示例#1
0
/* -- Blinding -------------------------------------------------------------
//
//  Blinding is a measure to protect against side channel attacks. 
//  Blinding randomizes the scalar multiplier.
//
//  Instead of calculating a*P, calculate (a+b mod BPO)*P + B
//
//  Where b = random blinding and B = -b*P
//
// -------------------------------------------------------------------------
*/
void *ed25519_Blinding_Init(
    void *context,                      /* IO: null or ptr blinding context */
    const unsigned char *seed,          /* IN: [size bytes] random blinding seed */
    size_t size)                        /* IN: size of blinding seed */
{
    struct {
        Ext_POINT T;
        U_WORD t[K_WORDS];
        SHA512_CTX H;
        U8 digest[SHA512_DIGEST_LENGTH];
    } d;

    EDP_BLINDING_CTX *ctx = (EDP_BLINDING_CTX*)context;

    if (ctx == 0)
    {
        ctx = (EDP_BLINDING_CTX*)mem_alloc(sizeof(EDP_BLINDING_CTX));
        if (ctx == 0) return 0;
    }

    /* Use edp_custom_blinding to protect generation of the new blinder */

    SHA512_Init(&d.H);
    SHA512_Update(&d.H, edp_custom_blinding.zr, 32);
    SHA512_Update(&d.H, seed, size);
    SHA512_Final(d.digest, &d.H);

    ecp_BytesToWords(ctx->zr, d.digest+32);
    ecp_BytesToWords(d.t, d.digest);
    eco_Mod(d.t);
    ecp_Sub(ctx->bl, _w_BPO, d.t);

    eco_AddReduce(d.t, d.t, edp_custom_blinding.bl);
    edp_BasePointMult(&d.T, d.t, edp_custom_blinding.zr);
    edp_AddPoint(&d.T, &d.T, &edp_custom_blinding.BP);

    edp_ExtPoint2PE(&ctx->BP, &d.T);

    /* clear potentially sensitive data */
    mem_clear (&d, sizeof(d));

    return ctx;
}
示例#2
0
int curve25519_SelfTest(int level)
{
    int rc = 0;
    U64 A[4], B[4], C[4];
    U8 a[32], b[32], c[32], d[32];

    ecp_AddReduce(A, _w_I, _w_P);
    ECP_MOD(A);
    if (ecp_Cmp(A, _w_I) != 0)
    {
        rc++;
        printf("assert I+p == I mod p FAILED!!\n");
        ecp_PrintHexWords("A_1", A, 4);
    }

    if (ecp_Cmp(_w_I, _w_P) >= 0)
    {
        rc++;
        printf("assert I < P FAILED!!\n");
    }

    if (ecp_Cmp(_w_P, _w_I) <= 0)
    {
        rc++;
        printf("assert P > I FAILED!!\n");
    }

    ecp_MulReduce(B, _w_I, _w_D);
    ECP_MOD(B);
    if (ecp_Cmp(B, _w_IxD) != 0)
    {
        rc++;
        printf("assert I*D FAILED!!\n");
        ecp_PrintHexWords("A_2", B, 4);
    }

    // assert I*I == p-1
    ecp_MulMod(A, _w_I, _w_I);
    if (ecp_Cmp(A, _w_Pm1) != 0)
    {
        rc++;
        printf("assert mul(I,I) == p-1 FAILED!!\n");
        ecp_PrintHexWords("A_3", A, 4);
    }

    // assert I**2 == p-1
    ecp_SqrReduce(B, _w_I);
    ECP_MOD(B);
    if (ecp_Cmp(B, _w_Pm1) != 0)
    {
        rc++;
        printf("assert square(I) == p-1 FAILED!!\n");
        ecp_PrintHexWords("B_4", B, 4);
    }

