bc_ptr[lk];
		  nsupr = lsub[1];
#ifdef _CRAY
		  STRSM(ftcs1, ftcs1, ftcs2, ftcs3, &knsupc, &nrhs, &alpha,
			lusup, &nsupr, &x[ii], &knsupc);
#elif defined (USE_VENDOR_BLAS)
		  dtrsm_("L", "L", "N", "U", &knsupc, &nrhs, &alpha, 
			 lusup, &nsupr, &x[ii], &knsupc, 1, 1, 1, 1);
#else
		  dtrsm_("L", "L", "N", "U", &knsupc, &nrhs, &alpha, 
			 lusup, &nsupr, &x[ii], &knsupc);
#endif
		  stat->ops[SOLVE] += knsupc * (knsupc - 1) * nrhs;
#if ( DEBUGlevel>=2 )
		  printf("(%2d) Solve X[%2d]\n", iam, k);
#endif
		
		  /*
		   * Send Xk to process column Pc[k].
		   */
		  kcol = PCOL( k, grid );
		  for (p = 0; p < Pr; ++p) {
		      if ( fsendx_plist[lk][p] != EMPTY ) {
			  pi = PNUM( p, kcol, grid );
#ifdef ISEND_IRECV
			  MPI_Isend( &x[ii-XK_H], knsupc * nrhs + XK_H,
                                     MPI_DOUBLE, pi, Xk, grid->comm,
                                     &send_req[Llu->SolveMsgSent++]);
#else
			  MPI_Send( &x[ii - XK_H], knsupc * nrhs + XK_H,
				    MPI_DOUBLE, pi, Xk, grid->comm );
#endif
#if ( DEBUGlevel>=2 )
			  printf("(%2d) Sent X[%2.0f] to P %2d\n",
				 iam, x[ii-XK_H], pi);
#endif
		      }
                  }
		  /*
		   * Perform local block modifications.
		   */
		  nb = lsub[0] - 1;
		  lptr = BC_HEADER + LB_DESCRIPTOR + knsupc;
		  luptr = knsupc; /* Skip diagonal block L(k,k). */

		  dlsum_fmod(lsum, x, &x[ii], rtemp, nrhs, knsupc, k,
			     fmod, nb, lptr, luptr, xsup, grid, Llu,
			     send_req, stat);
	      } /* if */

	      break;

#if ( DEBUGlevel>=2 )
	    default:
	      printf("(%2d) Recv'd wrong message tag %4d\n", status.MPI_TAG);
	      break;
#endif
	  } /* switch */

    } /* while not finished ... */


#if ( PRNTlevel>=2 )
    t = SuperLU_timer_() - t;
    if ( !iam ) printf(".. L-solve time\t%8.2f\n", t);
    t = SuperLU_timer_();
#endif

#if ( DEBUGlevel==2 )
    {
      printf("(%d) .. After L-solve: y =\n", iam);
      for (i = 0, k = 0; k < nsupers; ++k) {
	  krow = PROW( k, grid );
	  kcol = PCOL( k, grid );
	  if ( myrow == krow && mycol == kcol ) { /* Diagonal process */
	      knsupc = SuperSize( k );
	      lk = LBi( k, grid );
	      ii = X_BLK( lk );
	      for (j = 0; j < knsupc; ++j)
		printf("\t(%d)\t%4d\t%.10f\n", iam, xsup[k]+j, x[ii+j]);
	      fflush(stdout);
	  }
	  MPI_Barrier( grid->comm );
      }
    }
#endif

    SUPERLU_FREE(fmod);
    SUPERLU_FREE(frecv);
    SUPERLU_FREE(rtemp);

#ifdef ISEND_IRECV
    for (i = 0; i < Llu->SolveMsgSent; ++i) MPI_Request_free(&send_req[i]);
    Llu->SolveMsgSent = 0;
#endif

    /* Re-distribute X on the diagonal processes to B distributed on all
       the processes.   */
    pdReDistribute_X_to_B(n, B, m_loc, ldb, fst_row, nrhs, x, ilsum,
			  ScalePermstruct, Glu_persist, grid, SOLVEstruct);


    /* Deallocate storage. */
    SUPERLU_FREE(lsum);
    SUPERLU_FREE(x);
    SUPERLU_FREE(recvbuf);
#ifdef ISEND_IRECV
    for (i = 0; i < Llu->SolveMsgSent; ++i) MPI_Request_free(&send_req[i]);
    SUPERLU_FREE(send_req);
#endif

    stat->utime[SOLVE] = SuperLU_timer_() - t;

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC(iam, "Exit pdgstrsL()");
#endif

} /* PDGSTRS */
示例#12
0
/* Subroutine */ int dgetrf_(integer *m, integer *n, doublereal *a, integer *
	lda, integer *ipiv, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    doublereal d__1;

    /* Local variables */
    integer i__, j, ipivstart, jpivstart, jp;
    doublereal tmp;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *), dgemm_(char *, char *, integer *, integer *, integer *
, doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *);
    integer kcols;
    doublereal sfmin;
    integer nstep;
    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *);
    integer kahead;
    extern doublereal dlamch_(char *);
    extern integer idamax_(integer *, doublereal *, integer *);
    extern logical disnan_(doublereal *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    integer npived;
    extern /* Subroutine */ int dlaswp_(integer *, doublereal *, integer *, 
	    integer *, integer *, integer *, integer *);
    integer kstart, ntopiv;


/*  -- LAPACK routine (version 3.X) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     May 2008 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DGETRF computes an LU factorization of a general M-by-N matrix A */
/*  using partial pivoting with row interchanges. */

/*  The factorization has the form */
/*     A = P * L * U */
/*  where P is a permutation matrix, L is lower triangular with unit */
/*  diagonal elements (lower trapezoidal if m > n), and U is upper */
/*  triangular (upper trapezoidal if m < n). */

/*  This code implements an iterative version of Sivan Toledo's recursive */
/*  LU algorithm[1].  For square matrices, this iterative versions should */
/*  be within a factor of two of the optimum number of memory transfers. */

/*  The pattern is as follows, with the large blocks of U being updated */
/*  in one call to DTRSM, and the dotted lines denoting sections that */
/*  have had all pending permutations applied: */

/*   1 2 3 4 5 6 7 8 */
/*  +-+-+---+-------+------ */
/*  | |1|   |       | */
/*  |.+-+ 2 |       | */
/*  | | |   |       | */
/*  |.|.+-+-+   4   | */
/*  | | | |1|       | */
/*  | | |.+-+       | */
/*  | | | | |       | */
/*  |.|.|.|.+-+-+---+  8 */
/*  | | | | | |1|   | */
/*  | | | | |.+-+ 2 | */
/*  | | | | | | |   | */
/*  | | | | |.|.+-+-+ */
/*  | | | | | | | |1| */
/*  | | | | | | |.+-+ */
/*  | | | | | | | | | */
/*  |.|.|.|.|.|.|.|.+----- */
/*  | | | | | | | | | */

/*  The 1-2-1-4-1-2-1-8-... pattern is the position of the last 1 bit in */
/*  the binary expansion of the current column.  Each Schur update is */
/*  applied as soon as the necessary portion of U is available. */

/*  [1] Toledo, S. 1997. Locality of Reference in LU Decomposition with */
/*  Partial Pivoting. SIAM J. Matrix Anal. Appl. 18, 4 (Oct. 1997), */
/*  1065-1081. http://dx.doi.org/10.1137/S0895479896297744 */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the M-by-N matrix to be factored. */
/*          On exit, the factors L and U from the factorization */
/*          A = P*L*U; the unit diagonal elements of L are not stored. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  IPIV    (output) INTEGER array, dimension (min(M,N)) */
/*          The pivot indices; for 1 <= i <= min(M,N), row i of the */
/*          matrix was interchanged with row IPIV(i). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization */
/*                has been completed, but the factor U is exactly */
/*                singular, and division by zero will occur if it is used */
/*                to solve a system of equations. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --ipiv;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*m)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGETRF", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0) {
	return 0;
    }

/*     Compute machine safe minimum */

    sfmin = dlamch_("S");

    nstep = min(*m,*n);
    i__1 = nstep;
    for (j = 1; j <= i__1; ++j) {
	kahead = j & -j;
	kstart = j + 1 - kahead;
/* Computing MIN */
	i__2 = kahead, i__3 = *m - j;
	kcols = min(i__2,i__3);

/*        Find pivot. */

	i__2 = *m - j + 1;
	jp = j - 1 + idamax_(&i__2, &a[j + j * a_dim1], &c__1);
	ipiv[j] = jp;
/*        Permute just this column. */
	if (jp != j) {
	    tmp = a[j + j * a_dim1];
	    a[j + j * a_dim1] = a[jp + j * a_dim1];
	    a[jp + j * a_dim1] = tmp;
	}
/*        Apply pending permutations to L */
	ntopiv = 1;
	ipivstart = j;
	jpivstart = j - ntopiv;
	while(ntopiv < kahead) {
	    dlaswp_(&ntopiv, &a[jpivstart * a_dim1 + 1], lda, &ipivstart, &j, 
		    &ipiv[1], &c__1);
	    ipivstart -= ntopiv;
	    ntopiv <<= 1;
	    jpivstart -= ntopiv;
	}
/*        Permute U block to match L */
	dlaswp_(&kcols, &a[(j + 1) * a_dim1 + 1], lda, &kstart, &j, &ipiv[1], 
		&c__1);
/*        Factor the current column */
	if (a[j + j * a_dim1] != 0. && ! disnan_(&a[j + j * a_dim1])) {
	    if ((d__1 = a[j + j * a_dim1], abs(d__1)) >= sfmin) {
		i__2 = *m - j;
		d__1 = 1. / a[j + j * a_dim1];
		dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);
	    } else {
		i__2 = *m - j;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    a[j + i__ + j * a_dim1] /= a[j + j * a_dim1];
		}
	    }
	} else if (a[j + j * a_dim1] == 0. && *info == 0) {
	    *info = j;
	}
/*        Solve for U block. */
	dtrsm_("Left", "Lower", "No transpose", "Unit", &kahead, &kcols, &
		c_b12, &a[kstart + kstart * a_dim1], lda, &a[kstart + (j + 1) 
		* a_dim1], lda);
/*        Schur complement. */
	i__2 = *m - j;
	dgemm_("No transpose", "No transpose", &i__2, &kcols, &kahead, &c_b15, 
		 &a[j + 1 + kstart * a_dim1], lda, &a[kstart + (j + 1) * 
		a_dim1], lda, &c_b12, &a[j + 1 + (j + 1) * a_dim1], lda);
    }
/*     Handle pivot permutations on the way out of the recursion */
    npived = nstep & -nstep;
    j = nstep - npived;
    while(j > 0) {
	ntopiv = j & -j;
	i__1 = j + 1;
	dlaswp_(&ntopiv, &a[(j - ntopiv + 1) * a_dim1 + 1], lda, &i__1, &
		nstep, &ipiv[1], &c__1);
	j -= ntopiv;
    }
/*     If short and wide, handle the rest of the columns. */
    if (*m < *n) {
	i__1 = *n - *m;
	dlaswp_(&i__1, &a[(*m + kcols + 1) * a_dim1 + 1], lda, &c__1, m, &
		ipiv[1], &c__1);
	i__1 = *n - *m;
	dtrsm_("Left", "Lower", "No transpose", "Unit", m, &i__1, &c_b12, &a[
		a_offset], lda, &a[(*m + kcols + 1) * a_dim1 + 1], lda);
    }
    return 0;

/*     End of DGETRF */

} /* dgetrf_ */
示例#13
0
/*
 * Cholesky-based solution of the 
 *  sequence of Feasible Generalized Least-Squares problem
 *  in the context of GWAS:
 */
int fgls_chol( FGLS_config_t cf )
{
	int n = cf.n,
		   m = cf.m,
		   p = cf.p,
		   t = cf.t,
		   x_b = cf.x_b,
		   /*y_b = cf.y_b,*/
		   wXL = cf.wXL,
		   wXR = cf.wXR;
    /* In-core operands */
    double *Phi;
    double *M;
	double *ests;
    double *h2;
	double *res_sigma;
    double alpha;
    double beta;

    /* Out-of-core operands */
    double *Bij; // Auxiliary variables

    /* Reusable data thanks to constant XL */
    double *XL;
    double *XL_orig; // XL and a copy (XL is overwritten at every iteration of j)
    double *B_t;  // Top part of b ( in inv(S) b )
    double *V_tl; // Top-Left part of V

    /* BLAS / LAPACK constants */
    double ZERO = 0.0;
    double ONE = 1.0;
    int iONE = 1;
    /* LAPACK error value */
    int info;

    /* iterators and auxiliar vars */
    int ib, i, j, k, l; // size_t
    int nn = cf.n * cf.n; // size_t
	size_t size_one_b_record = p + (p*(p+1))/2;

	// Threading
	int id;
	double *tmpBs, *tmpVs; // Buffer with one B and one V per thread
	double *oneB, *oneV;   // Each thread pointer to its B and V

    if ( cf.y_b != 1 )
	{
        fprintf(stderr, "\n[Warning] y_b not used (set to 1)\n");
		cf.y_b = 1;
	}

    /* Memory allocation */
    // In-core
	build_SPD_Phi( cf.n, cf.Z, cf.W, cf.Phi );
	Phi   = cf.Phi;
    M     = ( double * ) fgls_malloc ( (size_t)cf.n * cf.n * sizeof(double) );
    ests  = cf.ests;

	h2 = ests;
	res_sigma = &ests[2*cf.t];

    XL_orig = cf.XL;
    XL      = ( double * ) fgls_malloc ( cf.wXL * cf.n * sizeof(double) );
    B_t  = ( double * ) fgls_malloc ( cf.wXL * sizeof(double) );
    V_tl = ( double * ) fgls_malloc ( cf.wXL * cf.wXL * sizeof(double) );

	// Temporary storage prior to copying in db_B
    tmpBs = ( double * ) fgls_malloc ( cf.p * cf.num_threads * sizeof(double) );
    tmpVs = ( double * ) fgls_malloc ( cf.p * cf.p * cf.num_threads * sizeof(double) );

    /* Files and pointers for out-of-core */
    double *XR_comp, *Y_comp, *B_comp;

    /* Asynchronous IO data structures */
	double_buffering db_XR, db_Y, db_B;
	double_buffering_init( &db_XR, (size_t)cf.n * cf.wXR * cf.x_b * sizeof(double),
			                cf.XR, &cf ); // _fp
	double_buffering_init( &db_Y, (size_t)cf.n * cf.y_b * sizeof(double),
			                cf.Y,  &cf );
	double_buffering_init( &db_B, (size_t)size_one_b_record * cf.x_b * cf.y_b * sizeof(double),
			                cf.B,  &cf );

#if VAMPIR
    VT_USER_START("READ_X");
#endif
    /* Read first block of XR's */
	double_buffering_read_XR( &db_XR, IO_BUFF, 0, (size_t)MIN( cf.x_b, cf.m ) - 1 );
	double_buffering_swap( &db_XR );
#if VAMPIR
    VT_USER_END("READ_X");
#endif
#if VAMPIR
    VT_USER_START("READ_Y");
#endif
    /* Read first Y */
	double_buffering_read_Y( &db_Y, IO_BUFF, 0, 0 );
	double_buffering_swap( &db_Y );
#if VAMPIR
    VT_USER_END("READ_Y");
#endif

    int iter = 0;
    for ( j = 0; j < t; j++ )
    {
        /* Set the number of threads for the multi-threaded BLAS */
		set_multi_threaded_BLAS( cf.num_threads );

#if VAMPIR
        VT_USER_START("READ_Y");
#endif
        /* Read next Y */
		size_t next_j = (j+1) >= t ? 0 : j+1;
		double_buffering_read_Y( &db_Y, IO_BUFF, next_j, next_j );
#if VAMPIR
        VT_USER_END("READ_Y");
#endif

#if VAMPIR
        VT_USER_START("COMP_J");
#endif
        /* M := sigma * ( h^2 Phi - (1 - h^2) I ) */
        memcpy( M, Phi, (size_t)n * n * sizeof(double) );
		alpha = res_sigma[j] * h2[j];
        beta  = res_sigma[j] * (1 - h2[j]);
        dscal_(&nn, &alpha, M, &iONE);
        for ( i = 0; i < n; i++ )
            M[i*n + i] = M[i*n + i] + beta;

        /* L * L' = M */
        dpotrf_(LOWER, &n, M, &n, &info);
        if (info != 0)
        {
            char err[STR_BUFFER_SIZE];
            snprintf(err, STR_BUFFER_SIZE, "dpotrf(M) failed (info: %d)", info);
            error_msg(err, 1);
        }

        /* XL := inv(L) * XL */
        memcpy( XL, XL_orig, wXL * n * sizeof(double) );
        dtrsm_(LEFT, LOWER, NO_TRANS, NON_UNIT, &n, &wXL, &ONE, M, &n, XL, &n);

#if VAMPIR
        VT_USER_START("WAIT_Y");
#endif
        // Wait until current Y is available for computation
		double_buffering_wait( &db_Y, COMP_BUFF );
#if VAMPIR
        VT_USER_END("WAIT_Y");
#endif

        /* y := inv(L) * y */
		Y_comp = double_buffering_get_comp_buffer( &db_Y );
		// Sanity check
		average( Y_comp, n, 1, cf.threshold, "TRAIT", 
				&cf.Y_fvi->fvi_data[n*NAMELENGTH], NAMELENGTH, 0 );
        dtrsv_(LOWER, NO_TRANS, NON_UNIT, &n, M, &n, Y_comp, &iONE);

        /* B_t := XL' * y */
        dgemv_(TRANS, &n, &wXL, &ONE, XL, &n, Y_comp, &iONE, &ZERO, B_t, &iONE);

        /* V_tl := XL' * XL */
        dsyrk_(LOWER, TRANS, &wXL, &n, &ONE, XL, &n, &ZERO, V_tl, &wXL);
#if VAMPIR
        VT_USER_END("COMP_J");
#endif
		/* Solve for x_b X's at once */
        for (ib = 0; ib < m; ib += x_b) 
        {
#if VAMPIR
            VT_USER_START("READ_X");
#endif
            /* Read next block of XR's */
			size_t next_x_from = ((size_t)ib + x_b) >= m ?  0 : (size_t)ib + x_b;
			size_t next_x_to   = ((size_t)ib + x_b) >= m ? MIN( (size_t)x_b, (size_t)m ) - 1 : 
				                                           next_x_from + MIN( (size_t)x_b, (size_t)m - next_x_from ) - 1;
			double_buffering_read_XR( &db_XR, IO_BUFF, next_x_from, next_x_to );
#if VAMPIR
            VT_USER_END("READ_X");
#endif

#if VAMPIR
            VT_USER_START("WAIT_X");
#endif
            /* Wait until current block of XR's is available for computation */
			double_buffering_wait( &db_XR, COMP_BUFF );
#if VAMPIR
            VT_USER_END("WAIT_X");
#endif

            /* Set the number of threads for the multi-threaded BLAS */
			set_multi_threaded_BLAS( cf.num_threads );

#if VAMPIR
            VT_USER_START("COMP_IB");
#endif
            /* XR := inv(L) XR */
			XR_comp = double_buffering_get_comp_buffer( &db_XR );
			// Auxiliar variables
            int x_inc = MIN(x_b, m - ib);
            int rhss  = wXR * x_inc;
			// Sanity check
			average( XR_comp, n, x_inc, cf.threshold, "SNP", 
					&cf.XR_fvi->fvi_data[(n+ib)*NAMELENGTH], NAMELENGTH, 1 );
			// Computation
            dtrsm_(LEFT, LOWER, NO_TRANS, NON_UNIT, &n, &rhss, &ONE, M, &n, XR_comp, &n);

#if VAMPIR
            VT_USER_END("COMP_IB");
#endif

#if CHOL_MIX_PARALLELISM
            /* Set the number of threads for the multi-threaded BLAS to 1.
             * The innermost loop is parallelized using OPENMP */
			set_single_threaded_BLAS();
#endif
#if VAMPIR
            VT_USER_START("COMP_I");
#endif
            B_comp = double_buffering_get_comp_buffer( &db_B );
#if CHOL_MIX_PARALLELISM
            #pragma omp parallel for private(Bij, oneB, oneV, i, k, info, id) schedule(static) num_threads(cf.num_threads)
#endif
            for (i = 0; i < x_inc; i++)
            {
				id = omp_get_thread_num();
				oneB = &tmpBs[ id * p ];
				oneV = &tmpVs[ id * p * p ];
                Bij = &B_comp[i * size_one_b_record];

                // Building B
                // Copy B_T
                memcpy(oneB, B_t, wXL * sizeof(double));
                // B_B := XR' * y
                dgemv_("T", 
                        &n, &wXR, 
                        &ONE, &XR_comp[i * wXR * n], &n, Y_comp, &iONE, 
                        &ZERO, &oneB[wXL], &iONE);

                // Building V
                // Copy V_TL
                for( k = 0; k < wXL; k++ )
                    dcopy_(&wXL, &V_tl[k*wXL], &iONE, &oneV[k*p], &iONE); // V_TL
                // V_BL := XR' * XL
                dgemm_("T", "N",
                        &wXR, &wXL, &n,
                        &ONE, &XR_comp[i * wXR * n], &n, XL, &n,
                        &ZERO, &oneV[wXL], &p); // V_BL
                // V_BR := XR' * XR
                dsyrk_("L", "T", 
                        &wXR, &n, 
                        &ONE, &XR_comp[i * wXR * n], &n, 
                        &ZERO, &oneV[wXL * p + wXL], &p); // V_BR

                // B := inv(V) * B
                dpotrf_(LOWER, &p, oneV, &p, &info);
                if (info != 0)
                {
					for ( k = 0; k < size_one_b_record; k++ )
						Bij[k] = 0.0/0.0; //nan("char-sequence");
					continue;
                }
                dtrsv_(LOWER, NO_TRANS, NON_UNIT, &p, oneV, &p, oneB, &iONE);
                dtrsv_(LOWER,    TRANS, NON_UNIT, &p, oneV, &p, oneB, &iONE);

                /* V := res_sigma * inv( X' inv(M) X) */
                dpotri_(LOWER, &p, oneV, &p, &info);
                if (info != 0)
                {
                    char err[STR_BUFFER_SIZE];
                    snprintf(err, STR_BUFFER_SIZE, "dpotri failed (info: %d)", info);
                    error_msg(err, 1);
                }

