unsigned char* Sample_TileMesh::buildTileMesh(const int tx, const int ty, const float* bmin, const float* bmax, int& dataSize)
{
	if (!m_geom || !m_geom->getMesh() || !m_geom->getChunkyMesh())
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Input mesh is not specified.");
		return 0;
	}
	
	m_tileMemUsage = 0;
	m_tileBuildTime = 0;
	
	cleanup();
	
	const float* verts = m_geom->getMesh()->getVerts();
	const int nverts = m_geom->getMesh()->getVertCount();
	const int ntris = m_geom->getMesh()->getTriCount();
	const rcChunkyTriMesh* chunkyMesh = m_geom->getChunkyMesh();
		
	// Init build configuration from GUI
	memset(&m_cfg, 0, sizeof(m_cfg));
	m_cfg.cs = m_cellSize;
	m_cfg.ch = m_cellHeight;
	m_cfg.walkableSlopeAngle = m_agentMaxSlope;
	m_cfg.walkableHeight = (int)ceilf(m_agentHeight / m_cfg.ch);
	m_cfg.walkableClimb = (int)floorf(m_agentMaxClimb / m_cfg.ch);
	m_cfg.walkableRadius = (int)ceilf(m_agentRadius / m_cfg.cs);
	m_cfg.maxEdgeLen = (int)(m_edgeMaxLen / m_cellSize);
	m_cfg.maxSimplificationError = m_edgeMaxError;
	m_cfg.minRegionArea = (int)rcSqr(m_regionMinSize);		// Note: area = size*size
	m_cfg.mergeRegionArea = (int)rcSqr(m_regionMergeSize);	// Note: area = size*size
	m_cfg.maxVertsPerPoly = (int)m_vertsPerPoly;
	m_cfg.tileSize = (int)m_tileSize;
	m_cfg.borderSize = m_cfg.walkableRadius + 3; // Reserve enough padding.
	m_cfg.width = m_cfg.tileSize + m_cfg.borderSize*2;
	m_cfg.height = m_cfg.tileSize + m_cfg.borderSize*2;
	m_cfg.detailSampleDist = m_detailSampleDist < 0.9f ? 0 : m_cellSize * m_detailSampleDist;
	m_cfg.detailSampleMaxError = m_cellHeight * m_detailSampleMaxError;
	
	// Expand the heighfield bounding box by border size to find the extents of geometry we need to build this tile.
	//
	// This is done in order to make sure that the navmesh tiles connect correctly at the borders,
	// and the obstacles close to the border work correctly with the dilation process.
	// No polygons (or contours) will be created on the border area.
	//
	// IMPORTANT!
	//
	//   :''''''''':
	//   : +-----+ :
	//   : |     | :
	//   : |     |<--- tile to build
	//   : |     | :  
	//   : +-----+ :<-- geometry needed
	//   :.........:
	//
	// You should use this bounding box to query your input geometry.
	//
	// For example if you build a navmesh for terrain, and want the navmesh tiles to match the terrain tile size
	// you will need to pass in data from neighbour terrain tiles too! In a simple case, just pass in all the 8 neighbours,
	// or use the bounding box below to only pass in a sliver of each of the 8 neighbours.
	rcVcopy(m_cfg.bmin, bmin);
	rcVcopy(m_cfg.bmax, bmax);
	m_cfg.bmin[0] -= m_cfg.borderSize*m_cfg.cs;
	m_cfg.bmin[2] -= m_cfg.borderSize*m_cfg.cs;
	m_cfg.bmax[0] += m_cfg.borderSize*m_cfg.cs;
	m_cfg.bmax[2] += m_cfg.borderSize*m_cfg.cs;
	
	// Reset build times gathering.
	m_ctx->resetTimers();
	
	// Start the build process.
	m_ctx->startTimer(RC_TIMER_TOTAL);
	
	m_ctx->log(RC_LOG_PROGRESS, "Building navigation:");
	m_ctx->log(RC_LOG_PROGRESS, " - %d x %d cells", m_cfg.width, m_cfg.height);
	m_ctx->log(RC_LOG_PROGRESS, " - %.1fK verts, %.1fK tris", nverts/1000.0f, ntris/1000.0f);
	
	// Allocate voxel heightfield where we rasterize our input data to.
	m_solid = rcAllocHeightfield();
	if (!m_solid)
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'solid'.");
		return 0;
	}
	if (!rcCreateHeightfield(m_ctx, *m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch))
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create solid heightfield.");
		return 0;
	}
	
	// Allocate array that can hold triangle flags.
	// If you have multiple meshes you need to process, allocate
	// and array which can hold the max number of triangles you need to process.
	m_triareas = new unsigned char[chunkyMesh->maxTrisPerChunk];
	if (!m_triareas)
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'm_triareas' (%d).", chunkyMesh->maxTrisPerChunk);
		return 0;
	}
	
	float tbmin[2], tbmax[2];
	tbmin[0] = m_cfg.bmin[0];
	tbmin[1] = m_cfg.bmin[2];
	tbmax[0] = m_cfg.bmax[0];
	tbmax[1] = m_cfg.bmax[2];
	int cid[512];// TODO: Make grow when returning too many items.
	const int ncid = rcGetChunksOverlappingRect(chunkyMesh, tbmin, tbmax, cid, 512);
	if (!ncid)
		return 0;
	
	m_tileTriCount = 0;
	
	for (int i = 0; i < ncid; ++i)
	{
		const rcChunkyTriMeshNode& node = chunkyMesh->nodes[cid[i]];
		const int* ctris = &chunkyMesh->tris[node.i*3];
		const int nctris = node.n;
		
		m_tileTriCount += nctris;
		
		memset(m_triareas, 0, nctris*sizeof(unsigned char));
		rcMarkWalkableTriangles(m_ctx, m_cfg.walkableSlopeAngle,
								verts, nverts, ctris, nctris, m_triareas);
		
		if (!rcRasterizeTriangles(m_ctx, verts, nverts, ctris, m_triareas, nctris, *m_solid, m_cfg.walkableClimb))
			return 0;
	}
	
	if (!m_keepInterResults)
	{
		delete [] m_triareas;
		m_triareas = 0;
	}
	
	// Once all geometry is rasterized, we do initial pass of filtering to
	// remove unwanted overhangs caused by the conservative rasterization
	// as well as filter spans where the character cannot possibly stand.
	if (m_filterLowHangingObstacles)
		rcFilterLowHangingWalkableObstacles(m_ctx, m_cfg.walkableClimb, *m_solid);
	if (m_filterLedgeSpans)
		rcFilterLedgeSpans(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid);
	if (m_filterWalkableLowHeightSpans)
		rcFilterWalkableLowHeightSpans(m_ctx, m_cfg.walkableHeight, *m_solid);
	