    // assert (-I)*(-I) == p-1
    ecp_Sub(B, _w_P, _w_I);
    ecp_MulMod(A, B, B);
    if (ecp_Cmp(A, _w_Pm1) != 0)
    {
        rc++;
        printf("assert mul(-I,-I) == p-1 FAILED!!\n");
        ecp_PrintHexWords("A_5", A, 4);
        ecp_PrintHexWords("B_5", B, 4);
    }

    ecp_SetValue(A, 50153);
    ecp_Inverse(B, A);
    ecp_MulMod(A, A, B);
    if (ecp_Cmp(A, _w_One) != 0)
    {
        rc++;
        printf("invmod FAILED!!\n");
        ecp_PrintHexWords("inv_50153", B, 4);
        ecp_PrintHexWords("expected_1", A, 4);
    }

    // assert expmod(d,(p-1)/2,p) == p-1
    ecp_ExpMod(A, _w_D, _b_Pm1d2, 32);
    if (ecp_Cmp(A, _w_Pm1) != 0)
    {
        rc++;
        printf("assert expmod(d,(p-1)/2,p) == p-1 FAILED!!\n");
        ecp_PrintHexWords("A_3", A, 4);
    }

    ecp_CalculateY(a, ecp_BasePoint);
    ecp_BytesToWords(A, a);
    if (ecp_Cmp(A, _w_Gy) != 0)
    {
        rc++;
        printf("assert clacY(Base) == Base.y FAILED!!\n");
        ecp_PrintHexBytes("Calculated_Base.y", a, 32);
    }

    ecp_PointMultiply(a, ecp_BasePoint, _b_Om1, 32);
    if (memcmp(a, ecp_BasePoint, 32) != 0)
    {
        rc++;
        printf("assert (l-1).Base == Base FAILED!!\n");
        ecp_PrintHexBytes("A_5", a, 32);
    }

    ecp_PointMultiply(a, ecp_BasePoint, _b_O, 32);
    ecp_BytesToWords(A, a);
    if (!ecp_IsZero(A))
    {
        rc++;
        printf("assert l.Base == 0 FAILED!!\n");
        ecp_PrintHexBytes("A_6", a, 32);
    }

    // Key generation
    ecp_PointMultiply(a, ecp_BasePoint, pk1, 32);
    ecp_PrintHexBytes("PublicKey1", a, 32);
    ecp_PointMultiply(b, ecp_BasePoint, pk2, 32);
    ecp_PrintHexBytes("PublicKey2", b, 32);

    // ECDH - key exchange
    ecp_PointMultiply(c, b, pk1, 32);
    ecp_PrintHexBytes("SharedKey1", c, 32);
    ecp_PointMultiply(d, a, pk2, 32);
    ecp_PrintHexBytes("SharedKey2", d, 32);
    if (memcmp(c, d, 32) != 0)
    {
        rc++;
        printf("ECDH key exchange FAILED!!\n");
    }

    memset(a, 0x44, 32);        // our secret key
    ecp_PointMultiply(b, ecp_BasePoint, a, 32); // public key
    ecp_PointMultiply(c, b, _b_k1, 32);
    ecp_PointMultiply(d, c, _b_k2, 32);
    if (memcmp(d, b, 32) != 0)
    {
        rc++;
        printf("assert k1.k2.D == D FAILED!!\n");
        ecp_PrintHexBytes("D", d, 4);
        ecp_PrintHexBytes("C", c, 4);
        ecp_PrintHexBytes("A", a, 4);
    }

    ecp_BytesToWords(A, _b_k1);
    ecp_BytesToWords(B, _b_k2);
    eco_InvModBPO(C, A);
    if (ecp_Cmp(C, B) != 0)
    {
        rc++;
        printf("assert 1/k1 == k2 mod BPO FAILED!!\n");
        ecp_PrintHexWords("Calc", C, 4);
        ecp_PrintHexWords("Expt", B, 4);
    }

    eco_MulMod(C, A, B);
    if (ecp_Cmp(C, _w_One) != 0)
    {
        rc++;
        printf("assert k1*k2 == 1 mod BPO FAILED!!\n");
        ecp_PrintHexWords("Calc", C, 4);
    }
    return rc;
}