				// Copy output
				for ( k = 0; k < p; k++ )
					Bij[k] = (float) oneB[k];
                for ( k = 0; k < p; k++ )
                    Bij[p+k] = (float)sqrt(oneV[k*p+k]);
				int idx = 0;
				for ( k = 0; k < p-1; k++ ) // Cols of V
					for ( l = k+1; l < p; l++ ) // Rows of V
					{
						Bij[p+p+idx] = (float)oneV[k*p+l];
						idx++;
					}
#if 0
			  printf("Chi square: %.6f\n", ( (oneB[p-1] / Bij[p+p-1]) * (oneB[p-1] / Bij[p+p-1]) ) );
#endif
            }
#if VAMPIR
            VT_USER_END("COMP_I");
#endif

#if VAMPIR
            VT_USER_START("WAIT_BV");
#endif
            /* Wait until the previous blocks of B's and V's are written */
            if ( iter > 0)
                double_buffering_wait( &db_B, IO_BUFF );
#if VAMPIR
            VT_USER_END("WAIT_BV");
#endif
            /* Write current blocks of B's and V's */
#if VAMPIR
            VT_USER_START("WRITE_BV");
#endif
			double_buffering_write_B( &db_B, COMP_BUFF, ib, ib+x_inc - 1, j, j );
#if VAMPIR
            VT_USER_END("WRITE_BV");
#endif

            /* Swap buffers */
			double_buffering_swap( &db_XR );
			double_buffering_swap( &db_B  );
            iter++;
        }
        /* Swap buffers */
		double_buffering_swap( &db_Y );
    }

#if VAMPIR
    VT_USER_START("WAIT_ALL");
#endif
    /* Wait for the remaining IO operations issued */
	double_buffering_wait( &db_XR, COMP_BUFF );
	double_buffering_wait( &db_Y,  COMP_BUFF );
	double_buffering_wait( &db_B,  IO_BUFF );
#if VAMPIR
    VT_USER_END("WAIT_ALL");
#endif

    /* Clean-up */
    free( M );

    free( XL );
    free( B_t  );
    free( V_tl );
    free( tmpBs );
    free( tmpVs );

	double_buffering_destroy( &db_XR );
	double_buffering_destroy( &db_Y  );
	double_buffering_destroy( &db_B  );

    return 0;
}
示例#14
0
/* Subroutine */ int dsygvd_(integer *itype, char *jobz, char *uplo, integer *
	n, doublereal *a, integer *lda, doublereal *b, integer *ldb, 
	doublereal *w, doublereal *work, integer *lwork, integer *iwork, 
	integer *liwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1;
    doublereal d__1, d__2;

    /* Local variables */
    integer lopt;
    integer lwmin;
    char trans[1];
    integer liopt;
    logical upper, wantz;
    integer liwmin;
    logical lquery;

/*  -- LAPACK driver routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  DSYGVD computes all the eigenvalues, and optionally, the eigenvectors */
/*  of a real generalized symmetric-definite eigenproblem, of the form */
/*  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and */
/*  B are assumed to be symmetric and B is also positive definite. */
/*  If eigenvectors are desired, it uses a divide and conquer algorithm. */

/*  The divide and conquer algorithm makes very mild assumptions about */
/*  floating point arithmetic. It will work on machines with a guard */
/*  digit in add/subtract, or on those binary machines without guard */
/*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
/*  Cray-2. It could conceivably fail on hexadecimal or decimal machines */
/*  without guard digits, but we know of none. */

/*  Arguments */
/*  ========= */

/*  ITYPE   (input) INTEGER */
/*          Specifies the problem type to be solved: */
/*          = 1:  A*x = (lambda)*B*x */
/*          = 2:  A*B*x = (lambda)*x */
/*          = 3:  B*A*x = (lambda)*x */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangles of A and B are stored; */
/*          = 'L':  Lower triangles of A and B are stored. */

/*  N       (input) INTEGER */
/*          The order of the matrices A and B.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of A contains the */
/*          upper triangular part of the matrix A.  If UPLO = 'L', */
/*          the leading N-by-N lower triangular part of A contains */
/*          the lower triangular part of the matrix A. */

/*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
/*          matrix Z of eigenvectors.  The eigenvectors are normalized */
/*          as follows: */
/*          if ITYPE = 1 or 2, Z**T*B*Z = I; */
/*          if ITYPE = 3, Z**T*inv(B)*Z = I. */
/*          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') */
/*          or the lower triangle (if UPLO='L') of A, including the */
/*          diagonal, is destroyed. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
/*          On entry, the symmetric matrix B.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of B contains the */
/*          upper triangular part of the matrix B.  If UPLO = 'L', */
/*          the leading N-by-N lower triangular part of B contains */
/*          the lower triangular part of the matrix B. */

/*          On exit, if INFO <= N, the part of B containing the matrix is */
/*          overwritten by the triangular factor U or L from the Cholesky */
/*          factorization B = U**T*U or B = L*L**T. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  W       (output) DOUBLE PRECISION array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. */
/*          If N <= 1,               LWORK >= 1. */
/*          If JOBZ = 'N' and N > 1, LWORK >= 2*N+1. */
/*          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal sizes of the WORK and IWORK */
/*          arrays, returns these values as the first entries of the WORK */
/*          and IWORK arrays, and no error message related to LWORK or */
/*          LIWORK is issued by XERBLA. */

/*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */

/*  LIWORK  (input) INTEGER */
/*          The dimension of the array IWORK. */
/*          If N <= 1,                LIWORK >= 1. */
/*          If JOBZ  = 'N' and N > 1, LIWORK >= 1. */
/*          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N. */

/*          If LIWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal sizes of the WORK and */
/*          IWORK arrays, returns these values as the first entries of */
/*          the WORK and IWORK arrays, and no error message related to */
/*          LWORK or LIWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  DPOTRF or DSYEVD returned an error code: */
/*             <= N:  if INFO = i and JOBZ = 'N', then the algorithm */
/*                    failed to converge; i off-diagonal elements of an */
/*                    intermediate tridiagonal form did not converge to */
/*                    zero; */
/*                    if INFO = i and JOBZ = 'V', then the algorithm */
/*                    failed to compute an eigenvalue while working on */
/*                    the submatrix lying in rows and columns INFO/(N+1) */
/*                    through mod(INFO,N+1); */
/*             > N:   if INFO = N + i, for 1 <= i <= N, then the leading */
/*                    minor of order i of B is not positive definite. */
/*                    The factorization of B could not be completed and */
/*                    no eigenvalues or eigenvectors were computed. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */

/*  Modified so that no backsubstitution is performed if DSYEVD fails to */
/*  converge (NEIG in old code could be greater than N causing out of */
/*  bounds reference to A - reported by Ralf Meyer).  Also corrected the */
/*  description of INFO and the test on ITYPE. Sven, 16 Feb 05. */
/*  ===================================================================== */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --w;
    --work;
    --iwork;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");
    lquery = *lwork == -1 || *liwork == -1;

    *info = 0;
    if (*n <= 1) {
	liwmin = 1;
	lwmin = 1;
    } else if (wantz) {
	liwmin = *n * 5 + 3;
/* Computing 2nd power */
	i__1 = *n;
	lwmin = *n * 6 + 1 + (i__1 * i__1 << 1);
    } else {
	liwmin = 1;
	lwmin = (*n << 1) + 1;
    }
    lopt = lwmin;
    liopt = liwmin;
    if (*itype < 1 || *itype > 3) {
	*info = -1;
    } else if (! (wantz || lsame_(jobz, "N"))) {
	*info = -2;
    } else if (! (upper || lsame_(uplo, "L"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*lda < max(1,*n)) {
	*info = -6;
    } else if (*ldb < max(1,*n)) {
	*info = -8;
    }

    if (*info == 0) {
	work[1] = (doublereal) lopt;
	iwork[1] = liopt;

	if (*lwork < lwmin && ! lquery) {
	    *info = -11;
	} else if (*liwork < liwmin && ! lquery) {
	    *info = -13;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSYGVD", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Form a Cholesky factorization of B. */

    dpotrf_(uplo, n, &b[b_offset], ldb, info);
    if (*info != 0) {
	*info = *n + *info;
	return 0;
    }

/*     Transform problem to standard eigenvalue problem and solve. */

    dsygst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
    dsyevd_(jobz, uplo, n, &a[a_offset], lda, &w[1], &work[1], lwork, &iwork[
	    1], liwork, info);
/* Computing MAX */
    d__1 = (doublereal) lopt;
    lopt = (integer) max(d__1,work[1]);
/* Computing MAX */
    d__1 = (doublereal) liopt, d__2 = (doublereal) iwork[1];
    liopt = (integer) max(d__1,d__2);

    if (wantz && *info == 0) {

/*        Backtransform eigenvectors to the original problem. */

	if (*itype == 1 || *itype == 2) {

/*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
/*           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */

	    if (upper) {
		*(unsigned char *)trans = 'N';
	    } else {
		*(unsigned char *)trans = 'T';
	    }

	    dtrsm_("Left", uplo, trans, "Non-unit", n, n, &c_b11, &b[b_offset]
, ldb, &a[a_offset], lda);

	} else if (*itype == 3) {

/*           For B*A*x=(lambda)*x; */
/*           backtransform eigenvectors: x = L*y or U'*y */

	    if (upper) {
		*(unsigned char *)trans = 'T';
	    } else {
		*(unsigned char *)trans = 'N';
	    }

	    dtrmm_("Left", uplo, trans, "Non-unit", n, n, &c_b11, &b[b_offset]
, ldb, &a[a_offset], lda);
	}
    }

    work[1] = (doublereal) lopt;
    iwork[1] = liopt;

    return 0;

/*     End of DSYGVD */

} /* dsygvd_ */
示例#15
0
/* Subroutine */ int dgelsy_(integer *m, integer *n, integer *nrhs, 
	doublereal *a, integer *lda, doublereal *b, integer *ldb, integer *
	jpvt, doublereal *rcond, integer *rank, doublereal *work, integer *
	lwork, integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    DGELSY computes the minimum-norm solution to a real linear least   
    squares problem:   
        minimize || A * X - B ||   
    using a complete orthogonal factorization of A.  A is an M-by-N   
    matrix which may be rank-deficient.   

    Several right hand side vectors b and solution vectors x can be   
    handled in a single call; they are stored as the columns of the   
    M-by-NRHS right hand side matrix B and the N-by-NRHS solution   
    matrix X.   

    The routine first computes a QR factorization with column pivoting:   
        A * P = Q * [ R11 R12 ]   
                    [  0  R22 ]   
    with R11 defined as the largest leading submatrix whose estimated   
    condition number is less than 1/RCOND.  The order of R11, RANK,   
    is the effective rank of A.   

    Then, R22 is considered to be negligible, and R12 is annihilated   
    by orthogonal transformations from the right, arriving at the   
    complete orthogonal factorization:   
       A * P = Q * [ T11 0 ] * Z   
                   [  0  0 ]   
    The minimum-norm solution is then   
       X = P * Z' [ inv(T11)*Q1'*B ]   
                  [        0       ]   
    where Q1 consists of the first RANK columns of Q.   

    This routine is basically identical to the original xGELSX except   
    three differences:   
      o The call to the subroutine xGEQPF has been substituted by the   
        the call to the subroutine xGEQP3. This subroutine is a Blas-3   
        version of the QR factorization with column pivoting.   
      o Matrix B (the right hand side) is updated with Blas-3.   
      o The permutation of matrix B (the right hand side) is faster and   
        more simple.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A.  N >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of   
            columns of matrices B and X. NRHS >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the M-by-N matrix A.   
            On exit, A has been overwritten by details of its   
            complete orthogonal factorization.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,M).   

    B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)   
            On entry, the M-by-NRHS right hand side matrix B.   
            On exit, the N-by-NRHS solution matrix X.   

    LDB     (input) INTEGER   
            The leading dimension of the array B. LDB >= max(1,M,N).   

    JPVT    (input/output) INTEGER array, dimension (N)   
            On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted   
            to the front of AP, otherwise column i is a free column.   
            On exit, if JPVT(i) = k, then the i-th column of AP   
            was the k-th column of A.   

    RCOND   (input) DOUBLE PRECISION   
            RCOND is used to determine the effective rank of A, which   
            is defined as the order of the largest leading triangular   
            submatrix R11 in the QR factorization with pivoting of A,   
            whose estimated condition number < 1/RCOND.   

    RANK    (output) INTEGER   
            The effective rank of A, i.e., the order of the submatrix   
            R11.  This is the same as the order of the submatrix T11   
            in the complete orthogonal factorization of A.   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.   
            The unblocked strategy requires that:   
               LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ),   
            where MN = min( M, N ).   
            The block algorithm requires that:   
               LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ),   
            where NB is an upper bound on the blocksize returned   
            by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR,   
            and DORMRZ.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: If INFO = -i, the i-th argument had an illegal value.   

    Further Details   
    ===============   

    Based on contributions by   
      A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA   
      E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain   
      G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain   

    =====================================================================   


       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c_n1 = -1;
    static integer c__0 = 0;
    static doublereal c_b31 = 0.;
    static integer c__2 = 2;
    static doublereal c_b54 = 1.;
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
    doublereal d__1, d__2;
    /* Local variables */
    static doublereal anrm, bnrm, smin, smax;
    static integer i__, j, iascl, ibscl;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    static integer ismin, ismax;
    static doublereal c1, c2;
    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *), dlaic1_(
	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *);
    static doublereal wsize, s1, s2;
    extern /* Subroutine */ int dgeqp3_(integer *, integer *, doublereal *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    integer *), dlabad_(doublereal *, doublereal *);
    static integer nb;
    extern doublereal dlamch_(char *), dlange_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *);
    static integer mn;
    extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *), dlaset_(char *, integer *, integer 
	    *, doublereal *, doublereal *, doublereal *, integer *), 
	    xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static doublereal bignum;
    static integer nb1, nb2, nb3, nb4;
    extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, integer *);
    static doublereal sminpr, smaxpr, smlnum;
    extern /* Subroutine */ int dormrz_(char *, char *, integer *, integer *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, integer *);
    static integer lwkopt;
    static logical lquery;
    extern /* Subroutine */ int dtzrzf_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, integer *);
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --jpvt;
    --work;

    /* Function Body */
    mn = min(*m,*n);
    ismin = mn + 1;
    ismax = (mn << 1) + 1;

/*     Test the input arguments. */

    *info = 0;
    nb1 = ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    nb2 = ilaenv_(&c__1, "DGERQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    nb3 = ilaenv_(&c__1, "DORMQR", " ", m, n, nrhs, &c_n1, (ftnlen)6, (ftnlen)
	    1);
    nb4 = ilaenv_(&c__1, "DORMRQ", " ", m, n, nrhs, &c_n1, (ftnlen)6, (ftnlen)
	    1);
/* Computing MAX */
    i__1 = max(nb1,nb2), i__1 = max(i__1,nb3);
    nb = max(i__1,nb4);
/* Computing MAX */
    i__1 = 1, i__2 = mn + (*n << 1) + nb * (*n + 1), i__1 = max(i__1,i__2), 
	    i__2 = (mn << 1) + nb * *nrhs;
    lwkopt = max(i__1,i__2);
    work[1] = (doublereal) lwkopt;
    lquery = *lwork == -1;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = max(1,*m);
	if (*ldb < max(i__1,*n)) {
	    *info = -7;
	} else /* if(complicated condition) */ {
/* Computing MAX */
	    i__1 = 1, i__2 = mn + *n * 3 + 1, i__1 = max(i__1,i__2), i__2 = (
		    mn << 1) + *nrhs;
	    if (*lwork < max(i__1,i__2) && ! lquery) {
		*info = -12;
	    }
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGELSY", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible   

   Computing MIN */
    i__1 = min(*m,*n);
    if (min(i__1,*nrhs) == 0) {
	*rank = 0;
	return 0;
    }

/*     Get machine parameters */

    smlnum = dlamch_("S") / dlamch_("P");
    bignum = 1. / smlnum;
    dlabad_(&smlnum, &bignum);

/*     Scale A, B if max entries outside range [SMLNUM,BIGNUM] */

    anrm = dlange_("M", m, n, &a[a_offset], lda, &work[1]);
    iascl = 0;
    if (anrm > 0. && anrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 
		info);
	iascl = 1;
    } else if (anrm > bignum) {

/*        Scale matrix norm down to BIGNUM */

	dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 
		info);
	iascl = 2;
    } else if (anrm == 0.) {

/*        Matrix all zero. Return zero solution. */

	i__1 = max(*m,*n);
	dlaset_("F", &i__1, nrhs, &c_b31, &c_b31, &b[b_offset], ldb);
	*rank = 0;
	goto L70;
    }

    bnrm = dlange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
    ibscl = 0;
    if (bnrm > 0. && bnrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
		 info);
	ibscl = 1;
    } else if (bnrm > bignum) {

/*        Scale matrix norm down to BIGNUM */

	dlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
		 info);
	ibscl = 2;
    }

/*     Compute QR factorization with column pivoting of A:   
          A * P = Q * R */

    i__1 = *lwork - mn;
    dgeqp3_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], &i__1,
	     info);
    wsize = mn + work[mn + 1];

/*     workspace: MN+2*N+NB*(N+1).   
       Details of Householder rotations stored in WORK(1:MN).   

       Determine RANK using incremental condition estimation */

    work[ismin] = 1.;
    work[ismax] = 1.;
    smax = (d__1 = a_ref(1, 1), abs(d__1));
    smin = smax;
    if ((d__1 = a_ref(1, 1), abs(d__1)) == 0.) {
	*rank = 0;
	i__1 = max(*m,*n);
	dlaset_("F", &i__1, nrhs, &c_b31, &c_b31, &b[b_offset], ldb);
	goto L70;
    } else {
	*rank = 1;
    }

L10:
    if (*rank < mn) {
	i__ = *rank + 1;
	dlaic1_(&c__2, rank, &work[ismin], &smin, &a_ref(1, i__), &a_ref(i__, 
		i__), &sminpr, &s1, &c1);
	dlaic1_(&c__1, rank, &work[ismax], &smax, &a_ref(1, i__), &a_ref(i__, 
		i__), &smaxpr, &s2, &c2);

	if (smaxpr * *rcond <= sminpr) {
	    i__1 = *rank;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		work[ismin + i__ - 1] = s1 * work[ismin + i__ - 1];
		work[ismax + i__ - 1] = s2 * work[ismax + i__ - 1];
/* L20: */
	    }
	    work[ismin + *rank] = c1;
	    work[ismax + *rank] = c2;
	    smin = sminpr;
	    smax = smaxpr;
	    ++(*rank);
	    goto L10;
	}
    }

/*     workspace: 3*MN.   

       Logically partition R = [ R11 R12 ]   
                               [  0  R22 ]   
       where R11 = R(1:RANK,1:RANK)   

       [R11,R12] = [ T11, 0 ] * Y */

    if (*rank < *n) {
	i__1 = *lwork - (mn << 1);
	dtzrzf_(rank, n, &a[a_offset], lda, &work[mn + 1], &work[(mn << 1) + 
		1], &i__1, info);
    }

/*     workspace: 2*MN.   
       Details of Householder rotations stored in WORK(MN+1:2*MN)   

       B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */

    i__1 = *lwork - (mn << 1);
    dormqr_("Left", "Transpose", m, nrhs, &mn, &a[a_offset], lda, &work[1], &
	    b[b_offset], ldb, &work[(mn << 1) + 1], &i__1, info);
/* Computing MAX */
    d__1 = wsize, d__2 = (mn << 1) + work[(mn << 1) + 1];
    wsize = max(d__1,d__2);

/*     workspace: 2*MN+NB*NRHS.   

       B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */

    dtrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b54, &
	    a[a_offset], lda, &b[b_offset], ldb);

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	i__2 = *n;
	for (i__ = *rank + 1; i__ <= i__2; ++i__) {
	    b_ref(i__, j) = 0.;
/* L30: */
	}
/* L40: */
    }

/*     B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS) */

    if (*rank < *n) {
	i__1 = *n - *rank;
	i__2 = *lwork - (mn << 1);
	dormrz_("Left", "Transpose", n, nrhs, rank, &i__1, &a[a_offset], lda, 
		&work[mn + 1], &b[b_offset], ldb, &work[(mn << 1) + 1], &i__2,
		 info);
    }

/*     workspace: 2*MN+NRHS.   

       B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    work[jpvt[i__]] = b_ref(i__, j);
/* L50: */
	}
	dcopy_(n, &work[1], &c__1, &b_ref(1, j), &c__1);
/* L60: */
    }

/*     workspace: N.   

       Undo scaling */

    if (iascl == 1) {
	dlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
		 info);
	dlascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset], 
		lda, info);
    } else if (iascl == 2) {
	dlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
		 info);
	dlascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset], 
		lda, info);
    }
    if (ibscl == 1) {
	dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
		 info);
    } else if (ibscl == 2) {
	dlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
		 info);
    }

L70:
    work[1] = (doublereal) lwkopt;

    return 0;

/*     End of DGELSY */

} /* dgelsy_ */
示例#16
0
/* Subroutine */ int dgetrs_(char *trans, integer *n, integer *nrhs, 
	doublereal *a, integer *lda, integer *ipiv, doublereal *b, integer *
	ldb, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    DGETRS solves a system of linear equations   
       A * X = B  or  A' * X = B   
    with a general N-by-N matrix A using the LU factorization computed   
    by DGETRF.   

    Arguments   
    =========   

    TRANS   (input) CHARACTER*1   
            Specifies the form of the system of equations:   
            = 'N':  A * X = B  (No transpose)   
            = 'T':  A'* X = B  (Transpose)   
            = 'C':  A'* X = B  (Conjugate transpose = Transpose)   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of columns   
            of the matrix B.  NRHS >= 0.   

    A       (input) DOUBLE PRECISION array, dimension (LDA,N)   
            The factors L and U from the factorization A = P*L*U   
            as computed by DGETRF.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    IPIV    (input) INTEGER array, dimension (N)   
            The pivot indices from DGETRF; for 1<=i<=N, row i of the   
            matrix was interchanged with row IPIV(i).   