	// Compact the heightfield so that it is faster to handle from now on.
	// This will result more cache coherent data as well as the neighbours
	// between walkable cells will be calculated.
	m_chf = rcAllocCompactHeightfield();
	if (!m_chf)
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'chf'.");
		return 0;
	}
	if (!rcBuildCompactHeightfield(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid, *m_chf))
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build compact data.");
		return 0;
	}
	
	if (!m_keepInterResults)
	{
		rcFreeHeightField(m_solid);
		m_solid = 0;
	}

	// Erode the walkable area by agent radius.
	if (!rcErodeWalkableArea(m_ctx, m_cfg.walkableRadius, *m_chf))
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not erode.");
		return 0;
	}

	// (Optional) Mark areas.
	const ConvexVolume* vols = m_geom->getConvexVolumes();
	for (int i  = 0; i < m_geom->getConvexVolumeCount(); ++i)
		rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf);
	
	
	// Partition the heightfield so that we can use simple algorithm later to triangulate the walkable areas.
	// There are 3 martitioning methods, each with some pros and cons:
	// 1) Watershed partitioning
	//   - the classic Recast partitioning
	//   - creates the nicest tessellation
	//   - usually slowest
	//   - partitions the heightfield into nice regions without holes or overlaps
	//   - the are some corner cases where this method creates produces holes and overlaps
	//      - holes may appear when a small obstacles is close to large open area (triangulation can handle this)
	//      - overlaps may occur if you have narrow spiral corridors (i.e stairs), this make triangulation to fail
	//   * generally the best choice if you precompute the nacmesh, use this if you have large open areas
	// 2) Monotone partioning
	//   - fastest
	//   - partitions the heightfield into regions without holes and overlaps (guaranteed)
	//   - creates long thin polygons, which sometimes causes paths with detours
	//   * use this if you want fast navmesh generation
	// 3) Layer partitoining
	//   - quite fast
	//   - partitions the heighfield into non-overlapping regions
	//   - relies on the triangulation code to cope with holes (thus slower than monotone partitioning)
	//   - produces better triangles than monotone partitioning
	//   - does not have the corner cases of watershed partitioning
	//   - can be slow and create a bit ugly tessellation (still better than monotone)
	//     if you have large open areas with small obstacles (not a problem if you use tiles)
	//   * good choice to use for tiled navmesh with medium and small sized tiles
	
	if (m_partitionType == SAMPLE_PARTITION_WATERSHED)
	{
		// Prepare for region partitioning, by calculating distance field along the walkable surface.
		if (!rcBuildDistanceField(m_ctx, *m_chf))
		{
			m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build distance field.");
			return 0;
		}
		
		// Partition the walkable surface into simple regions without holes.
		if (!rcBuildRegions(m_ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea, m_cfg.mergeRegionArea))
		{
			m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build watershed regions.");
			return 0;
		}
	}
	else if (m_partitionType == SAMPLE_PARTITION_MONOTONE)
	{
		// Partition the walkable surface into simple regions without holes.
		// Monotone partitioning does not need distancefield.
		if (!rcBuildRegionsMonotone(m_ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea, m_cfg.mergeRegionArea))
		{
			m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build monotone regions.");
			return 0;
		}
	}
	else // SAMPLE_PARTITION_LAYERS
	{
		// Partition the walkable surface into simple regions without holes.
		if (!rcBuildLayerRegions(m_ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea))
		{
			m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build layer regions.");
			return 0;
		}
	}
	 	
	// Create contours.
	m_cset = rcAllocContourSet();
	if (!m_cset)
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'cset'.");
		return 0;
	}
	if (!rcBuildContours(m_ctx, *m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, *m_cset))
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create contours.");
		return 0;
	}
	
	if (m_cset->nconts == 0)
	{
		return 0;
	}
	
	// Build polygon navmesh from the contours.
	m_pmesh = rcAllocPolyMesh();
	if (!m_pmesh)
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmesh'.");
		return 0;
	}
	if (!rcBuildPolyMesh(m_ctx, *m_cset, m_cfg.maxVertsPerPoly, *m_pmesh))
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not triangulate contours.");
		return 0;
	}
	
	// Build detail mesh.
	m_dmesh = rcAllocPolyMeshDetail();
	if (!m_dmesh)
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'dmesh'.");
		return 0;
	}
	
	if (!rcBuildPolyMeshDetail(m_ctx, *m_pmesh, *m_chf,
							   m_cfg.detailSampleDist, m_cfg.detailSampleMaxError,
							   *m_dmesh))
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could build polymesh detail.");
		return 0;
	}
	
	if (!m_keepInterResults)
	{
		rcFreeCompactHeightfield(m_chf);
		m_chf = 0;
		rcFreeContourSet(m_cset);
		m_cset = 0;
	}
	
	unsigned char* navData = 0;
	int navDataSize = 0;
	if (m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON)
	{
		if (m_pmesh->nverts >= 0xffff)
		{
			// The vertex indices are ushorts, and cannot point to more than 0xffff vertices.
			m_ctx->log(RC_LOG_ERROR, "Too many vertices per tile %d (max: %d).", m_pmesh->nverts, 0xffff);
			return 0;
		}
		
		// Update poly flags from areas.
		for (int i = 0; i < m_pmesh->npolys; ++i)
		{
			if (m_pmesh->areas[i] == RC_WALKABLE_AREA)
				m_pmesh->areas[i] = SAMPLE_POLYAREA_GROUND;
			
			if (m_pmesh->areas[i] == SAMPLE_POLYAREA_GROUND ||
				m_pmesh->areas[i] == SAMPLE_POLYAREA_GRASS ||
				m_pmesh->areas[i] == SAMPLE_POLYAREA_ROAD)
			{
				m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK;
			}
			else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_WATER)
			{
				m_pmesh->flags[i] = SAMPLE_POLYFLAGS_SWIM;
			}
			else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_DOOR)
			{
				m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK | SAMPLE_POLYFLAGS_DOOR;
			}
		}
		
