示例#1
0
void ed_mul_fix_yaowi(ed_t r, const ed_t *t, const bn_t k) {
	int i, j, l;
	ed_t a;
	uint8_t win[CEIL(FP_BITS, ED_DEPTH)];

	ed_null(a);

	TRY {
		ed_new(a);

		ed_set_infty(r);
		ed_set_infty(a);

		l = CEIL(FP_BITS, ED_DEPTH);
		bn_rec_win(win, &l, k, ED_DEPTH);

		for (j = (1 << ED_DEPTH) - 1; j >= 1; j--) {
			for (i = 0; i < l; i++) {
				if (win[i] == j) {
					ed_add(a, a, t[i]);
				}
			}
			ed_add(r, r, a);
		}
		ed_norm(r, r);
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		ed_free(a);
	}
}
示例#2
0
void ed_mul_fix_nafwi(ed_t r, const ed_t *t, const bn_t k) {
	int i, j, l, d, m;
	ed_t a;
	int8_t naf[FP_BITS + 1];
	char w;

	ed_null(a);

	TRY {
		ed_new(a);

		ed_set_infty(r);
		ed_set_infty(a);

		l = FP_BITS + 1;
		bn_rec_naf(naf, &l, k, 2);

		d = ((l % ED_DEPTH) == 0 ? (l / ED_DEPTH) : (l / ED_DEPTH) + 1);

		for (i = 0; i < d; i++) {
			w = 0;
			for (j = ED_DEPTH - 1; j >= 0; j--) {
				if (i * ED_DEPTH + j < l) {
					w = (char)(w << 1);
					w = (char)(w + naf[i * ED_DEPTH + j]);
				}
			}
			naf[i] = w;
		}

		if (ED_DEPTH % 2 == 0) {
			m = ((1 << (ED_DEPTH + 1)) - 2) / 3;
		} else {
			m = ((1 << (ED_DEPTH + 1)) - 1) / 3;
		}

		for (j = m; j >= 1; j--) {
			for (i = 0; i < d; i++) {
				if (naf[i] == j) {
					ed_add(a, a, t[i]);
				}
				if (naf[i] == -j) {
					ed_sub(a, a, t[i]);
				}
			}
			ed_add(r, r, a);
		}
		ed_norm(r, r);
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		ed_free(a);
	}
}
示例#3
0
void ed_mul_monty(ed_t r, const ed_t p, const bn_t k) {
	ed_t t[2];

	ed_null(t[0]);
	ed_null(t[1]);

	if (bn_is_zero(k) || ed_is_infty(p)) {
		ed_set_infty(r);
		return;
	}

	TRY {
		ed_new(t[0]);
		ed_new(t[1]);

		ed_set_infty(t[0]);
		ed_copy(t[1], p);

		for (int i = bn_bits(k) - 1; i >= 0; i--) {
			int j = bn_get_bit(k, i);

			dv_swap_cond(t[0]->x, t[1]->x, RLC_FP_DIGS, j ^ 1);
			dv_swap_cond(t[0]->y, t[1]->y, RLC_FP_DIGS, j ^ 1);
			dv_swap_cond(t[0]->z, t[1]->z, RLC_FP_DIGS, j ^ 1);
#if ED_ADD == EXTND
			dv_swap_cond(t[0]->t, t[1]->t, RLC_FP_DIGS, j ^ 1);
#endif
			ed_add(t[0], t[0], t[1]);
			ed_dbl(t[1], t[1]);
			dv_swap_cond(t[0]->x, t[1]->x, RLC_FP_DIGS, j ^ 1);
			dv_swap_cond(t[0]->y, t[1]->y, RLC_FP_DIGS, j ^ 1);
			dv_swap_cond(t[0]->z, t[1]->z, RLC_FP_DIGS, j ^ 1);
#if ED_ADD == EXTND
			dv_swap_cond(t[0]->t, t[1]->t, RLC_FP_DIGS, j ^ 1);
#endif
		}

		ed_norm(r, t[0]);
		if (bn_sign(k) == RLC_NEG) {
			ed_neg(r, r);
		}
	} CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		ed_free(t[1]);
		ed_free(t[0]);
	}
}
示例#4
0
void ed_mul_basic(ed_t r, const ed_t p, const bn_t k) {
	ed_t t;

	ed_null(t);

	if (bn_is_zero(k) || ed_is_infty(p)) {
		ed_set_infty(r);
		return;
	}

	TRY {
		ed_new(t);

		ed_copy(t, p);
		for (int i = bn_bits(k) - 2; i >= 0; i--) {
			ed_dbl(t, t);
			if (bn_get_bit(k, i)) {
				ed_add(t, t, p);
			}
		}