    B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)   
            On entry, the right hand side matrix B.   
            On exit, the solution matrix X.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static doublereal c_b12 = 1.;
    static integer c_n1 = -1;
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1;
    /* Local variables */
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *), xerbla_(
	    char *, integer *), dlaswp_(integer *, doublereal *, 
	    integer *, integer *, integer *, integer *, integer *);
    static logical notran;


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    notran = lsame_(trans, "N");
    if (! notran && ! lsame_(trans, "T") && ! lsame_(
	    trans, "C")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    } else if (*ldb < max(1,*n)) {
	*info = -8;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGETRS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0) {
	return 0;
    }

    if (notran) {

/*        Solve A * X = B.   

          Apply row interchanges to the right hand sides. */

	dlaswp_(nrhs, &b[b_offset], ldb, &c__1, n, &ipiv[1], &c__1);

/*        Solve L*X = B, overwriting B with X. */

	dtrsm_("Left", "Lower", "No transpose", "Unit", n, nrhs, &c_b12, &a[
		a_offset], lda, &b[b_offset], ldb);

/*        Solve U*X = B, overwriting B with X. */

	dtrsm_("Left", "Upper", "No transpose", "Non-unit", n, nrhs, &c_b12, &
		a[a_offset], lda, &b[b_offset], ldb);
    } else {

/*        Solve A' * X = B.   

          Solve U'*X = B, overwriting B with X. */

	dtrsm_("Left", "Upper", "Transpose", "Non-unit", n, nrhs, &c_b12, &a[
		a_offset], lda, &b[b_offset], ldb);

/*        Solve L'*X = B, overwriting B with X. */

	dtrsm_("Left", "Lower", "Transpose", "Unit", n, nrhs, &c_b12, &a[
		a_offset], lda, &b[b_offset], ldb);

/*        Apply row interchanges to the solution vectors. */

	dlaswp_(nrhs, &b[b_offset], ldb, &c__1, n, &ipiv[1], &c_n1);
    }

    return 0;

/*     End of DGETRS */

} /* dgetrs_ */
示例#17
0
/* Subroutine */ int dpotrf_(char *uplo, integer *n, doublereal *a, integer *
	lda, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;

    /* Local variables */
    integer j, jb, nb;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *);
    logical upper;
    extern /* Subroutine */ int dsyrk_(char *, char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, doublereal *, 
	     integer *), dpotf2_(char *, integer *, 
	    doublereal *, integer *, integer *), xerbla_(char *, 
	    integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);


/*  -- LAPACK routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     March 2008 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DPOTRF computes the Cholesky factorization of a real symmetric */
/*  positive definite matrix A. */

/*  The factorization has the form */
/*     A = U**T * U,  if UPLO = 'U', or */
/*     A = L  * L**T,  if UPLO = 'L', */
/*  where U is an upper triangular matrix and L is lower triangular. */

/*  This is the right looking block version of the algorithm, calling Level 3 BLAS. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
/*          N-by-N upper triangular part of A contains the upper */
/*          triangular part of the matrix A, and the strictly lower */
/*          triangular part of A is not referenced.  If UPLO = 'L', the */
/*          leading N-by-N lower triangular part of A contains the lower */
/*          triangular part of the matrix A, and the strictly upper */
/*          triangular part of A is not referenced. */

/*          On exit, if INFO = 0, the factor U or L from the Cholesky */
/*          factorization A = U**T*U or A = L*L**T. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the leading minor of order i is not */
/*                positive definite, and the factorization could not be */
/*                completed. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*n)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DPOTRF", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Determine the block size for this environment. */

    nb = ilaenv_(&c__1, "DPOTRF", uplo, n, &c_n1, &c_n1, &c_n1);
    if (nb <= 1 || nb >= *n) {

/*        Use unblocked code. */

	dpotf2_(uplo, n, &a[a_offset], lda, info);
    } else {

/*        Use blocked code. */

	if (upper) {

/*           Compute the Cholesky factorization A = U'*U. */

	    i__1 = *n;
	    i__2 = nb;
	    for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {

/*              Update and factorize the current diagonal block and test */
/*              for non-positive-definiteness. */

/* Computing MIN */
		i__3 = nb, i__4 = *n - j + 1;
		jb = min(i__3,i__4);
		dpotf2_("Upper", &jb, &a[j + j * a_dim1], lda, info);
		if (*info != 0) {
		    goto L30;
		}
		if (j + jb <= *n) {

/*                 Updating the trailing submatrix. */

		    i__3 = *n - j - jb + 1;
		    dtrsm_("Left", "Upper", "Transpose", "Non-unit", &jb, &
			    i__3, &c_b17, &a[j + j * a_dim1], lda, &a[j + (j 
			    + jb) * a_dim1], lda);
		    i__3 = *n - j - jb + 1;
		    dsyrk_("Upper", "Transpose", &i__3, &jb, &c_b20, &a[j + (
			    j + jb) * a_dim1], lda, &c_b17, &a[j + jb + (j + 
			    jb) * a_dim1], lda);
		}
/* L10: */
	    }

	} else {

/*           Compute the Cholesky factorization A = L*L'. */

	    i__2 = *n;
	    i__1 = nb;
	    for (j = 1; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {

/*              Update and factorize the current diagonal block and test */
/*              for non-positive-definiteness. */

/* Computing MIN */
		i__3 = nb, i__4 = *n - j + 1;
		jb = min(i__3,i__4);
		dpotf2_("Lower", &jb, &a[j + j * a_dim1], lda, info);
		if (*info != 0) {
		    goto L30;
		}
		if (j + jb <= *n) {

/*                Updating the trailing submatrix. */

		    i__3 = *n - j - jb + 1;
		    dtrsm_("Right", "Lower", "Transpose", "Non-unit", &i__3, &
			    jb, &c_b17, &a[j + j * a_dim1], lda, &a[j + jb + 
			    j * a_dim1], lda);
		    i__3 = *n - j - jb + 1;
		    dsyrk_("Lower", "No Transpose", &i__3, &jb, &c_b20, &a[j 
			    + jb + j * a_dim1], lda, &c_b17, &a[j + jb + (j + 
			    jb) * a_dim1], lda);
		}
/* L20: */
	    }
	}
    }
    goto L40;

L30:
    *info = *info + j - 1;

L40:
    return 0;

/*     End of DPOTRF */

} /* dpotrf_ */
示例#18
0
/* Subroutine */ int dpftrf_(char *transr, char *uplo, integer *n, doublereal 
	*a, integer *info)
{
    /* System generated locals */
    integer i__1, i__2;

    /* Local variables */
    integer k, n1, n2;
    logical normaltransr;
    logical lower;
    logical nisodd;

/*  -- LAPACK routine (version 3.2)                                    -- */

/*  -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
/*  -- November 2008                                                   -- */

/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */

/*  Purpose */
/*  ======= */

/*  DPFTRF computes the Cholesky factorization of a real symmetric */
/*  positive definite matrix A. */

/*  The factorization has the form */
/*     A = U**T * U,  if UPLO = 'U', or */
/*     A = L  * L**T,  if UPLO = 'L', */
/*  where U is an upper triangular matrix and L is lower triangular. */

/*  This is the block version of the algorithm, calling Level 3 BLAS. */

/*  Arguments */
/*  ========= */

/*  TRANSR    (input) CHARACTER */
/*          = 'N':  The Normal TRANSR of RFP A is stored; */
/*          = 'T':  The Transpose TRANSR of RFP A is stored. */

/*  UPLO    (input) CHARACTER */
/*          = 'U':  Upper triangle of RFP A is stored; */
/*          = 'L':  Lower triangle of RFP A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ); */
/*          On entry, the symmetric matrix A in RFP format. RFP format is */
/*          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' */
/*          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is */
/*          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is */
/*          the transpose of RFP A as defined when */
/*          TRANSR = 'N'. The contents of RFP A are defined by UPLO as */
/*          follows: If UPLO = 'U' the RFP A contains the NT elements of */
/*          upper packed A. If UPLO = 'L' the RFP A contains the elements */
/*          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = */
/*          'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N */
/*          is odd. See the Note below for more details. */

/*          On exit, if INFO = 0, the factor U or L from the Cholesky */
/*          factorization RFP A = U**T*U or RFP A = L*L**T. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the leading minor of order i is not */
/*                positive definite, and the factorization could not be */
/*                completed. */

/*  Notes */
/*  ===== */

/*  We first consider Rectangular Full Packed (RFP) Format when N is */
/*  even. We give an example where N = 6. */

/*      AP is Upper             AP is Lower */

/*   00 01 02 03 04 05       00 */
/*      11 12 13 14 15       10 11 */
/*         22 23 24 25       20 21 22 */
/*            33 34 35       30 31 32 33 */
/*               44 45       40 41 42 43 44 */
/*                  55       50 51 52 53 54 55 */

/*  Let TRANSR = 'N'. RFP holds AP as follows: */
/*  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
/*  three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
/*  the transpose of the first three columns of AP upper. */
/*  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
/*  three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
/*  the transpose of the last three columns of AP lower. */
/*  This covers the case N even and TRANSR = 'N'. */

/*         RFP A                   RFP A */

/*        03 04 05                33 43 53 */
/*        13 14 15                00 44 54 */
/*        23 24 25                10 11 55 */
/*        33 34 35                20 21 22 */
/*        00 44 45                30 31 32 */
/*        01 11 55                40 41 42 */
/*        02 12 22                50 51 52 */

/*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
/*  transpose of RFP A above. One therefore gets: */

/*           RFP A                   RFP A */

/*     03 13 23 33 00 01 02    33 00 10 20 30 40 50 */
/*     04 14 24 34 44 11 12    43 44 11 21 31 41 51 */
/*     05 15 25 35 45 55 22    53 54 55 22 32 42 52 */

/*  We first consider Rectangular Full Packed (RFP) Format when N is */
/*  odd. We give an example where N = 5. */

/*     AP is Upper                 AP is Lower */

/*   00 01 02 03 04              00 */
/*      11 12 13 14              10 11 */
/*         22 23 24              20 21 22 */
/*            33 34              30 31 32 33 */
/*               44              40 41 42 43 44 */

/*  Let TRANSR = 'N'. RFP holds AP as follows: */
/*  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
/*  three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
/*  the transpose of the first two columns of AP upper. */
/*  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
/*  three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
/*  the transpose of the last two columns of AP lower. */
/*  This covers the case N odd and TRANSR = 'N'. */

/*         RFP A                   RFP A */

/*        02 03 04                00 33 43 */
/*        12 13 14                10 11 44 */
/*        22 23 24                20 21 22 */
/*        00 33 34                30 31 32 */
/*        01 11 44                40 41 42 */

/*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
/*  transpose of RFP A above. One therefore gets: */

/*           RFP A                   RFP A */

/*     02 12 22 00 01             00 10 20 30 40 50 */
/*     03 13 23 33 11             33 11 21 31 41 51 */
/*     04 14 24 34 44             43 44 22 32 42 52 */

/*  ===================================================================== */

/*     Test the input parameters. */

    *info = 0;
    normaltransr = lsame_(transr, "N");
    lower = lsame_(uplo, "L");
    if (! normaltransr && ! lsame_(transr, "T")) {
	*info = -1;
    } else if (! lower && ! lsame_(uplo, "U")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DPFTRF", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     If N is odd, set NISODD = .TRUE. */
/*     If N is even, set K = N/2 and NISODD = .FALSE. */

    if (*n % 2 == 0) {
	k = *n / 2;
	nisodd = FALSE_;
    } else {
	nisodd = TRUE_;
    }

/*     Set N1 and N2 depending on LOWER */

    if (lower) {
	n2 = *n / 2;
	n1 = *n - n2;
    } else {
	n1 = *n / 2;
	n2 = *n - n1;
    }

/*     start execution: there are eight cases */

    if (nisodd) {

/*        N is odd */

	if (normaltransr) {

/*           N is odd and TRANSR = 'N' */

	    if (lower) {

/*             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */
/*             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */
/*             T1 -> a(0), T2 -> a(n), S -> a(n1) */

		dpotrf_("L", &n1, a, n, info);
		if (*info > 0) {
		    return 0;
		}
		dtrsm_("R", "L", "T", "N", &n2, &n1, &c_b12, a, n, &a[n1], n);
		dsyrk_("U", "N", &n2, &n1, &c_b15, &a[n1], n, &c_b12, &a[*n], 
			n);
		dpotrf_("U", &n2, &a[*n], n, info);
		if (*info > 0) {
		    *info += n1;
		}

	    } else {

/*             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */
/*             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */
/*             T1 -> a(n2), T2 -> a(n1), S -> a(0) */

		dpotrf_("L", &n1, &a[n2], n, info);
		if (*info > 0) {
		    return 0;
		}
		dtrsm_("L", "L", "N", "N", &n1, &n2, &c_b12, &a[n2], n, a, n);
		dsyrk_("U", "T", &n2, &n1, &c_b15, a, n, &c_b12, &a[n1], n);
		dpotrf_("U", &n2, &a[n1], n, info);
		if (*info > 0) {
		    *info += n1;
		}

	    }

	} else {

/*           N is odd and TRANSR = 'T' */

	    if (lower) {

/*              SRPA for LOWER, TRANSPOSE and N is odd */
/*              T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) */
/*              T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1 */

		dpotrf_("U", &n1, a, &n1, info);
		if (*info > 0) {
		    return 0;
		}
		dtrsm_("L", "U", "T", "N", &n1, &n2, &c_b12, a, &n1, &a[n1 * 
			n1], &n1);
		dsyrk_("L", "T", &n2, &n1, &c_b15, &a[n1 * n1], &n1, &c_b12, &
			a[1], &n1);
		dpotrf_("L", &n2, &a[1], &n1, info);
		if (*info > 0) {
		    *info += n1;
		}

	    } else {

/*              SRPA for UPPER, TRANSPOSE and N is odd */
/*              T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) */
/*              T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2 */

		dpotrf_("U", &n1, &a[n2 * n2], &n2, info);
		if (*info > 0) {
		    return 0;
		}
		dtrsm_("R", "U", "N", "N", &n2, &n1, &c_b12, &a[n2 * n2], &n2, 
			 a, &n2);
		dsyrk_("L", "N", &n2, &n1, &c_b15, a, &n2, &c_b12, &a[n1 * n2]
, &n2);
		dpotrf_("L", &n2, &a[n1 * n2], &n2, info);
		if (*info > 0) {
		    *info += n1;
		}

	    }

	}

    } else {

/*        N is even */

	if (normaltransr) {

/*           N is even and TRANSR = 'N' */

	    if (lower) {

/*              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
/*              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
/*              T1 -> a(1), T2 -> a(0), S -> a(k+1) */

		i__1 = *n + 1;
		dpotrf_("L", &k, &a[1], &i__1, info);
		if (*info > 0) {
		    return 0;
		}
		i__1 = *n + 1;
		i__2 = *n + 1;
		dtrsm_("R", "L", "T", "N", &k, &k, &c_b12, &a[1], &i__1, &a[k 
			+ 1], &i__2);
		i__1 = *n + 1;
		i__2 = *n + 1;
		dsyrk_("U", "N", &k, &k, &c_b15, &a[k + 1], &i__1, &c_b12, a, 
			&i__2);
		i__1 = *n + 1;
		dpotrf_("U", &k, a, &i__1, info);
		if (*info > 0) {
		    *info += k;
		}

	    } else {

/*              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
/*              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0) */
/*              T1 -> a(k+1), T2 -> a(k), S -> a(0) */

		i__1 = *n + 1;
		dpotrf_("L", &k, &a[k + 1], &i__1, info);
		if (*info > 0) {
		    return 0;
		}
		i__1 = *n + 1;
		i__2 = *n + 1;
		dtrsm_("L", "L", "N", "N", &k, &k, &c_b12, &a[k + 1], &i__1, 
			a, &i__2);
		i__1 = *n + 1;
		i__2 = *n + 1;
		dsyrk_("U", "T", &k, &k, &c_b15, a, &i__1, &c_b12, &a[k], &
			i__2);
		i__1 = *n + 1;
		dpotrf_("U", &k, &a[k], &i__1, info);
		if (*info > 0) {
		    *info += k;
		}

	    }

	} else {

/*           N is even and TRANSR = 'T' */

	    if (lower) {

/*              SRPA for LOWER, TRANSPOSE and N is even (see paper) */
/*              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1) */
/*              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */

		dpotrf_("U", &k, &a[k], &k, info);
		if (*info > 0) {
		    return 0;
		}
		dtrsm_("L", "U", "T", "N", &k, &k, &c_b12, &a[k], &n1, &a[k * 
			(k + 1)], &k);
		dsyrk_("L", "T", &k, &k, &c_b15, &a[k * (k + 1)], &k, &c_b12, 
			a, &k);
		dpotrf_("L", &k, a, &k, info);
		if (*info > 0) {
		    *info += k;
		}

	    } else {

/*              SRPA for UPPER, TRANSPOSE and N is even (see paper) */
/*              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0) */
/*              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */

		dpotrf_("U", &k, &a[k * (k + 1)], &k, info);
		if (*info > 0) {
		    return 0;
		}
		dtrsm_("R", "U", "N", "N", &k, &k, &c_b12, &a[k * (k + 1)], &
			k, a, &k);
		dsyrk_("L", "N", &k, &k, &c_b15, a, &k, &c_b12, &a[k * k], &k);
		dpotrf_("L", &k, &a[k * k], &k, info);
		if (*info > 0) {
		    *info += k;
		}

	    }

	}

    }

    return 0;

/*     End of DPFTRF */

} /* dpftrf_ */
示例#19
0
文件: scsl_blas.c 项目: jackd/FVMPor
void dtrsm(char* side, char* uplo, char* transa, char* diag, int m, int n, double alpha, double* a, int lda, double* b, int ldb) {
    dtrsm_(side, uplo, transa, diag, &m, &n, &alpha, a, &lda, b, &ldb);
}
示例#20
0
int main( int argc, char** argv )
{
    obj_t a, b, c;
    obj_t x, y;
    obj_t alpha, beta;
    dim_t m;
    num_t dt_a, dt_b, dt_c;
    num_t dt_alpha, dt_beta;
    int   ii;

#ifdef NBLIS
    bli_init();
#endif


    m = 4000;

    dt_a = BLIS_DOUBLE;
    dt_b = BLIS_DOUBLE;
    dt_c = BLIS_DOUBLE;
    dt_alpha = BLIS_DOUBLE;
    dt_beta = BLIS_DOUBLE;

    {


#ifdef NBLIS
        bli_obj_create( dt_alpha, 1, 1, 0, 0, &alpha );
        bli_obj_create( dt_beta,  1, 1, 0, 0, &beta );

        bli_obj_create( dt_a, m, 1, 0, 0, &x );
        bli_obj_create( dt_a, m, 1, 0, 0, &y );

        bli_obj_create( dt_a, m, m, 0, 0, &a );
        bli_obj_create( dt_b, m, m, 0, 0, &b );
        bli_obj_create( dt_c, m, m, 0, 0, &c );

        bli_randm( &a );
        bli_randm( &b );
        bli_randm( &c );

        bli_setsc(  (2.0/1.0), 0.0, &alpha );
        bli_setsc( -(1.0/1.0), 0.0, &beta );

#endif

#ifdef NBLAS
        x.buffer     = malloc( m * 1 * sizeof( double ) );
        y.buffer     = malloc( m * 1 * sizeof( double ) );

        alpha.buffer = malloc( 1 * sizeof( double ) );
        beta.buffer  = malloc( 1 * sizeof( double ) );
        a.buffer     = malloc( m * m * sizeof( double ) );
        a.m          = m;
        a.n          = m;
        a.cs         = m;
        b.buffer     = malloc( m * m * sizeof( double ) );
        b.m          = m;
        b.n          = m;
        b.cs         = m;
        c.buffer     = malloc( m * m * sizeof( double ) );
        c.m          = m;
        c.n          = m;
        c.cs         = m;

        *((double*)alpha.buffer) =  2.0;
        *((double*)beta.buffer)  = -1.0;
#endif


#ifdef NBLIS

#if NBLIS >= 1
        for ( ii = 0; ii < 2000000000; ++ii )
        {
            bli_gemm( &BLIS_ONE,
                      &a,
                      &b,
                      &BLIS_ONE,
                      &c );
        }
#endif

#if NBLIS >= 2
        {
            bli_hemm( BLIS_LEFT,
                      &BLIS_ONE,
                      &a,
                      &b,
                      &BLIS_ONE,
                      &c );
        }
#endif

#if NBLIS >= 3
        {
            bli_herk( &BLIS_ONE,
                      &a,
                      &BLIS_ONE,
                      &c );
        }
#endif

#if NBLIS >= 4
        {
            bli_her2k( &BLIS_ONE,
                       &a,
                       &b,
                       &BLIS_ONE,
                       &c );
        }
#endif

#if NBLIS >= 5
        {
            bli_trmm( BLIS_LEFT,
                      &BLIS_ONE,
                      &a,
                      &c );
        }
#endif

#if NBLIS >= 6
        {
            bli_trsm( BLIS_LEFT,
                      &BLIS_ONE,
                      &a,
                      &c );
        }
#endif

#endif



#ifdef NBLAS

#if NBLAS >= 1
        for ( ii = 0; ii < 2000000000; ++ii )
        {
            f77_char transa = 'N';
            f77_char transb = 'N';
            f77_int  mm     = bli_obj_length( c );
            f77_int  kk     = bli_obj_width_after_trans( a );
            f77_int  nn     = bli_obj_width( c );
            f77_int  lda    = bli_obj_col_stride( a );
            f77_int  ldb    = bli_obj_col_stride( b );
            f77_int  ldc    = bli_obj_col_stride( c );
            double*  alphap = bli_obj_buffer( alpha );
            double*  ap     = bli_obj_buffer( a );
            double*  bp     = bli_obj_buffer( b );
            double*  betap  = bli_obj_buffer( beta );
            double*  cp     = bli_obj_buffer( c );

            dgemm_( &transa,
                    &transb,
                    &mm,
                    &nn,
                    &kk,
                    alphap,
                    ap, &lda,
                    bp, &ldb,
                    betap,
                    cp, &ldc );
        }
#endif