		dtNavMeshCreateParams params;
		memset(&params, 0, sizeof(params));
		params.verts = m_pmesh->verts;
		params.vertCount = m_pmesh->nverts;
		params.polys = m_pmesh->polys;
		params.polyAreas = m_pmesh->areas;
		params.polyFlags = m_pmesh->flags;
		params.polyCount = m_pmesh->npolys;
		params.nvp = m_pmesh->nvp;
		params.detailMeshes = m_dmesh->meshes;
		params.detailVerts = m_dmesh->verts;
		params.detailVertsCount = m_dmesh->nverts;
		params.detailTris = m_dmesh->tris;
		params.detailTriCount = m_dmesh->ntris;
		params.offMeshConVerts = m_geom->getOffMeshConnectionVerts();
		params.offMeshConRad = m_geom->getOffMeshConnectionRads();
		params.offMeshConDir = m_geom->getOffMeshConnectionDirs();
		params.offMeshConAreas = m_geom->getOffMeshConnectionAreas();
		params.offMeshConFlags = m_geom->getOffMeshConnectionFlags();
		params.offMeshConUserID = m_geom->getOffMeshConnectionId();
		params.offMeshConCount = m_geom->getOffMeshConnectionCount();
		params.walkableHeight = m_agentHeight;
		params.walkableRadius = m_agentRadius;
		params.walkableClimb = m_agentMaxClimb;
		params.tileX = tx;
		params.tileY = ty;
		params.tileLayer = 0;
		rcVcopy(params.bmin, m_pmesh->bmin);
		rcVcopy(params.bmax, m_pmesh->bmax);
		params.cs = m_cfg.cs;
		params.ch = m_cfg.ch;
		params.buildBvTree = true;
		
		if (!dtCreateNavMeshData(&params, &navData, &navDataSize))
		{
			m_ctx->log(RC_LOG_ERROR, "Could not build Detour navmesh.");
			return 0;
		}		
	}
	m_tileMemUsage = navDataSize/1024.0f;
	
	m_ctx->stopTimer(RC_TIMER_TOTAL);
	
	// Show performance stats.
	duLogBuildTimes(*m_ctx, m_ctx->getAccumulatedTime(RC_TIMER_TOTAL));
	m_ctx->log(RC_LOG_PROGRESS, ">> Polymesh: %d vertices  %d polygons", m_pmesh->nverts, m_pmesh->npolys);
	
	m_tileBuildTime = m_ctx->getAccumulatedTime(RC_TIMER_TOTAL)/1000.0f;

	dataSize = navDataSize;
	return navData;
}
bool Sample_SoloMesh::handleBuild()
{
	if (!m_geom || !m_geom->getMesh())
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Input mesh is not specified.");
		return false;
	}
	
	cleanup();
	
	const float* bmin = m_geom->getMeshBoundsMin();
	const float* bmax = m_geom->getMeshBoundsMax();
	const float* verts = m_geom->getMesh()->getVerts();
	const int nverts = m_geom->getMesh()->getVertCount();
	const int* tris = m_geom->getMesh()->getTris();
	const int ntris = m_geom->getMesh()->getTriCount();
	
	//
	// Step 1. Initialize build config.
	//
	
	// Init build configuration from GUI
	memset(&m_cfg, 0, sizeof(m_cfg));
	m_cfg.cs = m_cellSize;
	m_cfg.ch = m_cellHeight;
	m_cfg.walkableSlopeAngle = m_agentMaxSlope;
	m_cfg.walkableHeight = (int)ceilf(m_agentHeight / m_cfg.ch);
	m_cfg.walkableClimb = (int)floorf(m_agentMaxClimb / m_cfg.ch);
	m_cfg.walkableRadius = (int)ceilf(m_agentRadius / m_cfg.cs);
	m_cfg.maxEdgeLen = (int)(m_edgeMaxLen / m_cellSize);
	m_cfg.maxSimplificationError = m_edgeMaxError;
	m_cfg.minRegionArea = (int)rcSqr(m_regionMinSize);		// Note: area = size*size
	m_cfg.mergeRegionArea = (int)rcSqr(m_regionMergeSize);	// Note: area = size*size
	m_cfg.maxVertsPerPoly = (int)m_vertsPerPoly;
	m_cfg.detailSampleDist = m_detailSampleDist < 0.9f ? 0 : m_cellSize * m_detailSampleDist;
	m_cfg.detailSampleMaxError = m_cellHeight * m_detailSampleMaxError;
	
	// Set the area where the navigation will be build.
	// Here the bounds of the input mesh are used, but the
	// area could be specified by an user defined box, etc.
	rcVcopy(m_cfg.bmin, bmin);
	rcVcopy(m_cfg.bmax, bmax);
	rcCalcGridSize(m_cfg.bmin, m_cfg.bmax, m_cfg.cs, &m_cfg.width, &m_cfg.height);

	// Reset build times gathering.
	m_ctx->resetTimers();

	// Start the build process.	
	m_ctx->startTimer(RC_TIMER_TOTAL);
	
	m_ctx->log(RC_LOG_PROGRESS, "Building navigation:");
	m_ctx->log(RC_LOG_PROGRESS, " - %d x %d cells", m_cfg.width, m_cfg.height);
	m_ctx->log(RC_LOG_PROGRESS, " - %.1fK verts, %.1fK tris", nverts/1000.0f, ntris/1000.0f);
	
	//
	// Step 2. Rasterize input polygon soup.
	//
	
	// Allocate voxel heightfield where we rasterize our input data to.
	m_solid = rcAllocHeightfield();
	if (!m_solid)
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'solid'.");
		return false;
	}
	if (!rcCreateHeightfield(m_ctx, *m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch))
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create solid heightfield.");
		return false;
	}
	
	// Allocate array that can hold triangle area types.
	// If you have multiple meshes you need to process, allocate
	// and array which can hold the max number of triangles you need to process.
	m_triareas = new unsigned char[ntris];
	if (!m_triareas)
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'm_triareas' (%d).", ntris);
		return false;
	}
	
	// Find triangles which are walkable based on their slope and rasterize them.
	// If your input data is multiple meshes, you can transform them here, calculate
	// the are type for each of the meshes and rasterize them.
	memset(m_triareas, 0, ntris*sizeof(unsigned char));
	rcMarkWalkableTriangles(m_ctx, m_cfg.walkableSlopeAngle, verts, nverts, tris, ntris, m_triareas);
	rcRasterizeTriangles(m_ctx, verts, nverts, tris, m_triareas, ntris, *m_solid, m_cfg.walkableClimb);

	if (!m_keepInterResults)
	{
		delete [] m_triareas;
		m_triareas = 0;
	}
	
	//
	// Step 3. Filter walkables surfaces.
	//
	
	// Once all geoemtry is rasterized, we do initial pass of filtering to
	// remove unwanted overhangs caused by the conservative rasterization
	// as well as filter spans where the character cannot possibly stand.
	rcFilterLowHangingWalkableObstacles(m_ctx, m_cfg.walkableClimb, *m_solid);
	rcFilterLedgeSpans(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid);
	rcFilterWalkableLowHeightSpans(m_ctx, m_cfg.walkableHeight, *m_solid);