		ed_norm(r, t);
		if (bn_sign(k) == RLC_NEG) {
			ed_neg(r, r);
		}
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		ed_free(t);
	}
}
示例#5
0
/**
* Normalizes a point represented in projective coordinates.
*
* @param r			- the result.
* @param p			- the point to normalize.
*/
void ed_norm(ed_t r, const ed_t p) {
	if (ed_is_infty(p)) {
		ed_set_infty(r);
		return;
	}

	if (fp_cmp_dig(p->z, 1) == CMP_EQ) {
		/* If the point is represented in affine coordinates, we just copy it. */
		ed_copy(r, p);
	} else {
		fp_t z_inv;

		fp_null(z_inv);
		fp_new(z_inv);

		fp_inv(z_inv, p->z);

		fp_mul(r->x, p->x, z_inv);
		fp_mul(r->y, p->y, z_inv);
	#if ED_ADD == EXTND
		fp_mul(r->t, p->t, z_inv);
	#endif

		fp_set_dig(r->z, 1);

		fp_free(z_inv);
	}
}
示例#6
0
void ed_mul_dig(ed_t r, const ed_t p, dig_t k) {
	int i, l;
	ed_t t;

	ed_null(t);

	if (k == 0) {
		ed_set_infty(r);
		return;
	}

	TRY {
		ed_new(t);

		l = util_bits_dig(k);

		ed_copy(t, p);

		for (i = l - 2; i >= 0; i--) {
			ed_dbl(t, t);
			if (k & ((dig_t)1 << i)) {
				ed_add(t, t, p);
			}
		}

		ed_norm(r, t);
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		ed_free(t);
	}
}
示例#7
0
void ed_mul_gen(ed_t r, const bn_t k) {
	if (bn_is_zero(k)) {
		ed_set_infty(r);
		return;
	}
#ifdef ED_PRECO
	ed_mul_fix(r, ed_curve_get_tab(), k);
#else
	ed_t g;

	ed_null(g);

	TRY {
		ed_new(g);
		ed_curve_get_gen(g);
		ed_mul(r, g, k);
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		ed_free(g);
	}
#endif
}
示例#8
0
/**
 * Multiplies a binary elliptic curve point by an integer using the w-NAF mixed coordinate
 * method.
 *
 * @param[out] r 				- the result.
 * @param[in] t					- the precomputed table.
 * @param[in] k					- the integer.
 */
static void ed_mul_fix_plain_mixed(ed_t r, const ed_t *t, const bn_t k) {
	int l, i, n;
	int8_t naf[FP_BITS + 1], *_k;

	/* Compute the w-TNAF representation of k. */
	l = FP_BITS + 1;
	bn_rec_naf(naf, &l, k, ED_DEPTH);

	_k = naf + l - 1;
	ed_set_infty(r);
	for (i = l - 1; i >= 0; i--, _k--) {
		n = *_k;
		if (n == 0) {
			/* doubling is followed by another doubling */
			if (i > 0) {
				ed_dbl_short(r, r);
			} else {
				/* use full extended coordinate doubling for last step */
				ed_dbl(r, r);
			}
		} else {
			ed_dbl(r, r);
			if (n > 0) {
				ed_add(r, r, t[n / 2]);
			} else if (n < 0) {
				ed_sub(r, r, t[-n / 2]);
			}
		}
	}
	/* Convert r to affine coordinates. */
	ed_norm(r, r);
}
示例#9
0
void ed_mul_pre_combd(ed_t *t, const ed_t p) {
	int i, j, d, e;
	bn_t n;

	bn_null(n);

	TRY {
		bn_new(n);

		ed_curve_get_ord(n);
		d = bn_bits(n);
		d = ((d % ED_DEPTH) == 0 ? (d / ED_DEPTH) : (d / ED_DEPTH) + 1);
		e = (d % 2 == 0 ? (d / 2) : (d / 2) + 1);

		ed_set_infty(t[0]);
		ed_copy(t[1], p);
		for (j = 1; j < ED_DEPTH; j++) {
			ed_dbl(t[1 << j], t[1 << (j - 1)]);
			for (i = 1; i < d; i++) {
				ed_dbl(t[1 << j], t[1 << j]);
			}
#if defined(ED_MIXED)
			ed_norm(t[1 << j], t[1 << j]);
#endif
			for (i = 1; i < (1 << j); i++) {
				ed_add(t[(1 << j) + i], t[i], t[1 << j]);
			}
		}
		ed_set_infty(t[1 << ED_DEPTH]);
		for (j = 1; j < (1 << ED_DEPTH); j++) {
			ed_dbl(t[(1 << ED_DEPTH) + j], t[j]);
			for (i = 1; i < e; i++) {
				ed_dbl(t[(1 << ED_DEPTH) + j], t[(1 << ED_DEPTH) + j]);
			}
		}