#if NBLAS >= 2
        {
            f77_char side   = 'L';
            f77_char uplo   = 'L';
            f77_int  mm     = bli_obj_length( c );
            f77_int  nn     = bli_obj_width( c );
            f77_int  lda    = bli_obj_col_stride( a );
            f77_int  ldb    = bli_obj_col_stride( b );
            f77_int  ldc    = bli_obj_col_stride( c );
            double*  alphap = bli_obj_buffer( alpha );
            double*  ap     = bli_obj_buffer( a );
            double*  bp     = bli_obj_buffer( b );
            double*  betap  = bli_obj_buffer( beta );
            double*  cp     = bli_obj_buffer( c );

            dsymm_( &side,
                    &uplo,
                    &mm,
                    &nn,
                    alphap,
                    ap, &lda,
                    bp, &ldb,
                    betap,
                    cp, &ldc );
        }
#endif

#if NBLAS >= 3
        {
            f77_char uplo   = 'L';
            f77_char trans  = 'N';
            f77_int  mm     = bli_obj_length( c );
            f77_int  kk     = bli_obj_width( a );
            f77_int  lda    = bli_obj_col_stride( a );
            f77_int  ldc    = bli_obj_col_stride( c );
            double*  alphap = bli_obj_buffer( alpha );
            double*  ap     = bli_obj_buffer( a );
            double*  betap  = bli_obj_buffer( beta );
            double*  cp     = bli_obj_buffer( c );

            dsyrk_( &uplo,
                    &trans,
                    &mm,
                    &kk,
                    alphap,
                    ap, &lda,
                    betap,
                    cp, &ldc );
        }
#endif

#if NBLAS >= 4
        {
            f77_char uplo   = 'L';
            f77_char trans  = 'N';
            f77_int  mm     = bli_obj_length( c );
            f77_int  kk     = bli_obj_width( a );
            f77_int  lda    = bli_obj_col_stride( a );
            f77_int  ldb    = bli_obj_col_stride( b );
            f77_int  ldc    = bli_obj_col_stride( c );
            double*  alphap = bli_obj_buffer( alpha );
            double*  ap     = bli_obj_buffer( a );
            double*  bp     = bli_obj_buffer( b );
            double*  betap  = bli_obj_buffer( beta );
            double*  cp     = bli_obj_buffer( c );

            dsyr2k_( &uplo,
                     &trans,
                     &mm,
                     &kk,
                     alphap,
                     ap, &lda,
                     bp, &ldb,
                     betap,
                     cp, &ldc );
        }
#endif

#if NBLAS >= 5
        {
            f77_char side   = 'L';
            f77_char uplo   = 'L';
            f77_char trans  = 'N';
            f77_char diag   = 'N';
            f77_int  mm     = bli_obj_length( c );
            f77_int  nn     = bli_obj_width( c );
            f77_int  lda    = bli_obj_col_stride( a );
            f77_int  ldc    = bli_obj_col_stride( c );
            double*  alphap = bli_obj_buffer( alpha );
            double*  ap     = bli_obj_buffer( a );
            double*  cp     = bli_obj_buffer( c );

            dtrmm_( &side,
                    &uplo,
                    &trans,
                    &diag,
                    &mm,
                    &nn,
                    alphap,
                    ap, &lda,
                    cp, &ldc );
        }
#endif

#if NBLAS >= 6
        {
            f77_char side   = 'L';
            f77_char uplo   = 'L';
            f77_char trans  = 'N';
            f77_char diag   = 'N';
            f77_int  mm     = bli_obj_length( c );
            f77_int  nn     = bli_obj_width( c );
            f77_int  lda    = bli_obj_col_stride( a );
            f77_int  ldc    = bli_obj_col_stride( c );
            double*  alphap = bli_obj_buffer( alpha );
            double*  ap     = bli_obj_buffer( a );
            double*  cp     = bli_obj_buffer( c );

            dtrsm_( &side,
                    &uplo,
                    &trans,
                    &diag,
                    &mm,
                    &nn,
                    alphap,
                    ap, &lda,
                    cp, &ldc );
        }
#endif

#if NBLAS >= 7
        {
            f77_char  transa = 'N';
            f77_char  transb = 'N';
            f77_int   mm     = bli_obj_length( c );
            f77_int   kk     = bli_obj_width_after_trans( a );
            f77_int   nn     = bli_obj_width( c );
            f77_int   lda    = bli_obj_col_stride( a );
            f77_int   ldb    = bli_obj_col_stride( b );
            f77_int   ldc    = bli_obj_col_stride( c );
            dcomplex* alphap = bli_obj_buffer( alpha );
            dcomplex* ap     = bli_obj_buffer( a );
            dcomplex* bp     = bli_obj_buffer( b );
            dcomplex* betap  = bli_obj_buffer( beta );
            dcomplex* cp     = bli_obj_buffer( c );

            zgemm_( &transa,
                    &transb,
                    &mm,
                    &nn,
                    &kk,
                    alphap,
                    ap, &lda,
                    bp, &ldb,
                    betap,
                    cp, &ldc );
        }
#endif

#if NBLAS >= 8
        {
            f77_char  side   = 'L';
            f77_char  uplo   = 'L';
            f77_int   mm     = bli_obj_length( c );
            f77_int   nn     = bli_obj_width( c );
            f77_int   lda    = bli_obj_col_stride( a );
            f77_int   ldb    = bli_obj_col_stride( b );
            f77_int   ldc    = bli_obj_col_stride( c );
            dcomplex* alphap = bli_obj_buffer( alpha );
            dcomplex* ap     = bli_obj_buffer( a );
            dcomplex* bp     = bli_obj_buffer( b );
            dcomplex* betap  = bli_obj_buffer( beta );
            dcomplex* cp     = bli_obj_buffer( c );

            zhemm_( &side,
                    &uplo,
                    &mm,
                    &nn,
                    alphap,
                    ap, &lda,
                    bp, &ldb,
                    betap,
                    cp, &ldc );
        }
#endif

#if NBLAS >= 9
        {
            f77_char  uplo   = 'L';
            f77_char  trans  = 'N';
            f77_int   mm     = bli_obj_length( c );
            f77_int   kk     = bli_obj_width( a );
            f77_int   lda    = bli_obj_col_stride( a );
            f77_int   ldc    = bli_obj_col_stride( c );
            double*   alphap = bli_obj_buffer( alpha );
            dcomplex* ap     = bli_obj_buffer( a );
            double*   betap  = bli_obj_buffer( beta );
            dcomplex* cp     = bli_obj_buffer( c );

            zherk_( &uplo,
                    &trans,
                    &mm,
                    &kk,
                    alphap,
                    ap, &lda,
                    betap,
                    cp, &ldc );
        }
#endif

#if NBLAS >= 10
        {
            f77_char  uplo   = 'L';
            f77_char  trans  = 'N';
            f77_int   mm     = bli_obj_length( c );
            f77_int   kk     = bli_obj_width( a );
            f77_int   lda    = bli_obj_col_stride( a );
            f77_int   ldb    = bli_obj_col_stride( b );
            f77_int   ldc    = bli_obj_col_stride( c );
            dcomplex* alphap = bli_obj_buffer( alpha );
            dcomplex* ap     = bli_obj_buffer( a );
            dcomplex* bp     = bli_obj_buffer( b );
            double*   betap  = bli_obj_buffer( beta );
            dcomplex* cp     = bli_obj_buffer( c );

            zher2k_( &uplo,
                     &trans,
                     &mm,
                     &kk,
                     alphap,
                     ap, &lda,
                     bp, &ldb,
                     betap,
                     cp, &ldc );
        }
#endif

#if NBLAS >= 11
        {
            f77_char  side   = 'L';
            f77_char  uplo   = 'L';
            f77_char  trans  = 'N';
            f77_char  diag   = 'N';
            f77_int   mm     = bli_obj_length( c );
            f77_int   nn     = bli_obj_width( c );
            f77_int   lda    = bli_obj_col_stride( a );
            f77_int   ldc    = bli_obj_col_stride( c );
            dcomplex* alphap = bli_obj_buffer( alpha );
            dcomplex* ap     = bli_obj_buffer( a );
            dcomplex* cp     = bli_obj_buffer( c );

            ztrmm_( &side,
                    &uplo,
                    &trans,
                    &diag,
                    &mm,
                    &nn,
                    alphap,
                    ap, &lda,
                    cp, &ldc );
        }
#endif

#if NBLAS >= 12
        {
            f77_char  side   = 'L';
            f77_char  uplo   = 'L';
            f77_char  trans  = 'N';
            f77_char  diag   = 'N';
            f77_int   mm     = bli_obj_length( c );
            f77_int   nn     = bli_obj_width( c );
            f77_int   lda    = bli_obj_col_stride( a );
            f77_int   ldc    = bli_obj_col_stride( c );
            dcomplex* alphap = bli_obj_buffer( alpha );
            dcomplex* ap     = bli_obj_buffer( a );
            dcomplex* cp     = bli_obj_buffer( c );

            ztrsm_( &side,
                    &uplo,
                    &trans,
                    &diag,
                    &mm,
                    &nn,
                    alphap,
                    ap, &lda,
                    cp, &ldc );
        }
#endif


#endif


#ifdef NBLIS
        bli_obj_free( &x );
        bli_obj_free( &y );

        bli_obj_free( &alpha );
        bli_obj_free( &beta );

        bli_obj_free( &a );
        bli_obj_free( &b );
        bli_obj_free( &c );
#endif

#ifdef NBLAS
        free( x.buffer );
        free( y.buffer );

        free( alpha.buffer );
        free( beta.buffer );

        free( a.buffer );
        free( b.buffer );
        free( c.buffer );
#endif
    }

#ifdef NBLIS
    bli_finalize();
#endif

    return 0;
}
示例#21
0
文件: dgerqs.c 项目: zangel/uquad
/* Subroutine */ int dgerqs_(integer *m, integer *n, integer *nrhs, 
	doublereal *a, integer *lda, doublereal *tau, doublereal *b, integer *
	ldb, doublereal *work, integer *lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1;

    /* Local variables */
    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *), dlaset_(
	    char *, integer *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *), xerbla_(char *, integer *), dormrq_(char *, char *, integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *, integer *);


#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]


/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    Compute a minimum-norm solution   
        min || A*X - B ||   
    using the RQ factorization   
        A = R*Q   
    computed by DGERQF.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A.  N >= M >= 0.   

    NRHS    (input) INTEGER   
            The number of columns of B.  NRHS >= 0.   

    A       (input) DOUBLE PRECISION array, dimension (LDA,N)   
            Details of the RQ factorization of the original matrix A as   
            returned by DGERQF.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= M.   

    TAU     (input) DOUBLE PRECISION array, dimension (M)   
            Details of the orthogonal matrix Q.   

    B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)   
            On entry, the right hand side vectors for the linear system.   
            On exit, the solution vectors X.  Each solution vector   
            is contained in rows 1:N of a column of B.   

    LDB     (input) INTEGER   
            The leading dimension of the array B. LDB >= max(1,N).   

    WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK)   

    LWORK   (input) INTEGER   
            The length of the array WORK.  LWORK must be at least NRHS,   
            and should be at least NRHS*NB, where NB is the block size   
            for this environment.   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --tau;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --work;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0 || *m > *n) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else if (*ldb < max(1,*n)) {
	*info = -8;
    } else if (*lwork < 1 || *lwork < *nrhs && *m > 0 && *n > 0) {
	*info = -10;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGERQS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0 || *m == 0) {
	return 0;
    }

/*     Solve R*X = B(n-m+1:n,:) */

    dtrsm_("Left", "Upper", "No transpose", "Non-unit", m, nrhs, &c_b7, &
	    a_ref(1, *n - *m + 1), lda, &b_ref(*n - *m + 1, 1), ldb);

/*     Set B(1:n-m,:) to zero */

    i__1 = *n - *m;
    dlaset_("Full", &i__1, nrhs, &c_b9, &c_b9, &b[b_offset], ldb);

/*     B := Q' * B */

    dormrq_("Left", "Transpose", n, nrhs, m, &a[a_offset], lda, &tau[1], &b[
	    b_offset], ldb, &work[1], lwork, info);

    return 0;

/*     End of DGERQS */

} /* dgerqs_ */
示例#22
0
文件: dgetrf.c 项目: 353/viewercv
/* Subroutine */ int dgetrf_(integer* m, integer* n, doublereal* a, integer *
                             lda, integer* ipiv, integer* info) {
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;

    /* Local variables */
    integer i__, j, jb, nb;
    extern /* Subroutine */ int dgemm_(char*, char*, integer*, integer*,
                                       integer*, doublereal*, doublereal*, integer*, doublereal*,
                                       integer*, doublereal*, doublereal*, integer*);
    integer iinfo;
    extern /* Subroutine */ int dtrsm_(char*, char*, char*, char*,
                                       integer*, integer*, doublereal*, doublereal*, integer*,
                                       doublereal*, integer*), dgetf2_(
                                           integer*, integer*, doublereal*, integer*, integer*, integer
                                           *), xerbla_(char*, integer*);
    extern integer ilaenv_(integer*, char*, char*, integer*, integer*,
                           integer*, integer*);
    extern /* Subroutine */ int dlaswp_(integer*, doublereal*, integer*,
                                        integer*, integer*, integer*, integer*);


    /*  -- LAPACK routine (version 3.1) -- */
    /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
    /*     November 2006 */

    /*     .. Scalar Arguments .. */
    /*     .. */
    /*     .. Array Arguments .. */
    /*     .. */

    /*  Purpose */
    /*  ======= */

    /*  DGETRF computes an LU factorization of a general M-by-N matrix A */
    /*  using partial pivoting with row interchanges. */

    /*  The factorization has the form */
    /*     A = P * L * U */
    /*  where P is a permutation matrix, L is lower triangular with unit */
    /*  diagonal elements (lower trapezoidal if m > n), and U is upper */
    /*  triangular (upper trapezoidal if m < n). */

    /*  This is the right-looking Level 3 BLAS version of the algorithm. */

    /*  Arguments */
    /*  ========= */

    /*  M       (input) INTEGER */
    /*          The number of rows of the matrix A.  M >= 0. */

    /*  N       (input) INTEGER */
    /*          The number of columns of the matrix A.  N >= 0. */

    /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
    /*          On entry, the M-by-N matrix to be factored. */
    /*          On exit, the factors L and U from the factorization */
    /*          A = P*L*U; the unit diagonal elements of L are not stored. */

    /*  LDA     (input) INTEGER */
    /*          The leading dimension of the array A.  LDA >= max(1,M). */

    /*  IPIV    (output) INTEGER array, dimension (min(M,N)) */
    /*          The pivot indices; for 1 <= i <= min(M,N), row i of the */
    /*          matrix was interchanged with row IPIV(i). */

    /*  INFO    (output) INTEGER */
    /*          = 0:  successful exit */
    /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
    /*          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization */
    /*                has been completed, but the factor U is exactly */
    /*                singular, and division by zero will occur if it is used */
    /*                to solve a system of equations. */

    /*  ===================================================================== */

    /*     .. Parameters .. */
    /*     .. */
    /*     .. Local Scalars .. */
    /*     .. */
    /*     .. External Subroutines .. */
    /*     .. */
    /*     .. External Functions .. */
    /*     .. */
    /*     .. Intrinsic Functions .. */
    /*     .. */
    /*     .. Executable Statements .. */

    /*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --ipiv;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
        *info = -1;
    } else if (*n < 0) {
        *info = -2;
    } else if (*lda < max(1, *m)) {
        *info = -4;
    }
    if (*info != 0) {
        i__1 = -(*info);
        xerbla_("DGETRF", &i__1);
        return 0;
    }

    /*     Quick return if possible */

    if (*m == 0 || *n == 0) {
        return 0;
    }

    /*     Determine the block size for this environment. */

    nb = ilaenv_(&c__1, "DGETRF", " ", m, n, &c_n1, &c_n1);
    if (nb <= 1 || nb >= min(*m, *n)) {

        /*        Use unblocked code. */

        dgetf2_(m, n, &a[a_offset], lda, &ipiv[1], info);
    } else {

        /*        Use blocked code. */

        i__1 = min(*m, *n);
        i__2 = nb;
        for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
            /* Computing MIN */
            i__3 = min(*m, *n) - j + 1;
            jb = min(i__3, nb);

            /*           Factor diagonal and subdiagonal blocks and test for exact */
            /*           singularity. */

            i__3 = *m - j + 1;
            dgetf2_(&i__3, &jb, &a[j + j * a_dim1], lda, &ipiv[j], &iinfo);

            /*           Adjust INFO and the pivot indices. */

            if (*info == 0 && iinfo > 0) {
                *info = iinfo + j - 1;
            }
            /* Computing MIN */
            i__4 = *m, i__5 = j + jb - 1;
            i__3 = min(i__4, i__5);
            for (i__ = j; i__ <= i__3; ++i__) {
                ipiv[i__] = j - 1 + ipiv[i__];
                /* L10: */
            }

            /*           Apply interchanges to columns 1:J-1. */

            i__3 = j - 1;
            i__4 = j + jb - 1;
            dlaswp_(&i__3, &a[a_offset], lda, &j, &i__4, &ipiv[1], &c__1);

            if (j + jb <= *n) {

                /*              Apply interchanges to columns J+JB:N. */

                i__3 = *n - j - jb + 1;
                i__4 = j + jb - 1;
                dlaswp_(&i__3, &a[(j + jb) * a_dim1 + 1], lda, &j, &i__4, &
                        ipiv[1], &c__1);

                /*              Compute block row of U. */

                i__3 = *n - j - jb + 1;
                dtrsm_("Left", "Lower", "No transpose", "Unit", &jb, &i__3, &
                       c_b16, &a[j + j * a_dim1], lda, &a[j + (j + jb) *
                               a_dim1], lda);
                if (j + jb <= *m) {

                    /*                 Update trailing submatrix. */

                    i__3 = *m - j - jb + 1;
                    i__4 = *n - j - jb + 1;
                    dgemm_("No transpose", "No transpose", &i__3, &i__4, &jb,
                           &c_b19, &a[j + jb + j * a_dim1], lda, &a[j + (j +
                                   jb) * a_dim1], lda, &c_b16, &a[j + jb + (j + jb) *
                                           a_dim1], lda);
                }
            }
            /* L20: */
        }
    }
    return 0;

    /*     End of DGETRF */

} /* dgetrf_ */
示例#23
0
/* Subroutine */ int dgeqls_(integer *m, integer *n, integer *nrhs, 
	doublereal *a, integer *lda, doublereal *tau, doublereal *b, integer *
	ldb, doublereal *work, integer *lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1;

    /* Local variables */
    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *), xerbla_(
	    char *, integer *), dormql_(char *, char *, integer *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, integer *);


/*  -- LAPACK routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  Solve the least squares problem */
/*      min || A*X - B || */
/*  using the QL factorization */
/*      A = Q*L */
/*  computed by DGEQLF. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  M >= N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of columns of B.  NRHS >= 0. */

/*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) */
/*          Details of the QL factorization of the original matrix A as */
/*          returned by DGEQLF. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= M. */

/*  TAU     (input) DOUBLE PRECISION array, dimension (N) */
/*          Details of the orthogonal matrix Q. */

/*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/*          On entry, the m-by-nrhs right hand side matrix B. */
/*          On exit, the n-by-nrhs solution matrix X, stored in rows */
/*          m-n+1:m. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B. LDB >= M. */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK) */

/*  LWORK   (input) INTEGER */
/*          The length of the array WORK.  LWORK must be at least NRHS, */
/*          and should be at least NRHS*NB, where NB is the block size */
/*          for this environment. */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --work;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0 || *n > *m) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else if (*ldb < max(1,*m)) {
	*info = -8;
    } else if (*lwork < 1 || *lwork < *nrhs && *m > 0 && *n > 0) {
	*info = -10;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGEQLS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0 || *m == 0) {
	return 0;
    }

/*     B := Q' * B */

    dormql_("Left", "Transpose", m, nrhs, n, &a[a_offset], lda, &tau[1], &b[
	    b_offset], ldb, &work[1], lwork, info);

/*     Solve L*X = B(m-n+1:m,:) */

    dtrsm_("Left", "Lower", "No transpose", "Non-unit", n, nrhs, &c_b9, &a[*m 
	    - *n + 1 + a_dim1], lda, &b[*m - *n + 1 + b_dim1], ldb);

    return 0;

/*     End of DGEQLS */

} /* dgeqls_ */
示例#24
0
/* Subroutine */ int dgbtrf_(integer *m, integer *n, integer *kl, integer *ku,
	 doublereal *ab, integer *ldab, integer *ipiv, integer *info)
{
/*  -- LAPACK routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    DGBTRF computes an LU factorization of a real m-by-n band matrix A   
    using partial pivoting with row interchanges.   

    This is the blocked version of the algorithm, calling Level 3 BLAS.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A.  N >= 0.   

    KL      (input) INTEGER   
            The number of subdiagonals within the band of A.  KL >= 0.   

    KU      (input) INTEGER   
            The number of superdiagonals within the band of A.  KU >= 0. 
  

    AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N)   
            On entry, the matrix A in band storage, in rows KL+1 to   
            2*KL+KU+1; rows 1 to KL of the array need not be set.   
            The j-th column of A is stored in the j-th column of the   
            array AB as follows:   
            AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)   

            On exit, details of the factorization: U is stored as an   
            upper triangular band matrix with KL+KU superdiagonals in   
            rows 1 to KL+KU+1, and the multipliers used during the   
            factorization are stored in rows KL+KU+2 to 2*KL+KU+1.   
            See below for further details.   

    LDAB    (input) INTEGER   
            The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.   

    IPIV    (output) INTEGER array, dimension (min(M,N))   
            The pivot indices; for 1 <= i <= min(M,N), row i of the   
            matrix was interchanged with row IPIV(i).   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -i, the i-th argument had an illegal value   
            > 0: if INFO = +i, U(i,i) is exactly zero. The factorization 
  
                 has been completed, but the factor U is exactly   
                 singular, and division by zero will occur if it is used 
  
                 to solve a system of equations.   

    Further Details   
    ===============   

    The band storage scheme is illustrated by the following example, when 
  
    M = N = 6, KL = 2, KU = 1:   

    On entry:                       On exit:   

        *    *    *    +    +    +       *    *    *   u14  u25  u36   
        *    *    +    +    +    +       *    *   u13  u24  u35  u46   
        *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56   
       a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66   
       a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *   
       a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *   

    VISArray elements marked * are not used by the routine; elements marked 
  
    + need not be set on entry, but are required by the routine to store 
  
    elements of U because of fill-in resulting from the row interchanges. 
  