	//
	// Step 4. Partition walkable surface to simple regions.
	//

	// Compact the heightfield so that it is faster to handle from now on.
	// This will result more cache coherent data as well as the neighbours
	// between walkable cells will be calculated.
	m_chf = rcAllocCompactHeightfield();
	if (!m_chf)
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'chf'.");
		return false;
	}
	if (!rcBuildCompactHeightfield(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid, *m_chf))
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build compact data.");
		return false;
	}
	
	if (!m_keepInterResults)
	{
		rcFreeHeightField(m_solid);
		m_solid = 0;
	}
		
	// Erode the walkable area by agent radius.
	if (!rcErodeWalkableArea(m_ctx, m_cfg.walkableRadius, *m_chf))
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not erode.");
		return false;
	}

	// (Optional) Mark areas.
	const ConvexVolume* vols = m_geom->getConvexVolumes();
	for (int i  = 0; i < m_geom->getConvexVolumeCount(); ++i)
		rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf);

	
	// Partition the heightfield so that we can use simple algorithm later to triangulate the walkable areas.
	// There are 3 martitioning methods, each with some pros and cons:
	// 1) Watershed partitioning
	//   - the classic Recast partitioning
	//   - creates the nicest tessellation
	//   - usually slowest
	//   - partitions the heightfield into nice regions without holes or overlaps
	//   - the are some corner cases where this method creates produces holes and overlaps
	//      - holes may appear when a small obstacles is close to large open area (triangulation can handle this)
	//      - overlaps may occur if you have narrow spiral corridors (i.e stairs), this make triangulation to fail
	//   * generally the best choice if you precompute the nacmesh, use this if you have large open areas
	// 2) Monotone partioning
	//   - fastest
	//   - partitions the heightfield into regions without holes and overlaps (guaranteed)
	//   - creates long thin polygons, which sometimes causes paths with detours
	//   * use this if you want fast navmesh generation
	// 3) Layer partitoining
	//   - quite fast
	//   - partitions the heighfield into non-overlapping regions
	//   - relies on the triangulation code to cope with holes (thus slower than monotone partitioning)
	//   - produces better triangles than monotone partitioning
	//   - does not have the corner cases of watershed partitioning
	//   - can be slow and create a bit ugly tessellation (still better than monotone)
	//     if you have large open areas with small obstacles (not a problem if you use tiles)
	//   * good choice to use for tiled navmesh with medium and small sized tiles
	
	if (m_partitionType == SAMPLE_PARTITION_WATERSHED)
	{
		// Prepare for region partitioning, by calculating distance field along the walkable surface.
		if (!rcBuildDistanceField(m_ctx, *m_chf))
		{
			m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build distance field.");
			return false;
		}
		
		// Partition the walkable surface into simple regions without holes.
		if (!rcBuildRegions(m_ctx, *m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea))
		{
			m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build watershed regions.");
			return false;
		}
	}
	else if (m_partitionType == SAMPLE_PARTITION_MONOTONE)
	{
		// Partition the walkable surface into simple regions without holes.
		// Monotone partitioning does not need distancefield.
		if (!rcBuildRegionsMonotone(m_ctx, *m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea))
		{
			m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build monotone regions.");
			return false;
		}
	}
	else // SAMPLE_PARTITION_LAYERS
	{
		// Partition the walkable surface into simple regions without holes.
		if (!rcBuildLayerRegions(m_ctx, *m_chf, 0, m_cfg.minRegionArea))
		{
			m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build layer regions.");
			return false;
		}
	}
	
	//
	// Step 5. Trace and simplify region contours.
	//
	
	// Create contours.
	m_cset = rcAllocContourSet();
	if (!m_cset)
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'cset'.");
		return false;
	}
	if (!rcBuildContours(m_ctx, *m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, *m_cset))
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create contours.");
		return false;
	}
	
	//
	// Step 6. Build polygons mesh from contours.
	//
	
	// Build polygon navmesh from the contours.
	m_pmesh = rcAllocPolyMesh();
	if (!m_pmesh)
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmesh'.");
		return false;
	}
	if (!rcBuildPolyMesh(m_ctx, *m_cset, m_cfg.maxVertsPerPoly, *m_pmesh))
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not triangulate contours.");
		return false;
	}
	
	//
	// Step 7. Create detail mesh which allows to access approximate height on each polygon.
	//
	
	m_dmesh = rcAllocPolyMeshDetail();
	if (!m_dmesh)
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmdtl'.");
		return false;
	}

	if (!rcBuildPolyMeshDetail(m_ctx, *m_pmesh, *m_chf, m_cfg.detailSampleDist, m_cfg.detailSampleMaxError, *m_dmesh))
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build detail mesh.");
		return false;
	}

	if (!m_keepInterResults)
	{
		rcFreeCompactHeightfield(m_chf);
		m_chf = 0;
		rcFreeContourSet(m_cset);
		m_cset = 0;
	}

	// At this point the navigation mesh data is ready, you can access it from m_pmesh.
	// See duDebugDrawPolyMesh or dtCreateNavMeshData as examples how to access the data.
	