		ed_norm_sim(t + 2, (const ed_t *)t + 2, (1 << ED_DEPTH) - 2);
		ed_norm_sim(t + (1 << ED_DEPTH) + 1,
				(const ed_t *)t + (1 << ED_DEPTH) + 1, (1 << ED_DEPTH) - 1);
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		bn_free(n);
	}
}
示例#10
0
void ed_mul_lwreg(ed_t r, const ed_t p, const bn_t k) {
	if (bn_is_zero(k) || ed_is_infty(p)) {
		ed_set_infty(r);
		return;
	}

	ed_mul_reg_imp(r, p, k);
}
示例#11
0
void ed_mul_fixed(ed_t r, const ed_t b, const bn_t k) {
	ed_t pre[4];
	int h, l;

	if (bn_is_zero(k)) {
		ed_set_infty(r);
		return;
	}

	for (int n = 0; n < 4; n++) {
		ed_null(pre[n]);
		ed_new(pre[n]);
	}

	// precomputation
	ed_set_infty(pre[0]);
	ed_copy(pre[1], b);
	ed_dbl(pre[2], b);
	ed_add(pre[3], pre[2], pre[1]);

	l = bn_bits(k);
	h =	bn_get_bit(k, l - 1 + (l % 2)) * 2 + bn_get_bit(k, l - 2 + (l % 2));

	ed_copy(r, pre[h]);

	for (int i = ((l - 1) / 2) * 2; i > 1; i -= 2) {
		int index = (i - 2) / (sizeof(dig_t) * 8);
		int shift = (i - 2) % (sizeof(dig_t) * 8);
		int bits = (k->dp[index] >> shift) & 3;
		r->norm = 2;
		ed_dbl(r, r);
		ed_dbl(r, r);
		ed_add(r, r, pre[bits]);
	}

	ed_norm(r, r);

	for (int n = 0; n < 4; n++) {
		ed_free(pre[n]);
	}
}
示例#12
0
void ed_mul_fix_combd(ed_t r, const ed_t *t, const bn_t k) {
	int i, j, d, e, w0, w1, n0, p0, p1;
	bn_t n;

	bn_null(n);

	TRY {
		bn_new(n);

		ed_curve_get_ord(n);
		d = bn_bits(n);
		d = ((d % ED_DEPTH) == 0 ? (d / ED_DEPTH) : (d / ED_DEPTH) + 1);
		e = (d % 2 == 0 ? (d / 2) : (d / 2) + 1);

		ed_set_infty(r);
		n0 = bn_bits(k);

		p1 = (e - 1) + (ED_DEPTH - 1) * d;
		for (i = e - 1; i >= 0; i--) {
			ed_dbl(r, r);

			w0 = 0;
			p0 = p1;
			for (j = ED_DEPTH - 1; j >= 0; j--, p0 -= d) {
				w0 = w0 << 1;
				if (p0 < n0 && bn_get_bit(k, p0)) {
					w0 = w0 | 1;
				}
			}

			w1 = 0;
			p0 = p1-- + e;
			for (j = ED_DEPTH - 1; j >= 0; j--, p0 -= d) {
				w1 = w1 << 1;
				if (i + e < d && p0 < n0 && bn_get_bit(k, p0)) {
					w1 = w1 | 1;
				}
			}

			ed_add(r, r, t[w0]);
			ed_add(r, r, t[(1 << ED_DEPTH) + w1]);
		}
		ed_norm(r, r);
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		bn_free(n);
	}
}
示例#13
0
void ed_mul_fix_basic(ed_t r, const ed_t *t, const bn_t k) {
	int i, l;

	l = bn_bits(k);

	ed_set_infty(r);

	for (i = 0; i < l; i++) {
		if (bn_get_bit(k, i)) {
			ed_add(r, r, t[i]);
		}
	}
	ed_norm(r, r);
}
示例#14
0
static void ed_mul_reg_imp(ed_t r, const ed_t p, const bn_t k) {
	int l, i, j, n;
	int8_t reg[RLC_CEIL(RLC_FP_BITS + 1, ED_WIDTH - 1)], *_k;
	ed_t t[1 << (ED_WIDTH - 2)];

	TRY {
		/* Prepare the precomputation table. */
		for (i = 0; i < (1 << (ED_WIDTH - 2)); i++) {
			ed_null(t[i]);
			ed_new(t[i]);
		}
		/* Compute the precomputation table. */
		ed_tab(t, p, ED_WIDTH);