    ===================================================================== 
  


       KV is the number of superdiagonals in the factor U, allowing for   
       fill-in   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c__65 = 65;
    static doublereal c_b18 = -1.;
    static doublereal c_b31 = 1.;
    
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6;
    doublereal d__1;
    /* Local variables */
    extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    static doublereal temp;
    static integer i, j;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *), dgemm_(char *, char *, integer *, integer *, integer *
	    , doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *), dcopy_(
	    integer *, doublereal *, integer *, doublereal *, integer *), 
	    dswap_(integer *, doublereal *, integer *, doublereal *, integer *
	    );
    static doublereal work13[4160]	/* was [65][64] */, work31[4160]	
	    /* was [65][64] */;
    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *);
    static integer i2, i3, j2, j3, k2;
    extern /* Subroutine */ int dgbtf2_(integer *, integer *, integer *, 
	    integer *, doublereal *, integer *, integer *, integer *);
    static integer jb, nb, ii, jj, jm, ip, jp, km, ju, kv;
    extern integer idamax_(integer *, doublereal *, integer *);
    static integer nw;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int dlaswp_(integer *, doublereal *, integer *, 
	    integer *, integer *, integer *, integer *);



#define WORK13(I) work13[(I)]
#define WAS(I) was[(I)]
#define IPIV(I) ipiv[(I)-1]

#define AB(I,J) ab[(I)-1 + ((J)-1)* ( *ldab)]

    kv = *ku + *kl;

/*     Test the input parameters. */

    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*kl < 0) {
	*info = -3;
    } else if (*ku < 0) {
	*info = -4;
    } else if (*ldab < *kl + kv + 1) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGBTRF", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0) {
	return 0;
    }

/*     Determine the block size for this environment */

    nb = ilaenv_(&c__1, "DGBTRF", " ", m, n, kl, ku, 6L, 1L);

/*     The block size must not exceed the limit set by the size of the   
       local arrays WORK13 and WORK31. */

    nb = min(nb,64);

    if (nb <= 1 || nb > *kl) {

/*        Use unblocked code */

	dgbtf2_(m, n, kl, ku, &AB(1,1), ldab, &IPIV(1), info);
    } else {

/*        Use blocked code   

          Zero the superdiagonal elements of the work array WORK13 */

	i__1 = nb;
	for (j = 1; j <= nb; ++j) {
	    i__2 = j - 1;
	    for (i = 1; i <= j-1; ++i) {
		WORK13(i + j * 65 - 66) = 0.;
/* L10: */
	    }
/* L20: */
	}

/*        Zero the subdiagonal elements of the work array WORK31 */

	i__1 = nb;
	for (j = 1; j <= nb; ++j) {
	    i__2 = nb;
	    for (i = j + 1; i <= nb; ++i) {
		work31[i + j * 65 - 66] = 0.;
/* L30: */
	    }
/* L40: */
	}

/*        Gaussian elimination with partial pivoting   

          Set fill-in elements in columns KU+2 to KV to zero */

	i__1 = min(kv,*n);
	for (j = *ku + 2; j <= min(kv,*n); ++j) {
	    i__2 = *kl;
	    for (i = kv - j + 2; i <= *kl; ++i) {
		AB(i,j) = 0.;
/* L50: */
	    }
/* L60: */
	}

/*        JU is the index of the last column affected by the current 
  
          stage of the factorization */

	ju = 1;

	i__1 = min(*m,*n);
	i__2 = nb;
	for (j = 1; nb < 0 ? j >= min(*m,*n) : j <= min(*m,*n); j += nb) {
/* Computing MIN */
	    i__3 = nb, i__4 = min(*m,*n) - j + 1;
	    jb = min(i__3,i__4);

/*           The active part of the matrix is partitioned   

                A11   A12   A13   
                A21   A22   A23   
                A31   A32   A33   

             Here A11, A21 and A31 denote the current block of JB 
columns   
             which is about to be factorized. The number of rows i
n the   
             partitioning are JB, I2, I3 respectively, and the num
bers   
             of columns are JB, J2, J3. The superdiagonal elements
 of A13   
             and the subdiagonal elements of A31 lie outside the b
and.   

   Computing MIN */
	    i__3 = *kl - jb, i__4 = *m - j - jb + 1;
	    i2 = min(i__3,i__4);
/* Computing MIN */
	    i__3 = jb, i__4 = *m - j - *kl + 1;
	    i3 = min(i__3,i__4);

/*           J2 and J3 are computed after JU has been updated.   

             Factorize the current block of JB columns */

	    i__3 = j + jb - 1;
	    for (jj = j; jj <= j+jb-1; ++jj) {

/*              Set fill-in elements in column JJ+KV to zero 
*/

		if (jj + kv <= *n) {
		    i__4 = *kl;
		    for (i = 1; i <= *kl; ++i) {
			AB(i,jj+kv) = 0.;
/* L70: */
		    }
		}

/*              Find pivot and test for singularity. KM is the
 number of   
                subdiagonal elements in the current column.   

   Computing MIN */
		i__4 = *kl, i__5 = *m - jj;
		km = min(i__4,i__5);
		i__4 = km + 1;
		jp = idamax_(&i__4, &AB(kv+1,jj), &c__1);
		IPIV(jj) = jp + jj - j;
		if (AB(kv+jp,jj) != 0.) {
/* Computing MAX   
   Computing MIN */
		    i__6 = jj + *ku + jp - 1;
		    i__4 = ju, i__5 = min(i__6,*n);
		    ju = max(i__4,i__5);
		    if (jp != 1) {

/*                    Apply interchange to columns J t
o J+JB-1 */

			if (jp + jj - 1 < j + *kl) {

			    i__4 = *ldab - 1;
			    i__5 = *ldab - 1;
			    dswap_(&jb, &AB(kv+1+jj-j,j), &
				    i__4, &AB(kv+jp+jj-j,j),
				     &i__5);
			} else {

/*                       The interchange affects c
olumns J to JJ-1 of A31   
                         which are stored in the w
ork array WORK31 */

			    i__4 = jj - j;
			    i__5 = *ldab - 1;
			    dswap_(&i__4, &AB(kv+1+jj-j,j), 
				    &i__5, &work31[jp + jj - j - *kl - 1], &
				    c__65);
			    i__4 = j + jb - jj;
			    i__5 = *ldab - 1;
			    i__6 = *ldab - 1;
			    dswap_(&i__4, &AB(kv+1,jj), &i__5, &
				    AB(kv+jp,jj), &i__6);
			}
		    }

/*                 Compute multipliers */

		    d__1 = 1. / AB(kv+1,jj);
		    dscal_(&km, &d__1, &AB(kv+2,jj), &c__1);

/*                 Update trailing submatrix within the ba
nd and within   
                   the current block. JM is the index of t
he last column   
                   which needs to be updated.   

   Computing MIN */
		    i__4 = ju, i__5 = j + jb - 1;
		    jm = min(i__4,i__5);
		    if (jm > jj) {
			i__4 = jm - jj;
			i__5 = *ldab - 1;
			i__6 = *ldab - 1;
			dger_(&km, &i__4, &c_b18, &AB(kv+2,jj), 
				&c__1, &AB(kv,jj+1), &i__5, &
				AB(kv+1,jj+1), &i__6);
		    }
		} else {

/*                 If pivot is zero, set INFO to the index
 of the pivot   
                   unless a zero pivot has already been fo
und. */

		    if (*info == 0) {
			*info = jj;
		    }
		}

/*              Copy current column of A31 into the work array
 WORK31   

   Computing MIN */
		i__4 = jj - j + 1;
		nw = min(i__4,i3);
		if (nw > 0) {
		    dcopy_(&nw, &AB(kv+*kl+1-jj+j,jj), &
			    c__1, &work31[(jj - j + 1) * 65 - 65], &c__1);
		}
/* L80: */
	    }
	    if (j + jb <= *n) {

/*              Apply the row interchanges to the other blocks
.   

   Computing MIN */
		i__3 = ju - j + 1;
		j2 = min(i__3,kv) - jb;
/* Computing MAX */
		i__3 = 0, i__4 = ju - j - kv + 1;
		j3 = max(i__3,i__4);

/*              Use DLASWP to apply the row interchanges to A1
2, A22, and   
                A32. */

		i__3 = *ldab - 1;
		dlaswp_(&j2, &AB(kv+1-jb,j+jb), &i__3, &
			c__1, &jb, &IPIV(j), &c__1);

/*              Adjust the pivot indices. */

		i__3 = j + jb - 1;
		for (i = j; i <= j+jb-1; ++i) {
		    IPIV(i) = IPIV(i) + j - 1;
/* L90: */
		}

/*              Apply the row interchanges to A13, A23, and A3
3   
                columnwise. */

		k2 = j - 1 + jb + j2;
		i__3 = j3;
		for (i = 1; i <= j3; ++i) {
		    jj = k2 + i;
		    i__4 = j + jb - 1;
		    for (ii = j + i - 1; ii <= j+jb-1; ++ii) {
			ip = IPIV(ii);
			if (ip != ii) {
			    temp = AB(kv+1+ii-jj,jj);
			    AB(kv+1+ii-jj,jj) = AB(kv+1+ip-jj,jj);
			    AB(kv+1+ip-jj,jj) = temp;
			}
/* L100: */
		    }
/* L110: */
		}

/*              Update the relevant part of the trailing subma
trix */

		if (j2 > 0) {

/*                 Update A12 */

		    i__3 = *ldab - 1;
		    i__4 = *ldab - 1;
		    dtrsm_("Left", "Lower", "No transpose", "Unit", &jb, &j2, 
			    &c_b31, &AB(kv+1,j), &i__3, &AB(kv+1-jb,j+jb), &i__4);

		    if (i2 > 0) {

/*                    Update A22 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			i__5 = *ldab - 1;
			dgemm_("No transpose", "No transpose", &i2, &j2, &jb, 
				&c_b18, &AB(kv+1+jb,j), &i__3,
				 &AB(kv+1-jb,j+jb), &i__4,
				 &c_b31, &AB(kv+1,j+jb), &
				i__5);
		    }

		    if (i3 > 0) {

/*                    Update A32 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			dgemm_("No transpose", "No transpose", &i3, &j2, &jb, 
				&c_b18, work31, &c__65, &AB(kv+1-jb,j+jb), &i__3, &c_b31, &AB(kv+*kl+1-jb,j+jb), &i__4);
		    }
		}

		if (j3 > 0) {

/*                 Copy the lower triangle of A13 into the
 work array   
                   WORK13 */

		    i__3 = j3;
		    for (jj = 1; jj <= j3; ++jj) {
			i__4 = jb;
			for (ii = jj; ii <= jb; ++ii) {
			    WORK13(ii + jj * 65 - 66) = AB(ii-jj+1,jj+j+kv-1);
/* L120: */
			}
/* L130: */
		    }

/*                 Update A13 in the work array */

		    i__3 = *ldab - 1;
		    dtrsm_("Left", "Lower", "No transpose", "Unit", &jb, &j3, 
			    &c_b31, &AB(kv+1,j), &i__3, work13, 
			    &c__65);

		    if (i2 > 0) {

/*                    Update A23 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			dgemm_("No transpose", "No transpose", &i2, &j3, &jb, 
				&c_b18, &AB(kv+1+jb,j), &i__3,
				 work13, &c__65, &c_b31, &AB(jb+1,j+kv), &i__4);
		    }

		    if (i3 > 0) {

/*                    Update A33 */

			i__3 = *ldab - 1;
			dgemm_("No transpose", "No transpose", &i3, &j3, &jb, 
				&c_b18, work31, &c__65, work13, &c__65, &
				c_b31, &AB(*kl+1,j+kv), &
				i__3);
		    }

/*                 Copy the lower triangle of A13 back int
o place */

		    i__3 = j3;
		    for (jj = 1; jj <= j3; ++jj) {
			i__4 = jb;
			for (ii = jj; ii <= jb; ++ii) {
			    AB(ii-jj+1,jj+j+kv-1) = 
				    WORK13(ii + jj * 65 - 66);
/* L140: */
			}
/* L150: */
		    }
		}
	    } else {

/*              Adjust the pivot indices. */

		i__3 = j + jb - 1;
		for (i = j; i <= j+jb-1; ++i) {
		    IPIV(i) = IPIV(i) + j - 1;
/* L160: */
		}
	    }

/*           Partially undo the interchanges in the current block 
to   
             restore the upper triangular form of A31 and copy the
 upper   
             triangle of A31 back into place */

	    i__3 = j;
	    for (jj = j + jb - 1; jj >= j; --jj) {
		jp = IPIV(jj) - jj + 1;
		if (jp != 1) {

/*                 Apply interchange to columns J to JJ-1 
*/

		    if (jp + jj - 1 < j + *kl) {

/*                    The interchange does not affect 
A31 */

			i__4 = jj - j;
			i__5 = *ldab - 1;
			i__6 = *ldab - 1;
			dswap_(&i__4, &AB(kv+1+jj-j,j), &
				i__5, &AB(kv+jp+jj-j,j), &
				i__6);
		    } else {

/*                    The interchange does affect A31 
*/

			i__4 = jj - j;
			i__5 = *ldab - 1;
			dswap_(&i__4, &AB(kv+1+jj-j,j), &
				i__5, &work31[jp + jj - j - *kl - 1], &c__65);
		    }
		}

/*              Copy the current column of A31 back into place
   

   Computing MIN */
		i__4 = i3, i__5 = jj - j + 1;
		nw = min(i__4,i__5);
		if (nw > 0) {
		    dcopy_(&nw, &work31[(jj - j + 1) * 65 - 65], &c__1, &AB(kv+*kl+1-jj+j,jj), &c__1);
		}
/* L170: */
	    }
/* L180: */
	}
    }

    return 0;

/*     End of DGBTRF */

} /* dgbtrf_ */
示例#25
0
/* Subroutine */ int dgelsx_(integer *m, integer *n, integer *nrhs, 
	doublereal *a, integer *lda, doublereal *b, integer *ldb, integer *
	jpvt, doublereal *rcond, integer *rank, doublereal *work, integer *
	info)
{
/*  -- LAPACK driver routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    DGELSX computes the minimum-norm solution to a real linear least   
    squares problem:   
        minimize || A * X - B ||   
    using a complete orthogonal factorization of A.  A is an M-by-N   
    matrix which may be rank-deficient.   

    Several right hand side vectors b and solution vectors x can be   
    handled in a single call; they are stored as the columns of the   
    M-by-NRHS right hand side matrix B and the N-by-NRHS solution   
    matrix X.   

    The routine first computes a QR factorization with column pivoting:   
        A * P = Q * [ R11 R12 ]   
                    [  0  R22 ]   
    with R11 defined as the largest leading submatrix whose estimated   
    condition number is less than 1/RCOND.  The order of R11, RANK,   
    is the effective rank of A.   

    Then, R22 is considered to be negligible, and R12 is annihilated   
    by orthogonal transformations from the right, arriving at the   
    complete orthogonal factorization:   
       A * P = Q * [ T11 0 ] * Z   
                   [  0  0 ]   
    The minimum-norm solution is then   
       X = P * Z' [ inv(T11)*Q1'*B ]   
                  [        0       ]   
    where Q1 consists of the first RANK columns of Q.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A.  N >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of   
            columns of matrices B and X. NRHS >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the M-by-N matrix A.   
            On exit, A has been overwritten by details of its   
            complete orthogonal factorization.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,M).   

    B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)   
            On entry, the M-by-NRHS right hand side matrix B.   
            On exit, the N-by-NRHS solution matrix X.   
            If m >= n and RANK = n, the residual sum-of-squares for   
            the solution in the i-th column is given by the sum of   
            squares of elements N+1:M in that column.   

    LDB     (input) INTEGER   
            The leading dimension of the array B. LDB >= max(1,M,N).   

    JPVT    (input/output) INTEGER array, dimension (N)   
            On entry, if JPVT(i) .ne. 0, the i-th column of A is an   
            initial column, otherwise it is a free column.  Before   
            the QR factorization of A, all initial columns are   
            permuted to the leading positions; only the remaining   
            free columns are moved as a result of column pivoting   
            during the factorization.   
            On exit, if JPVT(i) = k, then the i-th column of A*P   
            was the k-th column of A.   

    RCOND   (input) DOUBLE PRECISION   
            RCOND is used to determine the effective rank of A, which   
            is defined as the order of the largest leading triangular   
            submatrix R11 in the QR factorization with pivoting of A,   
            whose estimated condition number < 1/RCOND.   

    RANK    (output) INTEGER   
            The effective rank of A, i.e., the order of the submatrix   
            R11.  This is the same as the order of the submatrix T11   
            in the complete orthogonal factorization of A.   

    WORK    (workspace) DOUBLE PRECISION array, dimension   
                        (max( min(M,N)+3*N, 2*min(M,N)+NRHS )),   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    ===================================================================== 
  


    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__0 = 0;
    static doublereal c_b13 = 0.;
    static integer c__2 = 2;
    static integer c__1 = 1;
    static doublereal c_b36 = 1.;
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
    doublereal d__1;
    /* Local variables */
    static doublereal anrm, bnrm, smin, smax;
    static integer i, j, k, iascl, ibscl, ismin, ismax;
    static doublereal c1, c2;
    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *), dlaic1_(
	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *);
    static doublereal s1, s2, t1, t2;
    extern /* Subroutine */ int dorm2r_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *), dlabad_(
	    doublereal *, doublereal *);
    extern doublereal dlamch_(char *), dlange_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *);
    static integer mn;
    extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *), dgeqpf_(integer *, integer *, 
	    doublereal *, integer *, integer *, doublereal *, doublereal *, 
	    integer *), dlaset_(char *, integer *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *), xerbla_(char *, 
	    integer *);
    static doublereal bignum;
    extern /* Subroutine */ int dlatzm_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *,
	     integer *, doublereal *);
    static doublereal sminpr, smaxpr, smlnum;
    extern /* Subroutine */ int dtzrqf_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *);



#define JPVT(I) jpvt[(I)-1]
#define WORK(I) work[(I)-1]

#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]
#define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)]

    mn = min(*m,*n);
    ismin = mn + 1;
    ismax = (mn << 1) + 1;

/*     Test the input arguments. */

    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = max(1,*m);
	if (*ldb < max(i__1,*n)) {
	    *info = -7;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGELSX", &i__1);
	return 0;
    }

/*     Quick return if possible   

   Computing MIN */
    i__1 = min(*m,*n);
    if (min(i__1,*nrhs) == 0) {
	*rank = 0;
	return 0;
    }

/*     Get machine parameters */

    smlnum = dlamch_("S") / dlamch_("P");
    bignum = 1. / smlnum;
    dlabad_(&smlnum, &bignum);

/*     Scale A, B if max elements outside range [SMLNUM,BIGNUM] */

    anrm = dlange_("M", m, n, &A(1,1), lda, &WORK(1));
    iascl = 0;
    if (anrm > 0. && anrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &A(1,1), lda, 
		info);
	iascl = 1;
    } else if (anrm > bignum) {

/*        Scale matrix norm down to BIGNUM */

	dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &A(1,1), lda, 
		info);
	iascl = 2;
    } else if (anrm == 0.) {

/*        VISMatrix all zero. Return zero solution. */

	i__1 = max(*m,*n);
	dlaset_("F", &i__1, nrhs, &c_b13, &c_b13, &B(1,1), ldb);
	*rank = 0;
	goto L100;
    }

    bnrm = dlange_("M", m, nrhs, &B(1,1), ldb, &WORK(1));
    ibscl = 0;
    if (bnrm > 0. && bnrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &B(1,1), ldb,
		 info);
	ibscl = 1;
    } else if (bnrm > bignum) {

/*        Scale matrix norm down to BIGNUM */

	dlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &B(1,1), ldb,
		 info);
	ibscl = 2;
    }

/*     Compute QR factorization with column pivoting of A:   
          A * P = Q * R */

    dgeqpf_(m, n, &A(1,1), lda, &JPVT(1), &WORK(1), &WORK(mn + 1), info);

/*     workspace 3*N. Details of Householder rotations stored   
       in WORK(1:MN).   