	//
	// (Optional) Step 8. Create Detour data from Recast poly mesh.
	//
	
	// The GUI may allow more max points per polygon than Detour can handle.
	// Only build the detour navmesh if we do not exceed the limit.
	if (m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON)
	{
		unsigned char* navData = 0;
		int navDataSize = 0;

		// Update poly flags from areas.
		for (int i = 0; i < m_pmesh->npolys; ++i)
		{
			if (m_pmesh->areas[i] == RC_WALKABLE_AREA)
				m_pmesh->areas[i] = SAMPLE_POLYAREA_GROUND;
				
			if (m_pmesh->areas[i] == SAMPLE_POLYAREA_GROUND ||
				m_pmesh->areas[i] == SAMPLE_POLYAREA_GRASS ||
				m_pmesh->areas[i] == SAMPLE_POLYAREA_ROAD)
			{
				m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK;
			}
			else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_WATER)
			{
				m_pmesh->flags[i] = SAMPLE_POLYFLAGS_SWIM;
			}
			else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_DOOR)
			{
				m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK | SAMPLE_POLYFLAGS_DOOR;
			}
		}


		dtNavMeshCreateParams params;
		memset(&params, 0, sizeof(params));
		params.verts = m_pmesh->verts;
		params.vertCount = m_pmesh->nverts;
		params.polys = m_pmesh->polys;
		params.polyAreas = m_pmesh->areas;
		params.polyFlags = m_pmesh->flags;
		params.polyCount = m_pmesh->npolys;
		params.nvp = m_pmesh->nvp;
		params.detailMeshes = m_dmesh->meshes;
		params.detailVerts = m_dmesh->verts;
		params.detailVertsCount = m_dmesh->nverts;
		params.detailTris = m_dmesh->tris;
		params.detailTriCount = m_dmesh->ntris;
		params.offMeshConVerts = m_geom->getOffMeshConnectionVerts();
		params.offMeshConRad = m_geom->getOffMeshConnectionRads();
		params.offMeshConDir = m_geom->getOffMeshConnectionDirs();
		params.offMeshConAreas = m_geom->getOffMeshConnectionAreas();
		params.offMeshConFlags = m_geom->getOffMeshConnectionFlags();
		params.offMeshConUserID = m_geom->getOffMeshConnectionId();
		params.offMeshConCount = m_geom->getOffMeshConnectionCount();
		params.walkableHeight = m_agentHeight;
		params.walkableRadius = m_agentRadius;
		params.walkableClimb = m_agentMaxClimb;
		rcVcopy(params.bmin, m_pmesh->bmin);
		rcVcopy(params.bmax, m_pmesh->bmax);
		params.cs = m_cfg.cs;
		params.ch = m_cfg.ch;
		params.buildBvTree = true;
		
		if (!dtCreateNavMeshData(&params, &navData, &navDataSize))
		{
			m_ctx->log(RC_LOG_ERROR, "Could not build Detour navmesh.");
			return false;
		}
		
		m_navMesh = dtAllocNavMesh();
		if (!m_navMesh)
		{
			dtFree(navData);
			m_ctx->log(RC_LOG_ERROR, "Could not create Detour navmesh");
			return false;
		}
		
		dtStatus status;
		
		status = m_navMesh->init(navData, navDataSize, DT_TILE_FREE_DATA);
		if (dtStatusFailed(status))
		{
			dtFree(navData);
			m_ctx->log(RC_LOG_ERROR, "Could not init Detour navmesh");
			return false;
		}
		
		status = m_navQuery->init(m_navMesh, 2048);
		if (dtStatusFailed(status))
		{
			m_ctx->log(RC_LOG_ERROR, "Could not init Detour navmesh query");
			return false;
		}
	}
	
	m_ctx->stopTimer(RC_TIMER_TOTAL);

	// Show performance stats.
	duLogBuildTimes(*m_ctx, m_ctx->getAccumulatedTime(RC_TIMER_TOTAL));
	m_ctx->log(RC_LOG_PROGRESS, ">> Polymesh: %d vertices  %d polygons", m_pmesh->nverts, m_pmesh->npolys);
	
	m_totalBuildTimeMs = m_ctx->getAccumulatedTime(RC_TIMER_TOTAL)/1000.0f;
	
	if (m_tool)
		m_tool->init(this);
	initToolStates(this);

	return true;
}
示例#3
0
unsigned char* Sample_TileMesh::buildTileMesh(const int tx, const int ty, const float* bmin, const float* bmax, int& dataSize)
{
	if (!m_geom || !m_geom->getMesh() || !m_geom->getChunkyMesh())
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Input mesh is not specified.");
		return 0;
	}
	
	m_tileMemUsage = 0;
	m_tileBuildTime = 0;
	
	cleanup();
	
	const float* verts = m_geom->getMesh()->getVerts();
	const int nverts = m_geom->getMesh()->getVertCount();
	const int ntris = m_geom->getMesh()->getTriCount();
	const rcChunkyTriMesh* chunkyMesh = m_geom->getChunkyMesh();
		
	// Init build configuration from GUI
	memset(&m_cfg, 0, sizeof(m_cfg));
	m_cfg.cs = m_cellSize;
	m_cfg.ch = m_cellHeight;
	m_cfg.walkableSlopeAngle = m_agentMaxSlope;
	m_cfg.walkableHeight = (int)ceilf(m_agentHeight / m_cfg.ch);
	m_cfg.walkableClimb = (int)floorf(m_agentMaxClimb / m_cfg.ch);
	m_cfg.walkableRadius = (int)ceilf(m_agentRadius / m_cfg.cs);
	m_cfg.maxEdgeLen = (int)(m_edgeMaxLen / m_cellSize);
	m_cfg.maxSimplificationError = m_edgeMaxError;
	m_cfg.minRegionArea = (int)rcSqr(m_regionMinSize);		// Note: area = size*size
	m_cfg.mergeRegionArea = (int)rcSqr(m_regionMergeSize);	// Note: area = size*size
	m_cfg.maxVertsPerPoly = (int)m_vertsPerPoly;
	m_cfg.tileSize = (int)m_tileSize;
	m_cfg.borderSize = m_cfg.walkableRadius + 3; // Reserve enough padding.
	m_cfg.width = m_cfg.tileSize + m_cfg.borderSize*2;
	m_cfg.height = m_cfg.tileSize + m_cfg.borderSize*2;
	m_cfg.detailSampleDist = m_detailSampleDist < 0.9f ? 0 : m_cellSize * m_detailSampleDist;
	m_cfg.detailSampleMaxError = m_cellHeight * m_detailSampleMaxError;
	
	rcVcopy(m_cfg.bmin, bmin);
	rcVcopy(m_cfg.bmax, bmax);
	m_cfg.bmin[0] -= m_cfg.borderSize*m_cfg.cs;
	m_cfg.bmin[2] -= m_cfg.borderSize*m_cfg.cs;
	m_cfg.bmax[0] += m_cfg.borderSize*m_cfg.cs;
	m_cfg.bmax[2] += m_cfg.borderSize*m_cfg.cs;
	
	// Reset build times gathering.
	m_ctx->resetTimers();
	
	// Start the build process.
	m_ctx->startTimer(RC_TIMER_TOTAL);
	
	m_ctx->log(RC_LOG_PROGRESS, "Building navigation:");
	m_ctx->log(RC_LOG_PROGRESS, " - %d x %d cells", m_cfg.width, m_cfg.height);
	m_ctx->log(RC_LOG_PROGRESS, " - %.1fK verts, %.1fK tris", nverts/1000.0f, ntris/1000.0f);
	
	// Allocate voxel heightfield where we rasterize our input data to.
	m_solid = rcAllocHeightfield();
	if (!m_solid)
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'solid'.");
		return 0;
	}
	if (!rcCreateHeightfield(m_ctx, *m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch))
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create solid heightfield.");
		return 0;
	}
	
	// Allocate array that can hold triangle flags.
	// If you have multiple meshes you need to process, allocate
	// and array which can hold the max number of triangles you need to process.
	m_triareas = new unsigned char[chunkyMesh->maxTrisPerChunk];
	if (!m_triareas)
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'm_triareas' (%d).", chunkyMesh->maxTrisPerChunk);
		return 0;
	}
	
	float tbmin[2], tbmax[2];
	tbmin[0] = m_cfg.bmin[0];
	tbmin[1] = m_cfg.bmin[2];
	tbmax[0] = m_cfg.bmax[0];
	tbmax[1] = m_cfg.bmax[2];
	int cid[512];// TODO: Make grow when returning too many items.
	const int ncid = rcGetChunksOverlappingRect(chunkyMesh, tbmin, tbmax, cid, 512);
	if (!ncid)
		return 0;
	
	m_tileTriCount = 0;
	
	for (int i = 0; i < ncid; ++i)
	{
		const rcChunkyTriMeshNode& node = chunkyMesh->nodes[cid[i]];
		const int* tris = &chunkyMesh->tris[node.i*3];
		const int ntris = node.n;
		
		m_tileTriCount += ntris;
		
		memset(m_triareas, 0, ntris*sizeof(unsigned char));
		rcMarkWalkableTriangles(m_ctx, m_cfg.walkableSlopeAngle,
								verts, nverts, tris, ntris, m_triareas);
		
		rcRasterizeTriangles(m_ctx, verts, nverts, tris, m_triareas, ntris, *m_solid, m_cfg.walkableClimb);
	}
	
	if (!m_keepInterResults)
	{
		delete [] m_triareas;
		m_triareas = 0;
	}
	
	// Once all geometry is rasterized, we do initial pass of filtering to
	// remove unwanted overhangs caused by the conservative rasterization
	// as well as filter spans where the character cannot possibly stand.
	rcFilterLowHangingWalkableObstacles(m_ctx, m_cfg.walkableClimb, *m_solid);
	rcFilterLedgeSpans(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid);
	rcFilterWalkableLowHeightSpans(m_ctx, m_cfg.walkableHeight, *m_solid);
	
	// Compact the heightfield so that it is faster to handle from now on.
	// This will result more cache coherent data as well as the neighbours
	// between walkable cells will be calculated.
	m_chf = rcAllocCompactHeightfield();
	if (!m_chf)
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'chf'.");
		return 0;
	}
	if (!rcBuildCompactHeightfield(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid, *m_chf))
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build compact data.");
		return 0;
	}
	
	if (!m_keepInterResults)
	{
		rcFreeHeightField(m_solid);
		m_solid = 0;
	}

	// Erode the walkable area by agent radius.
	if (!rcErodeWalkableArea(m_ctx, m_cfg.walkableRadius, *m_chf))
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not erode.");
		return false;
	}

	// (Optional) Mark areas.
	const ConvexVolume* vols = m_geom->getConvexVolumes();
	for (int i  = 0; i < m_geom->getConvexVolumeCount(); ++i)
		rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf);
	
	// Prepare for region partitioning, by calculating distance field along the walkable surface.
	if (!rcBuildDistanceField(m_ctx, *m_chf))
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build distance field.");
		return 0;
	}
	
	// Partition the walkable surface into simple regions without holes.
	if (!rcBuildRegions(m_ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea, m_cfg.mergeRegionArea))
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build regions.");
		return 0;
	}
 
	// Create contours.
	m_cset = rcAllocContourSet();
	if (!m_cset)
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'cset'.");
		return 0;
	}
	if (!rcBuildContours(m_ctx, *m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, *m_cset))
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create contours.");
		return 0;
	}
	
	if (m_cset->nconts == 0)
	{
		return 0;
	}
	
	// Build polygon navmesh from the contours.
	m_pmesh = rcAllocPolyMesh();
	if (!m_pmesh)
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmesh'.");
		return 0;
	}
	if (!rcBuildPolyMesh(m_ctx, *m_cset, m_cfg.maxVertsPerPoly, *m_pmesh))
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not triangulate contours.");
		return 0;
	}
	
	// Build detail mesh.
	m_dmesh = rcAllocPolyMeshDetail();
	if (!m_dmesh)
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'dmesh'.");
		return 0;
	}
	
	if (!rcBuildPolyMeshDetail(m_ctx, *m_pmesh, *m_chf,
							   m_cfg.detailSampleDist, m_cfg.detailSampleMaxError,
							   *m_dmesh))
	{
		m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could build polymesh detail.");
		return 0;
	}
	
	if (!m_keepInterResults)
	{
		rcFreeCompactHeightfield(m_chf);
		m_chf = 0;
		rcFreeContourSet(m_cset);
		m_cset = 0;
	}
	
	unsigned char* navData = 0;
	int navDataSize = 0;
	if (m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON)
	{
		// Remove padding from the polymesh data. TODO: Remove this odditity.
		for (int i = 0; i < m_pmesh->nverts; ++i)
		{
			unsigned short* v = &m_pmesh->verts[i*3];
			v[0] -= (unsigned short)m_cfg.borderSize;
			v[2] -= (unsigned short)m_cfg.borderSize;
		}
		
		if (m_pmesh->nverts >= 0xffff)
		{
			// The vertex indices are ushorts, and cannot point to more than 0xffff vertices.
			m_ctx->log(RC_LOG_ERROR, "Too many vertices per tile %d (max: %d).", m_pmesh->nverts, 0xffff);
			return false;
		}
		