       Determine RANK using incremental condition estimation */

    WORK(ismin) = 1.;
    WORK(ismax) = 1.;
    smax = (d__1 = A(1,1), abs(d__1));
    smin = smax;
    if ((d__1 = A(1,1), abs(d__1)) == 0.) {
	*rank = 0;
	i__1 = max(*m,*n);
	dlaset_("F", &i__1, nrhs, &c_b13, &c_b13, &B(1,1), ldb);
	goto L100;
    } else {
	*rank = 1;
    }

L10:
    if (*rank < mn) {
	i = *rank + 1;
	dlaic1_(&c__2, rank, &WORK(ismin), &smin, &A(1,i), &A(i,i), &sminpr, &s1, &c1);
	dlaic1_(&c__1, rank, &WORK(ismax), &smax, &A(1,i), &A(i,i), &smaxpr, &s2, &c2);

	if (smaxpr * *rcond <= sminpr) {
	    i__1 = *rank;
	    for (i = 1; i <= *rank; ++i) {
		WORK(ismin + i - 1) = s1 * WORK(ismin + i - 1);
		WORK(ismax + i - 1) = s2 * WORK(ismax + i - 1);
/* L20: */
	    }
	    WORK(ismin + *rank) = c1;
	    WORK(ismax + *rank) = c2;
	    smin = sminpr;
	    smax = smaxpr;
	    ++(*rank);
	    goto L10;
	}
    }

/*     Logically partition R = [ R11 R12 ]   
                               [  0  R22 ]   
       where R11 = R(1:RANK,1:RANK)   

       [R11,R12] = [ T11, 0 ] * Y */

    if (*rank < *n) {
	dtzrqf_(rank, n, &A(1,1), lda, &WORK(mn + 1), info);
    }

/*     Details of Householder rotations stored in WORK(MN+1:2*MN)   

       B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */

    dorm2r_("Left", "Transpose", m, nrhs, &mn, &A(1,1), lda, &WORK(1), &
	    B(1,1), ldb, &WORK((mn << 1) + 1), info);

/*     workspace NRHS   

       B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */

    dtrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b36, &
	    A(1,1), lda, &B(1,1), ldb);

    i__1 = *n;
    for (i = *rank + 1; i <= *n; ++i) {
	i__2 = *nrhs;
	for (j = 1; j <= *nrhs; ++j) {
	    B(i,j) = 0.;
/* L30: */
	}
/* L40: */
    }

/*     B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS) */

    if (*rank < *n) {
	i__1 = *rank;
	for (i = 1; i <= *rank; ++i) {
	    i__2 = *n - *rank + 1;
	    dlatzm_("Left", &i__2, nrhs, &A(i,*rank+1), lda, &
		    WORK(mn + i), &B(i,1), &B(*rank+1,1), ldb,
		     &WORK((mn << 1) + 1));
/* L50: */
	}
    }

/*     workspace NRHS   

       B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */

    i__1 = *nrhs;
    for (j = 1; j <= *nrhs; ++j) {
	i__2 = *n;
	for (i = 1; i <= *n; ++i) {
	    WORK((mn << 1) + i) = 1.;
/* L60: */
	}
	i__2 = *n;
	for (i = 1; i <= *n; ++i) {
	    if (WORK((mn << 1) + i) == 1.) {
		if (JPVT(i) != i) {
		    k = i;
		    t1 = B(k,j);
		    t2 = B(JPVT(k),j);
L70:
		    B(JPVT(k),j) = t1;
		    WORK((mn << 1) + k) = 0.;
		    t1 = t2;
		    k = JPVT(k);
		    t2 = B(JPVT(k),j);
		    if (JPVT(k) != i) {
			goto L70;
		    }
		    B(i,j) = t1;
		    WORK((mn << 1) + k) = 0.;
		}
	    }
/* L80: */
	}
/* L90: */
    }

/*     Undo scaling */

    if (iascl == 1) {
	dlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &B(1,1), ldb,
		 info);
	dlascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &A(1,1), 
		lda, info);
    } else if (iascl == 2) {
	dlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &B(1,1), ldb,
		 info);
	dlascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &A(1,1), 
		lda, info);
    }
    if (ibscl == 1) {
	dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &B(1,1), ldb,
		 info);
    } else if (ibscl == 2) {
	dlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &B(1,1), ldb,
		 info);
    }

L100:

    return 0;

/*     End of DGELSX */

} /* dgelsx_ */
示例#26
0
/* Subroutine */ int dsygst_(integer *itype, char *uplo, integer *n, 
	doublereal *a, integer *lda, doublereal *b, integer *ldb, integer *
	info, ftnlen uplo_len)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;

    /* Local variables */
    static integer k, kb, nb;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen), dsymm_(
	    char *, char *, integer *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, ftnlen, ftnlen);
    static logical upper;
    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen), dsygs2_(
	    integer *, char *, integer *, doublereal *, integer *, doublereal 
	    *, integer *, integer *, ftnlen), dsyr2k_(char *, char *, integer 
	    *, integer *, doublereal *, doublereal *, integer *, doublereal *,
	     integer *, doublereal *, doublereal *, integer *, ftnlen, ftnlen)
	    , xerbla_(char *, integer *, ftnlen);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);


/*  -- LAPACK routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     September 30, 1994 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSYGST reduces a real symmetric-definite generalized eigenproblem */
/*  to standard form. */

/*  If ITYPE = 1, the problem is A*x = lambda*B*x, */
/*  and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T) */

/*  If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or */
/*  B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L. */

/*  B must have been previously factorized as U**T*U or L*L**T by DPOTRF. */

/*  Arguments */
/*  ========= */

/*  ITYPE   (input) INTEGER */
/*          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T); */
/*          = 2 or 3: compute U*A*U**T or L**T*A*L. */

/*  UPLO    (input) CHARACTER */
/*          = 'U':  Upper triangle of A is stored and B is factored as */
/*                  U**T*U; */
/*          = 'L':  Lower triangle of A is stored and B is factored as */
/*                  L*L**T. */

/*  N       (input) INTEGER */
/*          The order of the matrices A and B.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
/*          N-by-N upper triangular part of A contains the upper */
/*          triangular part of the matrix A, and the strictly lower */
/*          triangular part of A is not referenced.  If UPLO = 'L', the */
/*          leading N-by-N lower triangular part of A contains the lower */
/*          triangular part of the matrix A, and the strictly upper */
/*          triangular part of A is not referenced. */

/*          On exit, if INFO = 0, the transformed matrix, stored in the */
/*          same format as A. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  B       (input) DOUBLE PRECISION array, dimension (LDB,N) */
/*          The triangular factor from the Cholesky factorization of B, */
/*          as returned by DPOTRF. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U", (ftnlen)1, (ftnlen)1);
    if (*itype < 1 || *itype > 3) {
	*info = -1;
    } else if (! upper && ! lsame_(uplo, "L", (ftnlen)1, (ftnlen)1)) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    } else if (*ldb < max(1,*n)) {
	*info = -7;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSYGST", &i__1, (ftnlen)6);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Determine the block size for this environment. */

    nb = ilaenv_(&c__1, "DSYGST", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);

    if (nb <= 1 || nb >= *n) {

/*        Use unblocked code */

	dsygs2_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info, (
		ftnlen)1);
    } else {

/*        Use blocked code */

	if (*itype == 1) {
	    if (upper) {

/*              Compute inv(U')*A*inv(U) */

		i__1 = *n;
		i__2 = nb;
		for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {
/* Computing MIN */
		    i__3 = *n - k + 1;
		    kb = min(i__3,nb);

/*                 Update the upper triangle of A(k:n,k:n) */

		    dsygs2_(itype, uplo, &kb, &a[k + k * a_dim1], lda, &b[k + 
			    k * b_dim1], ldb, info, (ftnlen)1);
		    if (k + kb <= *n) {
			i__3 = *n - k - kb + 1;
			dtrsm_("Left", uplo, "Transpose", "Non-unit", &kb, &
				i__3, &c_b14, &b[k + k * b_dim1], ldb, &a[k + 
				(k + kb) * a_dim1], lda, (ftnlen)4, (ftnlen)1,
				 (ftnlen)9, (ftnlen)8);
			i__3 = *n - k - kb + 1;
			dsymm_("Left", uplo, &kb, &i__3, &c_b16, &a[k + k * 
				a_dim1], lda, &b[k + (k + kb) * b_dim1], ldb, 
				&c_b14, &a[k + (k + kb) * a_dim1], lda, (
				ftnlen)4, (ftnlen)1);
			i__3 = *n - k - kb + 1;
			dsyr2k_(uplo, "Transpose", &i__3, &kb, &c_b19, &a[k + 
				(k + kb) * a_dim1], lda, &b[k + (k + kb) * 
				b_dim1], ldb, &c_b14, &a[k + kb + (k + kb) * 
				a_dim1], lda, (ftnlen)1, (ftnlen)9);
			i__3 = *n - k - kb + 1;
			dsymm_("Left", uplo, &kb, &i__3, &c_b16, &a[k + k * 
				a_dim1], lda, &b[k + (k + kb) * b_dim1], ldb, 
				&c_b14, &a[k + (k + kb) * a_dim1], lda, (
				ftnlen)4, (ftnlen)1);
			i__3 = *n - k - kb + 1;
			dtrsm_("Right", uplo, "No transpose", "Non-unit", &kb,
				 &i__3, &c_b14, &b[k + kb + (k + kb) * b_dim1]
				, ldb, &a[k + (k + kb) * a_dim1], lda, (
				ftnlen)5, (ftnlen)1, (ftnlen)12, (ftnlen)8);
		    }
/* L10: */
		}
	    } else {

/*              Compute inv(L)*A*inv(L') */

		i__2 = *n;
		i__1 = nb;
		for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) {
/* Computing MIN */
		    i__3 = *n - k + 1;
		    kb = min(i__3,nb);

/*                 Update the lower triangle of A(k:n,k:n) */

		    dsygs2_(itype, uplo, &kb, &a[k + k * a_dim1], lda, &b[k + 
			    k * b_dim1], ldb, info, (ftnlen)1);
		    if (k + kb <= *n) {
			i__3 = *n - k - kb + 1;
			dtrsm_("Right", uplo, "Transpose", "Non-unit", &i__3, 
				&kb, &c_b14, &b[k + k * b_dim1], ldb, &a[k + 
				kb + k * a_dim1], lda, (ftnlen)5, (ftnlen)1, (
				ftnlen)9, (ftnlen)8);
			i__3 = *n - k - kb + 1;
			dsymm_("Right", uplo, &i__3, &kb, &c_b16, &a[k + k * 
				a_dim1], lda, &b[k + kb + k * b_dim1], ldb, &
				c_b14, &a[k + kb + k * a_dim1], lda, (ftnlen)
				5, (ftnlen)1);
			i__3 = *n - k - kb + 1;
			dsyr2k_(uplo, "No transpose", &i__3, &kb, &c_b19, &a[
				k + kb + k * a_dim1], lda, &b[k + kb + k * 
				b_dim1], ldb, &c_b14, &a[k + kb + (k + kb) * 
				a_dim1], lda, (ftnlen)1, (ftnlen)12);
			i__3 = *n - k - kb + 1;
			dsymm_("Right", uplo, &i__3, &kb, &c_b16, &a[k + k * 
				a_dim1], lda, &b[k + kb + k * b_dim1], ldb, &
				c_b14, &a[k + kb + k * a_dim1], lda, (ftnlen)
				5, (ftnlen)1);
			i__3 = *n - k - kb + 1;
			dtrsm_("Left", uplo, "No transpose", "Non-unit", &
				i__3, &kb, &c_b14, &b[k + kb + (k + kb) * 
				b_dim1], ldb, &a[k + kb + k * a_dim1], lda, (
				ftnlen)4, (ftnlen)1, (ftnlen)12, (ftnlen)8);
		    }
/* L20: */
		}
	    }
	} else {
	    if (upper) {

/*              Compute U*A*U' */

		i__1 = *n;
		i__2 = nb;
		for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {
/* Computing MIN */
		    i__3 = *n - k + 1;
		    kb = min(i__3,nb);

/*                 Update the upper triangle of A(1:k+kb-1,1:k+kb-1) */

		    i__3 = k - 1;
		    dtrmm_("Left", uplo, "No transpose", "Non-unit", &i__3, &
			    kb, &c_b14, &b[b_offset], ldb, &a[k * a_dim1 + 1],
			     lda, (ftnlen)4, (ftnlen)1, (ftnlen)12, (ftnlen)8)
			    ;
		    i__3 = k - 1;
		    dsymm_("Right", uplo, &i__3, &kb, &c_b52, &a[k + k * 
			    a_dim1], lda, &b[k * b_dim1 + 1], ldb, &c_b14, &a[
			    k * a_dim1 + 1], lda, (ftnlen)5, (ftnlen)1);
		    i__3 = k - 1;
		    dsyr2k_(uplo, "No transpose", &i__3, &kb, &c_b14, &a[k * 
			    a_dim1 + 1], lda, &b[k * b_dim1 + 1], ldb, &c_b14,
			     &a[a_offset], lda, (ftnlen)1, (ftnlen)12);
		    i__3 = k - 1;
		    dsymm_("Right", uplo, &i__3, &kb, &c_b52, &a[k + k * 
			    a_dim1], lda, &b[k * b_dim1 + 1], ldb, &c_b14, &a[
			    k * a_dim1 + 1], lda, (ftnlen)5, (ftnlen)1);
		    i__3 = k - 1;
		    dtrmm_("Right", uplo, "Transpose", "Non-unit", &i__3, &kb,
			     &c_b14, &b[k + k * b_dim1], ldb, &a[k * a_dim1 + 
			    1], lda, (ftnlen)5, (ftnlen)1, (ftnlen)9, (ftnlen)
			    8);
		    dsygs2_(itype, uplo, &kb, &a[k + k * a_dim1], lda, &b[k + 
			    k * b_dim1], ldb, info, (ftnlen)1);
/* L30: */
		}
	    } else {

/*              Compute L'*A*L */

		i__2 = *n;
		i__1 = nb;
		for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) {
/* Computing MIN */
		    i__3 = *n - k + 1;
		    kb = min(i__3,nb);

/*                 Update the lower triangle of A(1:k+kb-1,1:k+kb-1) */

		    i__3 = k - 1;
		    dtrmm_("Right", uplo, "No transpose", "Non-unit", &kb, &
			    i__3, &c_b14, &b[b_offset], ldb, &a[k + a_dim1], 
			    lda, (ftnlen)5, (ftnlen)1, (ftnlen)12, (ftnlen)8);
		    i__3 = k - 1;
		    dsymm_("Left", uplo, &kb, &i__3, &c_b52, &a[k + k * 
			    a_dim1], lda, &b[k + b_dim1], ldb, &c_b14, &a[k + 
			    a_dim1], lda, (ftnlen)4, (ftnlen)1);
		    i__3 = k - 1;
		    dsyr2k_(uplo, "Transpose", &i__3, &kb, &c_b14, &a[k + 
			    a_dim1], lda, &b[k + b_dim1], ldb, &c_b14, &a[
			    a_offset], lda, (ftnlen)1, (ftnlen)9);
		    i__3 = k - 1;
		    dsymm_("Left", uplo, &kb, &i__3, &c_b52, &a[k + k * 
			    a_dim1], lda, &b[k + b_dim1], ldb, &c_b14, &a[k + 
			    a_dim1], lda, (ftnlen)4, (ftnlen)1);
		    i__3 = k - 1;
		    dtrmm_("Left", uplo, "Transpose", "Non-unit", &kb, &i__3, 
			    &c_b14, &b[k + k * b_dim1], ldb, &a[k + a_dim1], 
			    lda, (ftnlen)4, (ftnlen)1, (ftnlen)9, (ftnlen)8);
		    dsygs2_(itype, uplo, &kb, &a[k + k * a_dim1], lda, &b[k + 
			    k * b_dim1], ldb, info, (ftnlen)1);
/* L40: */
		}
	    }
	}
    }
    return 0;

/*     End of DSYGST */

} /* dsygst_ */
示例#27
0
/*! \brief
 *
 * <pre>
 * Purpose
 * =======
 *
 * dgstrsU only performs the U-solve using the LU factorization computed
 * by DGSTRF.
 *
 * See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 * Arguments
 * =========
 *
 * trans   (input) trans_t
 *          Specifies the form of the system of equations:
 *          = NOTRANS: A * X = B  (No transpose)
 *          = TRANS:   A'* X = B  (Transpose)
 *          = CONJ:    A**H * X = B  (Conjugate transpose)
 *
 * L       (input) SuperMatrix*
 *         The factor L from the factorization Pr*A*Pc=L*U as computed by
 *         dgstrf(). Use compressed row subscripts storage for supernodes,
 *         i.e., L has types: Stype = SLU_SC, Dtype = SLU_D, Mtype = SLU_TRLU.
 *
 * U       (input) SuperMatrix*
 *         The factor U from the factorization Pr*A*Pc=L*U as computed by
 *         dgstrf(). Use column-wise storage scheme, i.e., U has types:
 *         Stype = SLU_NC, Dtype = SLU_D, Mtype = SLU_TRU.
 *
 * perm_c  (input) int*, dimension (L->ncol)
 *	   Column permutation vector, which defines the 
 *         permutation matrix Pc; perm_c[i] = j means column i of A is 
 *         in position j in A*Pc.
 *
 * perm_r  (input) int*, dimension (L->nrow)
 *         Row permutation vector, which defines the permutation matrix Pr; 
 *         perm_r[i] = j means row i of A is in position j in Pr*A.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = SLU_DN, Dtype = SLU_D, Mtype = SLU_GE.
 *         On entry, the right hand side matrix.
 *         On exit, the solution matrix if info = 0;
 *
 * stat     (output) SuperLUStat_t*
 *          Record the statistics on runtime and floating-point operation count.
 *          See util.h for the definition of 'SuperLUStat_t'.
 *
 * info    (output) int*
 * 	   = 0: successful exit
 *	   < 0: if info = -i, the i-th argument had an illegal value
 * </pre>
 */
void
dgstrsU(trans_t trans, SuperMatrix *L, SuperMatrix *U,
        int *perm_c, int *perm_r, SuperMatrix *B,
        SuperLUStat_t *stat, int *info)
{
#ifdef _CRAY
    _fcd ftcs1, ftcs2, ftcs3, ftcs4;
#endif

#ifdef USE_VENDOR_BLAS
    double   alpha = 1.0, beta = 1.0;
    double   *work_col;
#endif
    DNformat *Bstore;
    double   *Bmat;
    SCformat *Lstore;
    NCformat *Ustore;
    double   *Lval, *Uval;
    int      fsupc, nsupr, nsupc, luptr, istart, irow;
    int      i, j, k, jcol, n, ldb, nrhs;
    double   *rhs_work, *soln;
    flops_t  solve_ops;
    void dprint_soln();

    /* Test input parameters ... */
    *info = 0;
    Bstore = B->Store;
    ldb = Bstore->lda;
    nrhs = B->ncol;
    if ( trans != NOTRANS && trans != TRANS && trans != CONJ ) *info = -1;
    else if ( L->nrow != L->ncol || L->nrow < 0 ||
	      L->Stype != SLU_SC || L->Dtype != SLU_D || L->Mtype != SLU_TRLU )
	*info = -2;
    else if ( U->nrow != U->ncol || U->nrow < 0 ||
	      U->Stype != SLU_NC || U->Dtype != SLU_D || U->Mtype != SLU_TRU )
	*info = -3;
    else if ( ldb < SUPERLU_MAX(0, L->nrow) ||
	      B->Stype != SLU_DN || B->Dtype != SLU_D || B->Mtype != SLU_GE )
	*info = -6;
    if ( *info ) {
	i = -(*info);
	xerbla_("dgstrs", &i);
	return;
    }

    n = L->nrow;
    soln = doubleMalloc(n);
    if ( !soln ) ABORT("Malloc fails for local soln[].");

    Bmat = Bstore->nzval;
    Lstore = L->Store;
    Lval = Lstore->nzval;
    Ustore = U->Store;
    Uval = Ustore->nzval;
    solve_ops = 0;
    
    if ( trans == NOTRANS ) {
	/*
	 * Back solve Ux=y.
	 */
	for (k = Lstore->nsuper; k >= 0; k--) {
	    fsupc = L_FST_SUPC(k);
	    istart = L_SUB_START(fsupc);
	    nsupr = L_SUB_START(fsupc+1) - istart;
	    nsupc = L_FST_SUPC(k+1) - fsupc;
	    luptr = L_NZ_START(fsupc);

	    solve_ops += nsupc * (nsupc + 1) * nrhs;

	    if ( nsupc == 1 ) {
		rhs_work = &Bmat[0];
		for (j = 0; j < nrhs; j++) {
		    rhs_work[fsupc] /= Lval[luptr];
		    rhs_work += ldb;
		}
	    } else {
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
		ftcs1 = _cptofcd("L", strlen("L"));
		ftcs2 = _cptofcd("U", strlen("U"));
		ftcs3 = _cptofcd("N", strlen("N"));
		STRSM( ftcs1, ftcs2, ftcs3, ftcs3, &nsupc, &nrhs, &alpha,
		       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
#else
		dtrsm_("L", "U", "N", "N", &nsupc, &nrhs, &alpha,
		       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
#endif
#else		
		for (j = 0; j < nrhs; j++)
		    dusolve ( nsupr, nsupc, &Lval[luptr], &Bmat[fsupc+j*ldb] );
#endif		
	    }

	    for (j = 0; j < nrhs; ++j) {
		rhs_work = &Bmat[j*ldb];
		for (jcol = fsupc; jcol < fsupc + nsupc; jcol++) {
		    solve_ops += 2*(U_NZ_START(jcol+1) - U_NZ_START(jcol));
		    for (i = U_NZ_START(jcol); i < U_NZ_START(jcol+1); i++ ){
			irow = U_SUB(i);
			rhs_work[irow] -= rhs_work[jcol] * Uval[i];
		    }
		}
	    }
	    
	} /* for U-solve */

#ifdef DEBUG
  	printf("After U-solve: x=\n");
	dprint_soln(n, nrhs, Bmat);
#endif

	/* Compute the final solution X := Pc*X. */
	for (i = 0; i < nrhs; i++) {
	    rhs_work = &Bmat[i*ldb];
	    for (k = 0; k < n; k++) soln[k] = rhs_work[perm_c[k]];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}
	
        stat->ops[SOLVE] = solve_ops;

    } else { /* Solve U'x = b */
	/* Permute right hand sides to form Pc'*B. */
	for (i = 0; i < nrhs; i++) {
	    rhs_work = &Bmat[i*ldb];
	    for (k = 0; k < n; k++) soln[perm_c[k]] = rhs_work[k];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}

	for (k = 0; k < nrhs; ++k) {
	    /* Multiply by inv(U'). */
	    sp_dtrsv("U", "T", "N", L, U, &Bmat[k*ldb], stat, info);
	}

    }

    SUPERLU_FREE(soln);
}
示例#28
0
/* Subroutine */ int dgels_(char *trans, integer *m, integer *n, integer *
	nrhs, doublereal *a, integer *lda, doublereal *b, integer *ldb, 
	doublereal *work, integer *lwork, integer *info, ftnlen trans_len)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;

    /* Local variables */
    static integer i__, j, nb, mn;
    static doublereal anrm, bnrm;
    static integer brow;
    static logical tpsd;
    static integer iascl, ibscl;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen);
    static integer wsize;
    static doublereal rwork[1];
    extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
    extern doublereal dlamch_(char *, ftnlen), dlange_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, ftnlen);
    extern /* Subroutine */ int dgelqf_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, integer *), 
	    dlascl_(char *, integer *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, doublereal *, integer *, integer *, ftnlen),
	     dgeqrf_(integer *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, integer *), dlaset_(char *,
	     integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    integer *, ftnlen), xerbla_(char *, integer *, ftnlen);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static integer scllen;
    static doublereal bignum;
    extern /* Subroutine */ int dormlq_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, ftnlen, ftnlen), 
	    dormqr_(char *, char *, integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *, integer *, ftnlen, ftnlen);
    static doublereal smlnum;
    static logical lquery;