		// Update poly flags from areas.
		for (int i = 0; i < m_pmesh->npolys; ++i)
		{
			if (m_pmesh->areas[i] == RC_WALKABLE_AREA)
				m_pmesh->areas[i] = SAMPLE_POLYAREA_GROUND;
			
			if (m_pmesh->areas[i] == SAMPLE_POLYAREA_GROUND ||
				m_pmesh->areas[i] == SAMPLE_POLYAREA_GRASS ||
				m_pmesh->areas[i] == SAMPLE_POLYAREA_ROAD)
			{
				m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK;
			}
			else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_WATER)
			{
				m_pmesh->flags[i] = SAMPLE_POLYFLAGS_SWIM;
			}
			else if (m_pmesh->areas[i] == SAMPLE_POLYAREA_DOOR)
			{
				m_pmesh->flags[i] = SAMPLE_POLYFLAGS_WALK | SAMPLE_POLYFLAGS_DOOR;
			}
		}
		
		dtNavMeshCreateParams params;
		memset(&params, 0, sizeof(params));
		params.verts = m_pmesh->verts;
		params.vertCount = m_pmesh->nverts;
		params.polys = m_pmesh->polys;
		params.polyAreas = m_pmesh->areas;
		params.polyFlags = m_pmesh->flags;
		params.polyCount = m_pmesh->npolys;
		params.nvp = m_pmesh->nvp;
		params.detailMeshes = m_dmesh->meshes;
		params.detailVerts = m_dmesh->verts;
		params.detailVertsCount = m_dmesh->nverts;
		params.detailTris = m_dmesh->tris;
		params.detailTriCount = m_dmesh->ntris;
		params.offMeshConVerts = m_geom->getOffMeshConnectionVerts();
		params.offMeshConRad = m_geom->getOffMeshConnectionRads();
		params.offMeshConDir = m_geom->getOffMeshConnectionDirs();
		params.offMeshConAreas = m_geom->getOffMeshConnectionAreas();
		params.offMeshConFlags = m_geom->getOffMeshConnectionFlags();
		params.offMeshConUserID = m_geom->getOffMeshConnectionId();
		params.offMeshConCount = m_geom->getOffMeshConnectionCount();
		params.walkableHeight = m_agentHeight;
		params.walkableRadius = m_agentRadius;
		params.walkableClimb = m_agentMaxClimb;
		params.tileX = tx;
		params.tileY = ty;
		rcVcopy(params.bmin, bmin);
		rcVcopy(params.bmax, bmax);
		params.cs = m_cfg.cs;
		params.ch = m_cfg.ch;
		params.tileSize = m_cfg.tileSize;
		
		if (!dtCreateNavMeshData(&params, &navData, &navDataSize))
		{
			m_ctx->log(RC_LOG_ERROR, "Could not build Detour navmesh.");
			return 0;
		}
		
		// Restore padding so that the debug visualization is correct.
		for (int i = 0; i < m_pmesh->nverts; ++i)
		{
			unsigned short* v = &m_pmesh->verts[i*3];
			v[0] += (unsigned short)m_cfg.borderSize;
			v[2] += (unsigned short)m_cfg.borderSize;
		}
		
	}
	m_tileMemUsage = navDataSize/1024.0f;
	
	m_ctx->stopTimer(RC_TIMER_TOTAL);
	
	// Show performance stats.
	duLogBuildTimes(*m_ctx, m_ctx->getAccumulatedTime(RC_TIMER_TOTAL));
	m_ctx->log(RC_LOG_PROGRESS, ">> Polymesh: %d vertices  %d polygons", m_pmesh->nverts, m_pmesh->npolys);
	
	m_tileBuildTime = m_ctx->getAccumulatedTime(RC_TIMER_TOTAL)/1000.0f;

	dataSize = navDataSize;
	return navData;
}
示例#4
0
void NavMeshCreator::computeNavMesh()
{
    // Reset build times gathering.
	m_context->resetTimers();
    
    // Start the build process.	
	m_context->startTimer(RC_TIMER_TOTAL);
    m_context->log(RC_LOG_PROGRESS, "NavMesh computation start");
    m_context->log(RC_LOG_PROGRESS, " - %.1fK vertices, %.1fK triangles", m_inputVerticesCount/1000.0f, m_inputTrianglesCount/1000.0f);
    
    if (m_success)
    {
        //Compute the grid size
        rcCalcGridSize(
                       m_min, 
                       m_max, 
                       m_voxelSize, 
                       &m_intermediateHeightfieldWidth, 
                       &m_intermediateHeightfieldHeight);
    }
    
    m_context->log(RC_LOG_PROGRESS, " - %d x %d = %d voxels", m_intermediateHeightfieldWidth, m_intermediateHeightfieldHeight, m_intermediateHeightfieldHeight * m_intermediateHeightfieldWidth);
    
    //Mark the walkable m_inputTriangles
    rcMarkWalkableTriangles(
                            m_context, 
                            m_maximumSlope, 
                            m_inputVertices, 
                            m_inputVerticesCount, 
                            m_inputTriangles, 
                            m_inputTrianglesCount, 
                            m_intermediateTriangleTags);
    
    
    
    // Build the heightfield
    m_success = m_success && (rcCreateHeightfield(
                                              m_context,
                                              *m_intermediateHeightfield,
                                              m_intermediateHeightfieldWidth,
                                              m_intermediateHeightfieldHeight,
                                              m_min,
                                              m_max,
                                              m_voxelSize,
                                              m_voxelHeight));
    
    // rasterize m_inputTriangles.
    rcRasterizeTriangles(
                         m_context,
                         m_inputVertices,
                         m_inputVerticesCount,
                         m_inputTriangles,
                         m_intermediateTriangleTags,
                         m_inputTrianglesCount,
                         *m_intermediateHeightfield,
                         static_cast<int>(floor(m_maximumStepHeight / m_voxelHeight)));
    
    // Filter voxels
    rcFilterLowHangingWalkableObstacles(
                                        m_context, 
                                        static_cast<int>(floor(m_maximumStepHeight / m_voxelHeight)), 
                                        *m_intermediateHeightfield);
    rcFilterLedgeSpans(
                       m_context, 
                       static_cast<int>(ceil(m_minimumCeilingClearance / m_voxelHeight)), 
                       static_cast<int>(floor(m_maximumStepHeight / m_voxelHeight)), 
                       *m_intermediateHeightfield);
    rcFilterWalkableLowHeightSpans(
                                   m_context, 
                                   static_cast<int>(ceil(m_minimumCeilingClearance / m_voxelHeight)), 
                                   *m_intermediateHeightfield);
    
    // Build the compact representation for the heightfield
    m_success = m_success && (rcBuildCompactHeightfield(
                                                    m_context,
                                                    static_cast<int>(ceil(m_minimumCeilingClearance / m_voxelHeight)),
                                                    static_cast<int>(floor(m_maximumStepHeight / m_voxelHeight)),
                                                    *m_intermediateHeightfield,
                                                    *m_intermediateCompactHeightfield));
    
    // Erode the navigatble area by minimum clearance to obstacles
    m_success = m_success && (rcErodeWalkableArea(
                                              m_context, 
                                              static_cast<int>(ceil(m_minimumObstacleClearance / m_voxelSize)), 
                                              *m_intermediateCompactHeightfield));
    
    // Prepare for region partitioning, by calculating distance field along the walkable surface.
    m_success = m_success && (rcBuildDistanceField(
                                               m_context, 
                                               *m_intermediateCompactHeightfield));
    
    // Partition the walkable surface into simple regions without holes.
    m_success = m_success && (rcBuildRegions(
                                         m_context, 
                                         *m_intermediateCompactHeightfield, 
                                         0, 
                                         rcSqr<int>(m_regionMinSize), 
                                         rcSqr<int>(m_regionMergeSize)));
    
    // Build the contours of the walkable surface
    m_success = m_success && (rcBuildContours(
                                          m_context,
                                          *m_intermediateCompactHeightfield,
                                          m_edgeMaxError,
                                          static_cast<int>(ceil(m_edgeMaxLength / m_voxelSize)),
                                          *m_intermediateContourSet));
    
    // Build the polygon mesh, i.e. the navigation mesh geometry
    m_success = m_success && (rcBuildPolyMesh(
                                          m_context,
                                          *m_intermediateContourSet,
                                          m_polyMaxNbVertices,
                                          *m_intermediatePolyMesh));
    
    //Build the detailed polygon mesh, i.e. the detail for the ground.
    m_success = m_success && (rcBuildPolyMeshDetail(
                                                m_context,
                                                *m_intermediatePolyMesh,
                                                *m_intermediateCompactHeightfield,
                                                m_sampleDist,
                                                m_sampleMaxError,
                                                *m_intermediatePolyMeshDetail));
    
    // Update poly flags from areas.
    for (int i = 0; m_success && i < m_intermediatePolyMesh->npolys; ++i)
    {
        switch(m_intermediatePolyMesh->areas[i])
        {
            case RC_WALKABLE_AREA:
                m_intermediatePolyMesh->areas[i] = area::Ground;
                break;
            case RC_NULL_AREA:
            default:
                m_intermediatePolyMesh->areas[i] = area::Obstacle;
                break;
        }
        switch(m_intermediatePolyMesh->areas[i])
        {
            case area::Ground:
                m_intermediatePolyMesh->flags[i] = navigationFlags::Walkable;
                break;
            case area::Obstacle:
            default:
                m_intermediatePolyMesh->flags[i] = navigationFlags::NonWalkable;
                break;
        }
    }
    
    if (m_polyMaxNbVertices > DT_VERTS_PER_POLYGON)
    {
        m_context->log(RC_LOG_ERROR, "NavMeshCreator: unable to create Detour NavMesh, the configured maximum number of vertex per polygon (%d) is over Detour's limit (%d).",m_polyMaxNbVertices,DT_VERTS_PER_POLYGON);
        m_success = false;
    }
    if (m_success)
    {
        memset(m_intermediateNavMeshCreateParams, 0, sizeof(dtNavMeshCreateParams));
        m_intermediateNavMeshCreateParams->verts = m_intermediatePolyMesh->verts;
        m_intermediateNavMeshCreateParams->vertCount = m_intermediatePolyMesh->nverts;
        m_intermediateNavMeshCreateParams->polys = m_intermediatePolyMesh->polys;
        m_intermediateNavMeshCreateParams->polyAreas = m_intermediatePolyMesh->areas;
        m_intermediateNavMeshCreateParams->polyFlags = m_intermediatePolyMesh->flags;
        m_intermediateNavMeshCreateParams->polyCount = m_intermediatePolyMesh->npolys;
        m_intermediateNavMeshCreateParams->nvp = m_intermediatePolyMesh->nvp;
        m_intermediateNavMeshCreateParams->detailMeshes = m_intermediatePolyMeshDetail->meshes;
        m_intermediateNavMeshCreateParams->detailVerts = m_intermediatePolyMeshDetail->verts;
        m_intermediateNavMeshCreateParams->detailVertsCount = m_intermediatePolyMeshDetail->nverts;
        m_intermediateNavMeshCreateParams->detailTris = m_intermediatePolyMeshDetail->tris;
        m_intermediateNavMeshCreateParams->detailTriCount = m_intermediatePolyMeshDetail->ntris;
        m_intermediateNavMeshCreateParams->offMeshConVerts = 0;
        m_intermediateNavMeshCreateParams->offMeshConRad = 0;
        m_intermediateNavMeshCreateParams->offMeshConDir = 0;
        m_intermediateNavMeshCreateParams->offMeshConAreas = 0;
        m_intermediateNavMeshCreateParams->offMeshConFlags = 0;
        m_intermediateNavMeshCreateParams->offMeshConUserID = 0;
        m_intermediateNavMeshCreateParams->offMeshConCount = 0;
        m_intermediateNavMeshCreateParams->walkableHeight = m_minimumCeilingClearance;
        m_intermediateNavMeshCreateParams->walkableRadius = m_minimumObstacleClearance;
        m_intermediateNavMeshCreateParams->walkableClimb = m_maximumStepHeight;
        rcVcopy(m_intermediateNavMeshCreateParams->bmin, m_intermediatePolyMesh->bmin);
        rcVcopy(m_intermediateNavMeshCreateParams->bmax, m_intermediatePolyMesh->bmax);
        m_intermediateNavMeshCreateParams->cs = m_voxelSize;
        m_intermediateNavMeshCreateParams->ch = m_voxelHeight;
        m_intermediateNavMeshCreateParams->buildBvTree = true;
    }
    
    if (m_success)
    {
        m_outputNavMeshBuffer = 0;
        m_outputNavMeshBufferSize = 0;
        if (!dtCreateNavMeshData(m_intermediateNavMeshCreateParams, &m_outputNavMeshBuffer, &m_outputNavMeshBufferSize))
        {
            m_context->log(RC_LOG_ERROR, "NavMeshCreator: unable to create the detour navmesh data.");
            m_success = false;
        }
    }
    m_context->stopTimer(RC_TIMER_TOTAL);
    
    if (m_success)
    {
        duLogBuildTimes(*m_context, m_context->getAccumulatedTime(RC_TIMER_TOTAL));
    }
}