/*  -- LAPACK driver routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     June 30, 1999 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DGELS solves overdetermined or underdetermined real linear systems */
/*  involving an M-by-N matrix A, or its transpose, using a QR or LQ */
/*  factorization of A.  It is assumed that A has full rank. */

/*  The following options are provided: */

/*  1. If TRANS = 'N' and m >= n:  find the least squares solution of */
/*     an overdetermined system, i.e., solve the least squares problem */
/*                  minimize || B - A*X ||. */

/*  2. If TRANS = 'N' and m < n:  find the minimum norm solution of */
/*     an underdetermined system A * X = B. */

/*  3. If TRANS = 'T' and m >= n:  find the minimum norm solution of */
/*     an undetermined system A**T * X = B. */

/*  4. If TRANS = 'T' and m < n:  find the least squares solution of */
/*     an overdetermined system, i.e., solve the least squares problem */
/*                  minimize || B - A**T * X ||. */

/*  Several right hand side vectors b and solution vectors x can be */
/*  handled in a single call; they are stored as the columns of the */
/*  M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
/*  matrix X. */

/*  Arguments */
/*  ========= */

/*  TRANS   (input) CHARACTER */
/*          = 'N': the linear system involves A; */
/*          = 'T': the linear system involves A**T. */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of */
/*          columns of the matrices B and X. NRHS >=0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the M-by-N matrix A. */
/*          On exit, */
/*            if M >= N, A is overwritten by details of its QR */
/*                       factorization as returned by DGEQRF; */
/*            if M <  N, A is overwritten by details of its LQ */
/*                       factorization as returned by DGELQF. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/*          On entry, the matrix B of right hand side vectors, stored */
/*          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS */
/*          if TRANS = 'T'. */
/*          On exit, B is overwritten by the solution vectors, stored */
/*          columnwise: */
/*          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least */
/*          squares solution vectors; the residual sum of squares for the */
/*          solution in each column is given by the sum of squares of */
/*          elements N+1 to M in that column; */
/*          if TRANS = 'N' and m < n, rows 1 to N of B contain the */
/*          minimum norm solution vectors; */
/*          if TRANS = 'T' and m >= n, rows 1 to M of B contain the */
/*          minimum norm solution vectors; */
/*          if TRANS = 'T' and m < n, rows 1 to M of B contain the */
/*          least squares solution vectors; the residual sum of squares */
/*          for the solution in each column is given by the sum of */
/*          squares of elements M+1 to N in that column. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B. LDB >= MAX(1,M,N). */

/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. */
/*          LWORK >= max( 1, MN + max( MN, NRHS ) ). */
/*          For optimal performance, */
/*          LWORK >= max( 1, MN + max( MN, NRHS )*NB ). */
/*          where MN = min(M,N) and NB is the optimum block size. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --work;

    /* Function Body */
    *info = 0;
    mn = min(*m,*n);
    lquery = *lwork == -1;
    if (! (lsame_(trans, "N", (ftnlen)1, (ftnlen)1) || lsame_(trans, "T", (
	    ftnlen)1, (ftnlen)1))) {
	*info = -1;
    } else if (*m < 0) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*nrhs < 0) {
	*info = -4;
    } else if (*lda < max(1,*m)) {
	*info = -6;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = max(1,*m);
	if (*ldb < max(i__1,*n)) {
	    *info = -8;
	} else /* if(complicated condition) */ {
/* Computing MAX */
	    i__1 = 1, i__2 = mn + max(mn,*nrhs);
	    if (*lwork < max(i__1,i__2) && ! lquery) {
		*info = -10;
	    }
	}
    }

/*     Figure out optimal block size */

    if (*info == 0 || *info == -10) {

	tpsd = TRUE_;
	if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
	    tpsd = FALSE_;
	}

	if (*m >= *n) {
	    nb = ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, 
		    (ftnlen)1);
	    if (tpsd) {
/* Computing MAX */
		i__1 = nb, i__2 = ilaenv_(&c__1, "DORMQR", "LN", m, nrhs, n, &
			c_n1, (ftnlen)6, (ftnlen)2);
		nb = max(i__1,i__2);
	    } else {
/* Computing MAX */
		i__1 = nb, i__2 = ilaenv_(&c__1, "DORMQR", "LT", m, nrhs, n, &
			c_n1, (ftnlen)6, (ftnlen)2);
		nb = max(i__1,i__2);
	    }
	} else {
	    nb = ilaenv_(&c__1, "DGELQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, 
		    (ftnlen)1);
	    if (tpsd) {
/* Computing MAX */
		i__1 = nb, i__2 = ilaenv_(&c__1, "DORMLQ", "LT", n, nrhs, m, &
			c_n1, (ftnlen)6, (ftnlen)2);
		nb = max(i__1,i__2);
	    } else {
/* Computing MAX */
		i__1 = nb, i__2 = ilaenv_(&c__1, "DORMLQ", "LN", n, nrhs, m, &
			c_n1, (ftnlen)6, (ftnlen)2);
		nb = max(i__1,i__2);
	    }
	}

/* Computing MAX */
	i__1 = 1, i__2 = mn + max(mn,*nrhs) * nb;
	wsize = max(i__1,i__2);
	work[1] = (doublereal) wsize;

    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGELS ", &i__1, (ftnlen)6);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

/* Computing MIN */
    i__1 = min(*m,*n);
    if (min(i__1,*nrhs) == 0) {
	i__1 = max(*m,*n);
	dlaset_("Full", &i__1, nrhs, &c_b33, &c_b33, &b[b_offset], ldb, (
		ftnlen)4);
	return 0;
    }

/*     Get machine parameters */

    smlnum = dlamch_("S", (ftnlen)1) / dlamch_("P", (ftnlen)1);
    bignum = 1. / smlnum;
    dlabad_(&smlnum, &bignum);

/*     Scale A, B if max element outside range [SMLNUM,BIGNUM] */

    anrm = dlange_("M", m, n, &a[a_offset], lda, rwork, (ftnlen)1);
    iascl = 0;
    if (anrm > 0. && anrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 
		info, (ftnlen)1);
	iascl = 1;
    } else if (anrm > bignum) {

/*        Scale matrix norm down to BIGNUM */

	dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 
		info, (ftnlen)1);
	iascl = 2;
    } else if (anrm == 0.) {

/*        Matrix all zero. Return zero solution. */

	i__1 = max(*m,*n);
	dlaset_("F", &i__1, nrhs, &c_b33, &c_b33, &b[b_offset], ldb, (ftnlen)
		1);
	goto L50;
    }

    brow = *m;
    if (tpsd) {
	brow = *n;
    }
    bnrm = dlange_("M", &brow, nrhs, &b[b_offset], ldb, rwork, (ftnlen)1);
    ibscl = 0;
    if (bnrm > 0. && bnrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, &brow, nrhs, &b[b_offset], 
		ldb, info, (ftnlen)1);
	ibscl = 1;
    } else if (bnrm > bignum) {

/*        Scale matrix norm down to BIGNUM */

	dlascl_("G", &c__0, &c__0, &bnrm, &bignum, &brow, nrhs, &b[b_offset], 
		ldb, info, (ftnlen)1);
	ibscl = 2;
    }

    if (*m >= *n) {

/*        compute QR factorization of A */

	i__1 = *lwork - mn;
	dgeqrf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info)
		;

/*        workspace at least N, optimally N*NB */

	if (! tpsd) {

/*           Least-Squares Problem min || A * X - B || */

/*           B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */

	    i__1 = *lwork - mn;
	    dormqr_("Left", "Transpose", m, nrhs, n, &a[a_offset], lda, &work[
		    1], &b[b_offset], ldb, &work[mn + 1], &i__1, info, (
		    ftnlen)4, (ftnlen)9);

/*           workspace at least NRHS, optimally NRHS*NB */

/*           B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) */

	    dtrsm_("Left", "Upper", "No transpose", "Non-unit", n, nrhs, &
		    c_b61, &a[a_offset], lda, &b[b_offset], ldb, (ftnlen)4, (
		    ftnlen)5, (ftnlen)12, (ftnlen)8);

	    scllen = *n;

	} else {

/*           Overdetermined system of equations A' * X = B */

/*           B(1:N,1:NRHS) := inv(R') * B(1:N,1:NRHS) */

	    dtrsm_("Left", "Upper", "Transpose", "Non-unit", n, nrhs, &c_b61, 
		    &a[a_offset], lda, &b[b_offset], ldb, (ftnlen)4, (ftnlen)
		    5, (ftnlen)9, (ftnlen)8);

/*           B(N+1:M,1:NRHS) = ZERO */

	    i__1 = *nrhs;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *m;
		for (i__ = *n + 1; i__ <= i__2; ++i__) {
		    b[i__ + j * b_dim1] = 0.;
/* L10: */
		}
/* L20: */
	    }

/*           B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS) */

	    i__1 = *lwork - mn;
	    dormqr_("Left", "No transpose", m, nrhs, n, &a[a_offset], lda, &
		    work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info, (
		    ftnlen)4, (ftnlen)12);

/*           workspace at least NRHS, optimally NRHS*NB */

	    scllen = *m;

	}

    } else {

/*        Compute LQ factorization of A */

	i__1 = *lwork - mn;
	dgelqf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info)
		;

/*        workspace at least M, optimally M*NB. */

	if (! tpsd) {

/*           underdetermined system of equations A * X = B */

/*           B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) */

	    dtrsm_("Left", "Lower", "No transpose", "Non-unit", m, nrhs, &
		    c_b61, &a[a_offset], lda, &b[b_offset], ldb, (ftnlen)4, (
		    ftnlen)5, (ftnlen)12, (ftnlen)8);

/*           B(M+1:N,1:NRHS) = 0 */

	    i__1 = *nrhs;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n;
		for (i__ = *m + 1; i__ <= i__2; ++i__) {
		    b[i__ + j * b_dim1] = 0.;
/* L30: */
		}
/* L40: */
	    }

/*           B(1:N,1:NRHS) := Q(1:N,:)' * B(1:M,1:NRHS) */

	    i__1 = *lwork - mn;
	    dormlq_("Left", "Transpose", n, nrhs, m, &a[a_offset], lda, &work[
		    1], &b[b_offset], ldb, &work[mn + 1], &i__1, info, (
		    ftnlen)4, (ftnlen)9);

/*           workspace at least NRHS, optimally NRHS*NB */

	    scllen = *n;

	} else {

/*           overdetermined system min || A' * X - B || */

/*           B(1:N,1:NRHS) := Q * B(1:N,1:NRHS) */

	    i__1 = *lwork - mn;
	    dormlq_("Left", "No transpose", n, nrhs, m, &a[a_offset], lda, &
		    work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info, (
		    ftnlen)4, (ftnlen)12);

/*           workspace at least NRHS, optimally NRHS*NB */

/*           B(1:M,1:NRHS) := inv(L') * B(1:M,1:NRHS) */

	    dtrsm_("Left", "Lower", "Transpose", "Non-unit", m, nrhs, &c_b61, 
		    &a[a_offset], lda, &b[b_offset], ldb, (ftnlen)4, (ftnlen)
		    5, (ftnlen)9, (ftnlen)8);

	    scllen = *m;

	}

    }

/*     Undo scaling */

    if (iascl == 1) {
	dlascl_("G", &c__0, &c__0, &anrm, &smlnum, &scllen, nrhs, &b[b_offset]
		, ldb, info, (ftnlen)1);
    } else if (iascl == 2) {
	dlascl_("G", &c__0, &c__0, &anrm, &bignum, &scllen, nrhs, &b[b_offset]
		, ldb, info, (ftnlen)1);
    }
    if (ibscl == 1) {
	dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, &scllen, nrhs, &b[b_offset]
		, ldb, info, (ftnlen)1);
    } else if (ibscl == 2) {
	dlascl_("G", &c__0, &c__0, &bignum, &bnrm, &scllen, nrhs, &b[b_offset]
		, ldb, info, (ftnlen)1);
    }

L50:
    work[1] = (doublereal) wsize;

    return 0;

/*     End of DGELS */

} /* dgels_ */
示例#29
0
文件: dgelsx.c 项目: zangel/uquad
/* Subroutine */ int dgelsx_(integer *m, integer *n, integer *nrhs, 
	doublereal *a, integer *lda, doublereal *b, integer *ldb, integer *
	jpvt, doublereal *rcond, integer *rank, doublereal *work, integer *
	info)
{
    /* Initialized data */

    static integer gelsx = 1;
    static integer geqpf = 2;
    static integer latzm = 6;
    static integer orm2r = 4;
    static integer trsm = 5;
    static integer tzrqf = 3;

    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
    doublereal d__1;

    /* Local variables */
    static doublereal anrm, bnrm, smin, smax;
    static integer i__, j, k, iascl, ibscl;
    extern doublereal dopla_(char *, integer *, integer *, integer *, integer 
	    *, integer *);
    static integer ismin, ismax;
    static doublereal c1, c2;
    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *), dlaic1_(
	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *);
    static doublereal s1, s2, t1, t2;
    extern doublereal dopbl3_(char *, integer *, integer *, integer *)
	    ;
    extern /* Subroutine */ int dorm2r_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *), dlabad_(
	    doublereal *, doublereal *);
    extern doublereal dlamch_(char *), dlange_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *);
    static integer mn;
    extern doublereal dsecnd_(void);
    extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *), dgeqpf_(integer *, integer *, 
	    doublereal *, integer *, integer *, doublereal *, doublereal *, 
	    integer *), dlaset_(char *, integer *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *), xerbla_(char *, 
	    integer *);
    static doublereal bignum;
    extern /* Subroutine */ int dlatzm_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *,
	     integer *, doublereal *);
    static doublereal sminpr, smaxpr, smlnum;
    extern /* Subroutine */ int dtzrqf_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *);
    static doublereal tim1, tim2;


#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]


/*  -- LAPACK driver routine (instrumented to count ops, version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   

       Common blocks to return operation counts and timings   

    Purpose   
    =======   

    DGELSX computes the minimum-norm solution to a real linear least   
    squares problem:   
        minimize || A * X - B ||   
    using a complete orthogonal factorization of A.  A is an M-by-N   
    matrix which may be rank-deficient.   

    Several right hand side vectors b and solution vectors x can be   
    handled in a single call; they are stored as the columns of the   
    M-by-NRHS right hand side matrix B and the N-by-NRHS solution   
    matrix X.   

    The routine first computes a QR factorization with column pivoting:   
        A * P = Q * [ R11 R12 ]   
                    [  0  R22 ]   
    with R11 defined as the largest leading submatrix whose estimated   
    condition number is less than 1/RCOND.  The order of R11, RANK,   
    is the effective rank of A.   

    Then, R22 is considered to be negligible, and R12 is annihilated   
    by orthogonal transformations from the right, arriving at the   
    complete orthogonal factorization:   
       A * P = Q * [ T11 0 ] * Z   
                   [  0  0 ]   
    The minimum-norm solution is then   
       X = P * Z' [ inv(T11)*Q1'*B ]   
                  [        0       ]   
    where Q1 consists of the first RANK columns of Q.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A.  N >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of   
            columns of matrices B and X. NRHS >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the M-by-N matrix A.   
            On exit, A has been overwritten by details of its   
            complete orthogonal factorization.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,M).   

    B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)   
            On entry, the M-by-NRHS right hand side matrix B.   
            On exit, the N-by-NRHS solution matrix X.   
            If m >= n and RANK = n, the residual sum-of-squares for   
            the solution in the i-th column is given by the sum of   
            squares of elements N+1:M in that column.   

    LDB     (input) INTEGER   
            The leading dimension of the array B. LDB >= max(1,M,N).   

    JPVT    (input/output) INTEGER array, dimension (N)   
            On entry, if JPVT(i) .ne. 0, the i-th column of A is an   
            initial column, otherwise it is a free column.  Before   
            the QR factorization of A, all initial columns are   
            permuted to the leading positions; only the remaining   
            free columns are moved as a result of column pivoting   
            during the factorization.   
            On exit, if JPVT(i) = k, then the i-th column of A*P   
            was the k-th column of A.   

    RCOND   (input) DOUBLE PRECISION   
            RCOND is used to determine the effective rank of A, which   
            is defined as the order of the largest leading triangular   
            submatrix R11 in the QR factorization with pivoting of A,   
            whose estimated condition number < 1/RCOND.   

    RANK    (output) INTEGER   
            The effective rank of A, i.e., the order of the submatrix   
            R11.  This is the same as the order of the submatrix T11   
            in the complete orthogonal factorization of A.   

    WORK    (workspace) DOUBLE PRECISION array, dimension   
                        (max( min(M,N)+3*N, 2*min(M,N)+NRHS )),   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --jpvt;
    --work;

    /* Function Body */

    mn = min(*m,*n);
    ismin = mn + 1;
    ismax = (mn << 1) + 1;

/*     Test the input arguments. */

    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = max(1,*m);
	if (*ldb < max(i__1,*n)) {
	    *info = -7;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGELSX", &i__1);
	return 0;
    }

/*     Quick return if possible   

   Computing MIN */
    i__1 = min(*m,*n);
    if (min(i__1,*nrhs) == 0) {
	*rank = 0;
	return 0;
    }

/*     Get machine parameters */

    lstime_1.opcnt[gelsx - 1] += 2.;
    smlnum = dlamch_("S") / dlamch_("P");
    bignum = 1. / smlnum;
    dlabad_(&smlnum, &bignum);

/*     Scale A, B if max elements outside range [SMLNUM,BIGNUM] */

    anrm = dlange_("M", m, n, &a[a_offset], lda, &work[1]);
    iascl = 0;
    if (anrm > 0. && anrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	lstime_1.opcnt[gelsx - 1] += (doublereal) (*m * *n);
	dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 
		info);
	iascl = 1;
    } else if (anrm > bignum) {

/*        Scale matrix norm down to BIGNUM */

	lstime_1.opcnt[gelsx - 1] += (doublereal) (*m * *n);
	dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 
		info);
	iascl = 2;
    } else if (anrm == 0.) {

/*        Matrix all zero. Return zero solution. */

	i__1 = max(*m,*n);
	dlaset_("F", &i__1, nrhs, &c_b13, &c_b13, &b[b_offset], ldb);
	*rank = 0;
	goto L100;
    }

    bnrm = dlange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
    ibscl = 0;
    if (bnrm > 0. && bnrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	lstime_1.opcnt[gelsx - 1] += (doublereal) (*m * *nrhs);
	dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
		 info);
	ibscl = 1;
    } else if (bnrm > bignum) {

/*        Scale matrix norm down to BIGNUM */

	lstime_1.opcnt[gelsx - 1] += (doublereal) (*m * *nrhs);
	dlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
		 info);
	ibscl = 2;
    }

/*     Compute QR factorization with column pivoting of A:   
          A * P = Q * R */

    lstime_1.opcnt[geqpf - 1] += dopla_("DGEQPF", m, n, &c__0, &c__0, &c__0);
    tim1 = dsecnd_();
    dgeqpf_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], info);
    tim2 = dsecnd_();
    lstime_1.timng[geqpf - 1] += tim2 - tim1;

/*     workspace 3*N. Details of Householder rotations stored   
       in WORK(1:MN).   

       Determine RANK using incremental condition estimation */

    work[ismin] = 1.;
    work[ismax] = 1.;
    smax = (d__1 = a_ref(1, 1), abs(d__1));
    smin = smax;
    if ((d__1 = a_ref(1, 1), abs(d__1)) == 0.) {
	*rank = 0;
	i__1 = max(*m,*n);
	dlaset_("F", &i__1, nrhs, &c_b13, &c_b13, &b[b_offset], ldb);
	goto L100;
    } else {
	*rank = 1;
    }

L10:
    if (*rank < mn) {
	i__ = *rank + 1;
	latime_1.ops = 0.;
	dlaic1_(&c__2, rank, &work[ismin], &smin, &a_ref(1, i__), &a_ref(i__, 
		i__), &sminpr, &s1, &c1);
	dlaic1_(&c__1, rank, &work[ismax], &smax, &a_ref(1, i__), &a_ref(i__, 
		i__), &smaxpr, &s2, &c2);
	lstime_1.opcnt[gelsx - 1] = lstime_1.opcnt[gelsx - 1] + latime_1.ops 
		+ 1.;

	if (smaxpr * *rcond <= sminpr) {
	    lstime_1.opcnt[gelsx - 1] += (doublereal) (*rank << 1);
	    i__1 = *rank;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		work[ismin + i__ - 1] = s1 * work[ismin + i__ - 1];
		work[ismax + i__ - 1] = s2 * work[ismax + i__ - 1];
/* L20: */
	    }
	    work[ismin + *rank] = c1;
	    work[ismax + *rank] = c2;
	    smin = sminpr;
	    smax = smaxpr;
	    ++(*rank);
	    goto L10;
	}
    }

/*     Logically partition R = [ R11 R12 ]   
                               [  0  R22 ]   
       where R11 = R(1:RANK,1:RANK)   

       [R11,R12] = [ T11, 0 ] * Y */

    if (*rank < *n) {
	lstime_1.opcnt[tzrqf - 1] += dopla_("DTZRQF", rank, n, &c__0, &c__0, &
		c__0);
	tim1 = dsecnd_();
	dtzrqf_(rank, n, &a[a_offset], lda, &work[mn + 1], info);
	tim2 = dsecnd_();
	lstime_1.timng[tzrqf - 1] += tim2 - tim1;
    }

/*     Details of Householder rotations stored in WORK(MN+1:2*MN)   

       B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */

    lstime_1.opcnt[orm2r - 1] += dopla_("DORMQR", m, nrhs, &mn, &c__0, &c__0);
    tim1 = dsecnd_();
    dorm2r_("Left", "Transpose", m, nrhs, &mn, &a[a_offset], lda, &work[1], &
	    b[b_offset], ldb, &work[(mn << 1) + 1], info);
    tim2 = dsecnd_();
    lstime_1.timng[orm2r - 1] += tim2 - tim1;

/*     workspace NRHS   

       B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */

    lstime_1.opcnt[trsm - 1] += dopbl3_("DTRSM ", rank, nrhs, &c__0);
    tim1 = dsecnd_();
    dtrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b49, &
	    a[a_offset], lda, &b[b_offset], ldb);
    tim2 = dsecnd_();
    lstime_1.timng[trsm - 1] += tim2 - tim1;

    i__1 = *n;
    for (i__ = *rank + 1; i__ <= i__1; ++i__) {
	i__2 = *nrhs;
	for (j = 1; j <= i__2; ++j) {
	    b_ref(i__, j) = 0.;
/* L30: */
	}
/* L40: */
    }

/*     B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS) */

    if (*rank < *n) {
	lstime_1.opcnt[latzm - 1] += (doublereal) (((*n - *rank) * *nrhs + *
		nrhs + (*n - *rank) * *nrhs << 1) * *rank);
	tim1 = dsecnd_();
	i__1 = *rank;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    i__2 = *n - *rank + 1;
	    dlatzm_("Left", &i__2, nrhs, &a_ref(i__, *rank + 1), lda, &work[
		    mn + i__], &b_ref(i__, 1), &b_ref(*rank + 1, 1), ldb, &
		    work[(mn << 1) + 1]);
/* L50: */
	}
	tim2 = dsecnd_();
	lstime_1.timng[latzm - 1] += tim2 - tim1;
    }

/*     workspace NRHS   

       B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    work[(mn << 1) + i__] = 1.;
/* L60: */
	}
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    if (work[(mn << 1) + i__] == 1.) {
		if (jpvt[i__] != i__) {
		    k = i__;
		    t1 = b_ref(k, j);
		    t2 = b_ref(jpvt[k], j);
L70:
		    b_ref(jpvt[k], j) = t1;
		    work[(mn << 1) + k] = 0.;
		    t1 = t2;
		    k = jpvt[k];
		    t2 = b_ref(jpvt[k], j);
		    if (jpvt[k] != i__) {
			goto L70;
		    }
		    b_ref(i__, j) = t1;
		    work[(mn << 1) + k] = 0.;
		}
	    }
/* L80: */
	}
/* L90: */
    }

/*     Undo scaling */

    if (iascl == 1) {
	lstime_1.opcnt[gelsx - 1] += (doublereal) (*n * *nrhs + *rank * *rank)
		;
	dlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
		 info);
	dlascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset], 
		lda, info);
    } else if (iascl == 2) {
	lstime_1.opcnt[gelsx - 1] += (doublereal) (*n * *nrhs + *rank * *rank)
		;
	dlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
		 info);
	dlascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset], 
		lda, info);
    }
    if (ibscl == 1) {
	lstime_1.opcnt[gelsx - 1] += (doublereal) (*n * *nrhs);
	dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
		 info);
    } else if (ibscl == 2) {
	lstime_1.opcnt[gelsx - 1] += (doublereal) (*n * *nrhs);
	dlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
		 info);
    }

L100:

    return 0;

/*     End of DGELSX */

} /* dgelsx_ */
示例#30
0
void pdgstrs1(int_t n, LUstruct_t *LUstruct, gridinfo_t *grid,
	      double *x, int nrhs, SuperLUStat_t *stat, int *info)
{
/*
 * Purpose
 * =======
 *
 * PDGSTRS1 solves a system of distributed linear equations
 *
 *                   op( sub(A) ) * X = sub( B )
 *
 * with a general N-by-N distributed matrix sub( A ) using the LU
 * factorization computed by PDGSTRF.
 * 
 * Arguments
 * =========
 *
 * n      (input) int (global)
 *        The order of the system of linear equations.
 *
 * LUstruct (input) LUstruct_t*
 *        The distributed data structures to store L and U factors,
 *        and the permutation vectors.
 *        See superlu_ddefs.h for the definition of 'LUstruct_t' structure.
 *
 * grid   (input) gridinfo_t*
 *        The 2D process mesh.
 *
 * x      (input/output) double*
 *        On entry, the right hand side matrix.
 *        On exit, the solution matrix if info = 0;
 *
 *        NOTE: the right-hand side matrix is already distributed on
 *              the diagonal processes.
 *
 * nrhs   (input) int (global)
 *        Number of right-hand sides.
 *
 * stat   (output) SuperLUStat_t*
 *        Record the statistics about the triangular solves; 
 *        See SuperLUStat_t structure defined in util.h.
 *
 * info   (output) int*
 * 	   = 0: successful exit
 *	   < 0: if info = -i, the i-th argument had an illegal value
 *        
 */
    Glu_persist_t *Glu_persist = LUstruct->Glu_persist;
    LocalLU_t *Llu = LUstruct->Llu;
    double alpha = 1.0;
    double *lsum;  /* Local running sum of the updates to B-components */
    double *lusup, *dest;
    double *recvbuf, *tempv;
    double *rtemp; /* Result of full matrix-vector multiply. */
    int_t  **Ufstnz_br_ptr = Llu->Ufstnz_br_ptr;
    int_t  *Urbs, *Urbs1; /* Number of row blocks in each block column of U. */
    Ucb_indptr_t **Ucb_indptr;/* Vertical linked list pointing to Uindex[] */
    int_t  **Ucb_valptr;      /* Vertical linked list pointing to Unzval[] */
    int_t  iam, kcol, krow, mycol, myrow;
    int_t  i, ii, il, j, k, lb, ljb, lk, lptr, luptr;
    int_t  nb, nlb, nub, nsupers;
    int_t  *xsup, *lsub, *usub;
    int_t  *ilsum;    /* Starting position of each supernode in lsum (LOCAL)*/
    int_t  Pc, Pr;
    int    knsupc, nsupr;
    int    ldalsum;   /* Number of lsum entries locally owned. */
    int    maxrecvsz, p, pi;
    int_t  **Lrowind_bc_ptr;
    double **Lnzval_bc_ptr;
    MPI_Status status;
#ifdef ISEND_IRECV
    MPI_Request *send_req, recv_req;
#endif

    /*-- Counts used for L-solve --*/
    int_t  *fmod;         /* Modification count for L-solve. */
    int_t  **fsendx_plist = Llu->fsendx_plist;
    int_t  nfrecvx = Llu->nfrecvx; /* Number of X components to be recv'd. */
    int_t  *frecv;        /* Count of modifications to be recv'd from
			     processes in this row. */
    int_t  nfrecvmod = 0; /* Count of total modifications to be recv'd. */
    int_t  nleaf = 0, nroot = 0;

    /*-- Counts used for U-solve --*/
    int_t  *bmod;         /* Modification count for L-solve. */
    int_t  **bsendx_plist = Llu->bsendx_plist;
    int_t  nbrecvx = Llu->nbrecvx; /* Number of X components to be recv'd. */
    int_t  *brecv;        /* Count of modifications to be recv'd from
			     processes in this row. */
    int_t  nbrecvmod = 0; /* Count of total modifications to be recv'd. */
    double t;
#if ( DEBUGlevel>=2 )
    int_t Ublocks = 0;
#endif

    t = SuperLU_timer_();

    /* Test input parameters. */
    *info = 0;
    if ( n < 0 ) *info = -1;
    else if ( nrhs < 0 ) *info = -8;
    if ( *info ) {
	pxerbla("PDGSTRS1", grid, -*info);
	return;
    }
	
    /*
     * Initialization.
     */
    iam = grid->iam;
    Pc = grid->npcol;
    Pr = grid->nprow;
    myrow = MYROW( iam, grid );
    mycol = MYCOL( iam, grid );
    nsupers = Glu_persist->supno[n-1] + 1;
    xsup = Glu_persist->xsup;
    Lrowind_bc_ptr = Llu->Lrowind_bc_ptr;
    Lnzval_bc_ptr = Llu->Lnzval_bc_ptr;
    nlb = CEILING( nsupers, Pr ); /* Number of local block rows. */
    Llu->SolveMsgSent = 0;

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC(iam, "Enter pdgstrs1()");
#endif

    /* Save the count to be altered so it can be used by
       subsequent call to PDGSTRS1. */
    if ( !(fmod = intMalloc_dist(nlb)) )
	ABORT("Calloc fails for fmod[].");
    for (i = 0; i < nlb; ++i) fmod[i] = Llu->fmod[i];
    if ( !(frecv = intMalloc_dist(nlb)) )
	ABORT("Malloc fails for frecv[].");
    Llu->frecv = frecv;

#ifdef ISEND_IRECV
    k = SUPERLU_MAX( Llu->nfsendx, Llu->nbsendx ) + nlb;
    if ( !(send_req = (MPI_Request*) SUPERLU_MALLOC(k*sizeof(MPI_Request))) )
	ABORT("Malloc fails for send_req[].");
#endif

#ifdef _CRAY
    ftcs1 = _cptofcd("L", strlen("L"));
    ftcs2 = _cptofcd("N", strlen("N"));
    ftcs3 = _cptofcd("U", strlen("U"));
#endif


    /* Compute ilsum[] and ldalsum for process column 0. */
    ilsum = Llu->ilsum;
    ldalsum = Llu->ldalsum;

    /* Allocate working storage. */
    knsupc = sp_ienv_dist(3);
    if ( !(lsum = doubleCalloc_dist(((size_t)ldalsum) * nrhs 
        + nlb * LSUM_H)) )
	ABORT("Calloc fails for lsum[].");
    maxrecvsz = knsupc * nrhs + SUPERLU_MAX(XK_H, LSUM_H);
    if ( !(recvbuf = doubleMalloc_dist(maxrecvsz)) )
	ABORT("Malloc fails for recvbuf[].");
    if ( !(rtemp = doubleCalloc_dist(maxrecvsz)) )
	ABORT("Malloc fails for rtemp[].");

    
    /*---------------------------------------------------
     * Forward solve Ly = b.
     *---------------------------------------------------*/

    /*
     * Prepended the block number in the header for lsum[].
     */
    for (k = 0; k < nsupers; ++k) {
	knsupc = SuperSize( k );
	krow = PROW( k, grid );
	if ( myrow == krow ) {
	    lk = LBi( k, grid );   /* Local block number. */
	    il = LSUM_BLK( lk );
	    lsum[il - LSUM_H] = k; 
	}
    }

    /*
     * Compute frecv[] and nfrecvmod counts on the diagonal processes.
     */
    {
	superlu_scope_t *scp = &grid->rscp;

	for (k = 0; k < nsupers; ++k) {
	    krow = PROW( k, grid );
	    if ( myrow == krow ) {
		lk = LBi( k, grid );    /* Local block number. */
		kcol = PCOL( k, grid ); /* Root process in this row scope. */
		if ( mycol != kcol && fmod[lk] )
		    i = 1;  /* Contribution from non-diagonal process. */
		else i = 0;
		MPI_Reduce( &i, &frecv[lk], 1, mpi_int_t,
			   MPI_SUM, kcol, scp->comm );
		if ( mycol == kcol ) { /* Diagonal process. */
		    nfrecvmod += frecv[lk];
		    if ( !frecv[lk] && !fmod[lk] ) ++nleaf;
#if ( DEBUGlevel>=2 )
		    printf("(%2d) frecv[%4d]  %2d\n", iam, k, frecv[lk]);
		    assert( frecv[lk] < Pc );
#endif
		}
	    }
	}
    }

    /* ---------------------------------------------------------
       Solve the leaf nodes first by all the diagonal processes.
       --------------------------------------------------------- */
#if ( DEBUGlevel>=2 )
    printf("(%2d) nleaf %4d\n", iam, nleaf);
#endif
    for (k = 0; k < nsupers && nleaf; ++k) {
	krow = PROW( k, grid );
	kcol = PCOL( k, grid );
	if ( myrow == krow && mycol == kcol ) { /* Diagonal process */
	    knsupc = SuperSize( k );
	    lk = LBi( k, grid );
	    if ( !frecv[lk] && !fmod[lk] ) {
		fmod[lk] = -1;  /* Do not solve X[k] in the future. */
		ii = X_BLK( lk );
		lk = LBj( k, grid ); /* Local block number, column-wise. */
		lsub = Lrowind_bc_ptr[lk];
		lusup = Lnzval_bc_ptr[lk];
		nsupr = lsub[1];
#ifdef _CRAY
		STRSM(ftcs1, ftcs1, ftcs2, ftcs3, &knsupc, &nrhs, &alpha,
		      lusup, &nsupr, &x[ii], &knsupc);
#elif defined (USE_VENDOR_BLAS)
		dtrsm_("L", "L", "N", "U", &knsupc, &nrhs, &alpha, 
		       lusup, &nsupr, &x[ii], &knsupc, 1, 1, 1, 1);
#else
		dtrsm_("L", "L", "N", "U", &knsupc, &nrhs, &alpha, 
		       lusup, &nsupr, &x[ii], &knsupc);
#endif
		/*stat->ops[SOLVE] += knsupc * (knsupc - 1) * nrhs;*/
		--nleaf;
#if ( DEBUGlevel>=2 )
		printf("(%2d) Solve X[%2d]\n", iam, k);
#endif
		
		/*
		 * Send Xk to process column Pc[k].
		 */
		for (p = 0; p < Pr; ++p)
		    if ( fsendx_plist[lk][p] != EMPTY ) {
			pi = PNUM( p, kcol, grid );
#ifdef ISEND_IRECV
			MPI_Isend( &x[ii - XK_H], knsupc * nrhs + XK_H,
                                   MPI_DOUBLE, pi, Xk, grid->comm,
                                   &send_req[Llu->SolveMsgSent++]);
#else
			MPI_Send( &x[ii - XK_H], knsupc * nrhs + XK_H,
				 MPI_DOUBLE, 
                                 pi, Xk, grid->comm );
#endif
#if ( DEBUGlevel>=2 )
			printf("(%2d) Sent X[%2.0f] to P %2d\n",
			       iam, x[ii-XK_H], pi);
#endif
		    }
		
		/*
		 * Perform local block modifications: lsum[i] -= L_i,k * X[k]
		 */
		nb = lsub[0] - 1;
		lptr = BC_HEADER + LB_DESCRIPTOR + knsupc;
		luptr = knsupc; /* Skip diagonal block L(k,k). */
		
		dlsum_fmod(lsum, x, &x[ii], rtemp, nrhs, knsupc, k,
			   fmod, nb, lptr, luptr, xsup, grid, Llu,
			   send_req, stat);
	    }
	} /* if diagonal process ... */
    } /* for k ... */

    /*
     * Compute the internal nodes asynchronously by all processes.
     */
#if ( DEBUGlevel>=2 )
    printf("(%2d) nfrecvx %4d,  nfrecvmod %4d,  nleaf %4d\n",
	   iam, nfrecvx, nfrecvmod, nleaf);
#endif

    while ( nfrecvx || nfrecvmod ) { /* While not finished. */

	/* Receive a message. */
#ifdef ISEND_IRECV
	/* -MPI- FATAL: Remote protocol queue full */
	MPI_Irecv( recvbuf, maxrecvsz, MPI_DOUBLE, MPI_ANY_SOURCE,
		 MPI_ANY_TAG, grid->comm, &recv_req );
	MPI_Wait( &recv_req, &status );
#else
	MPI_Recv( recvbuf, maxrecvsz, MPI_DOUBLE, MPI_ANY_SOURCE,
		 MPI_ANY_TAG, grid->comm, &status );
#endif

	k = *recvbuf;

#if ( DEBUGlevel>=2 )
	printf("(%2d) Recv'd block %d, tag %2d\n", iam, k, status.MPI_TAG);
#endif
	
	switch ( status.MPI_TAG ) {
	  case Xk:
	      --nfrecvx;
	      lk = LBj( k, grid ); /* Local block number, column-wise. */
	      lsub = Lrowind_bc_ptr[lk];
	      lusup = Lnzval_bc_ptr[lk];
	      if ( lsub ) {
		  nb   = lsub[0];
		  lptr = BC_HEADER;
		  luptr = 0;
		  knsupc = SuperSize( k );

		  /*
		   * Perform local block modifications: lsum[i] -= L_i,k * X[k]
		   */
		  dlsum_fmod(lsum, x, &recvbuf[XK_H], rtemp, nrhs, knsupc, k,
			     fmod, nb, lptr, luptr, xsup, grid, Llu,
			     send_req, stat);
	      } /* if lsub */

	      break;

	  case LSUM:
	      --nfrecvmod;
	      lk = LBi( k, grid ); /* Local block number, row-wise. */
	      ii = X_BLK( lk );
	      knsupc = SuperSize( k );
	      tempv = &recvbuf[LSUM_H];
	      RHS_ITERATE(j)
		  for (i = 0; i < knsupc; ++i)
		      x[i + ii + j*knsupc] += tempv[i + j*knsupc];

	      if ( (--frecv[lk])==0 && fmod[lk]==0 ) {
		  fmod[lk] = -1; /* Do not solve X[k] in the future. */
		  lk = LBj( k, grid ); /* Local block number, column-wise. */
		  lsub = Lrowind_bc_ptr[lk];
		  lusup = Lnzval_bc_ptr[lk];
		  nsupr = lsub[1];
#ifdef _CRAY
		  STRSM(ftcs1, ftcs1, ftcs2, ftcs3, &knsupc, &nrhs, &alpha,
			lusup, &nsupr, &x[ii], &knsupc);
#elif defined (USE_VENDOR_BLAS)
		  dtrsm_("L", "L", "N", "U", &knsupc, &nrhs, &alpha, 
			 lusup, &nsupr, &x[ii], &knsupc, 1, 1, 1, 1);
#else
		  dtrsm_("L", "L", "N", "U", &knsupc, &nrhs, &alpha, 
			 lusup, &nsupr, &x[ii], &knsupc);
#endif
		  /*stat->ops[SOLVE] += knsupc * (knsupc - 1) * nrhs;*/
#if ( DEBUGlevel>=2 )
		  printf("(%2d) Solve X[%2d]\n", iam, k);
#endif
		
		  /*
		   * Send Xk to process column Pc[k].
		   */
		  kcol = PCOL( k, grid );
		  for (p = 0; p < Pr; ++p)
		      if ( fsendx_plist[lk][p] != EMPTY ) {
			  pi = PNUM( p, kcol, grid );
#ifdef ISEND_IRECV
			  MPI_Isend( &x[ii - XK_H], knsupc * nrhs + XK_H,
                                     MPI_DOUBLE, pi, Xk, grid->comm,
				     &send_req[Llu->SolveMsgSent++] );
#else
			  MPI_Send( &x[ii - XK_H], knsupc * nrhs + XK_H,
				   MPI_DOUBLE, pi, Xk, grid->comm );
#endif
#if ( DEBUGlevel>=2 )
			  printf("(%2d) Sent X[%2.0f] to P %2d\n",
				 iam, x[ii-XK_H], pi);
#endif
		      }

		  /*
		   * Perform local block modifications.
		   */
		  nb = lsub[0] - 1;
		  lptr = BC_HEADER + LB_DESCRIPTOR + knsupc;
		  luptr = knsupc; /* Skip diagonal block L(k,k). */

		  dlsum_fmod(lsum, x, &x[ii], rtemp, nrhs, knsupc, k,
			     fmod, nb, lptr, luptr, xsup, grid, Llu,
			     send_req, stat);
	      } /* if */

	      break;

#if ( DEBUGlevel>=2 )
	    default:
	      printf("(%2d) Recv'd wrong message tag %4d\n", status.MPI_TAG);
	      break;
#endif
	  } /* switch */

    } /* while not finished ... */


#if ( PRNTlevel>=2 )
    t = SuperLU_timer_() - t;
    if ( !iam ) printf(".. L-solve time\t%8.2f\n", t);
    t = SuperLU_timer_();
#endif

#if ( DEBUGlevel>=2 )
    if ( !iam ) printf("\n.. After L-solve: y =\n");
    for (i = 0, k = 0; k < nsupers; ++k) {
	krow = PROW( k, grid );
	kcol = PCOL( k, grid );
	if ( myrow == krow && mycol == kcol ) { /* Diagonal process */
	    knsupc = SuperSize( k );
	    lk = LBi( k, grid );
	    ii = X_BLK( lk );
	    for (j = 0; j < knsupc; ++j)
		printf("\t(%d)\t%4d\t%.10f\n", iam, xsup[k]+j, x[ii+j]);
	}
	MPI_Barrier( grid->comm );
    }
#endif

    SUPERLU_FREE(fmod);
    SUPERLU_FREE(frecv);
    SUPERLU_FREE(rtemp);

#ifdef ISEND_IRECV
    for (i = 0; i < Llu->SolveMsgSent; ++i) MPI_Request_free(&send_req[i]);
    Llu->SolveMsgSent = 0;
#endif


    /*---------------------------------------------------
     * Back solve Ux = y.
     *
     * The Y components from the forward solve is already
     * on the diagonal processes.
     *---------------------------------------------------*/

    /* Save the count to be altered so it can be used by
       subsequent call to PDGSTRS1. */
    if ( !(bmod = intMalloc_dist(nlb)) )
	ABORT("Calloc fails for bmod[].");
    for (i = 0; i < nlb; ++i) bmod[i] = Llu->bmod[i];
    if ( !(brecv = intMalloc_dist(nlb)) )
	ABORT("Malloc fails for brecv[].");
    Llu->brecv = brecv;

    /*
     * Compute brecv[] and nbrecvmod counts on the diagonal processes.
     */
    {
	superlu_scope_t *scp = &grid->rscp;

	for (k = 0; k < nsupers; ++k) {
	    krow = PROW( k, grid );
	    if ( myrow == krow ) {
		lk = LBi( k, grid );    /* Local block number. */
		kcol = PCOL( k, grid ); /* Root process in this row scope. */
		if ( mycol != kcol && bmod[lk] )
		    i = 1;  /* Contribution from non-diagonal process. */
		else i = 0;
		MPI_Reduce( &i, &brecv[lk], 1, mpi_int_t,
			   MPI_SUM, kcol, scp->comm );
		if ( mycol == kcol ) { /* Diagonal process. */
		    nbrecvmod += brecv[lk];
		    if ( !brecv[lk] && !bmod[lk] ) ++nroot;
#if ( DEBUGlevel>=2 )
		    printf("(%2d) brecv[%4d]  %2d\n", iam, k, brecv[lk]);
		    assert( brecv[lk] < Pc );
#endif
		}
	    }
	}
    }

    /* Re-initialize lsum to zero. Each block header is already in place. */
    for (k = 0; k < nsupers; ++k) {
	krow = PROW( k, grid );
	if ( myrow == krow ) {
	    knsupc = SuperSize( k );
	    lk = LBi( k, grid );
	    il = LSUM_BLK( lk );
	    dest = &lsum[il];
	    RHS_ITERATE(j)
		for (i = 0; i < knsupc; ++i) dest[i + j*knsupc] = 0.0;
	}
    }