		/* Compute the w-NAF representation of k. */
		l = RLC_CEIL(RLC_FP_BITS + 1, ED_WIDTH - 1);
		bn_rec_reg(reg, &l, k, RLC_FP_BITS, ED_WIDTH);

		_k = reg + l - 1;

		ed_set_infty(r);
		for (i = l - 1; i >= 0; i--, _k--) {
			for (j = 0; j < ED_WIDTH - 1; j++) {
				r->norm = 2;
				ed_dbl(r, r);
			}

			n = *_k;
			if (n > 0) {
				ed_add(r, r, t[n / 2]);
			}
			if (n < 0) {
				ed_sub(r, r, t[-n / 2]);
			}
		}

		/* Convert r to affine coordinates. */
		ed_norm(r, r);
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		/* Free the precomputation table. */
		for (i = 0; i < (1 << (ED_WIDTH - 2)); i++) {
			ed_free(t[i]);
		}
	}
}
示例#15
0
void ed_read_bin(ed_t a, const uint8_t *bin, int len) {
	if (len == 1) {
		if (bin[0] == 0) {
			ed_set_infty(a);
			return;
		} else {
			THROW(ERR_NO_BUFFER);
			return;
		}
	}

	if (len != (FP_BYTES + 1) && len != (2 * FP_BYTES + 1)) {
		THROW(ERR_NO_BUFFER);
		return;
	}

	a->norm = 1;
	fp_set_dig(a->z, 1);
	fp_read_bin(a->y, bin + 1, FP_BYTES);
	if (len == FP_BYTES + 1) {
		switch(bin[0]) {
			case 2:
				fp_zero(a->x);
				break;
			case 3:
				fp_zero(a->x);
				fp_set_bit(a->x, 0, 1);
				break;
			default:
				THROW(ERR_NO_VALID);
				break;
		}
		ed_upk(a, a);
	}

	if (len == 2 * FP_BYTES + 1) {
		if (bin[0] == 4) {
			fp_read_bin(a->x, bin + FP_BYTES + 1, FP_BYTES);
		} else {
			THROW(ERR_NO_VALID);
		}
	}

#if ED_ADD == EXTND
	ed_projc_to_extnd(a, a->x, a->y, a->z);
#endif
}
示例#16
0
void ed_mul_pre_combs(ed_t *t, const ed_t p) {
	int i, j, l;
	bn_t n;

	bn_null(n);

	TRY {
		bn_new(n);

		ed_curve_get_ord(n);
		l = bn_bits(n);
		l = ((l % ED_DEPTH) == 0 ? (l / ED_DEPTH) : (l / ED_DEPTH) + 1);
#if defined(ED_ENDOM)
		if (ed_curve_is_endom()) {
			l = bn_bits(n);
			l = ((l % (2 * ED_DEPTH)) ==
					0 ? (l / (2 * ED_DEPTH)) : (l / (2 * ED_DEPTH)) + 1);
		}
#endif

		ed_set_infty(t[0]);

		ed_copy(t[1], p);
		for (j = 1; j < ED_DEPTH; j++) {
			ed_dbl(t[1 << j], t[1 << (j - 1)]);
			for (i = 1; i < l; i++) {
				ed_dbl(t[1 << j], t[1 << j]);
			}
#if defined(ED_MIXED)
			ed_norm(t[1 << j], t[1 << j]);
#endif
			for (i = 1; i < (1 << j); i++) {
				ed_add(t[(1 << j) + i], t[i], t[1 << j]);
			}
		}

		ed_norm_sim(t + 2, (const ed_t *)t + 2, ED_TABLE_COMBS - 2);
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		bn_free(n);
	}
}
示例#17
0
/**
 * Multiplies a binary elliptic curve point by an integer using the w-NAF
 * method.
 *
 * @param[out] r 				- the result.
 * @param[in] t					- the precomputed table.
 * @param[in] k					- the integer.
 */
static void ed_mul_fix_plain(ed_t r, const ed_t *t, const bn_t k) {
	int l, i, n;
	int8_t naf[FP_BITS + 1], *_k;

	/* Compute the w-TNAF representation of k. */
	l = FP_BITS + 1;
	bn_rec_naf(naf, &l, k, ED_DEPTH);

	_k = naf + l - 1;
	ed_set_infty(r);
	for (i = l - 1; i >= 0; i--, _k--) {
		ed_dbl(r, r);

		n = *_k;
		if (n > 0) {
			ed_add(r, r, t[n / 2]);
		}
		if (n < 0) {
			ed_sub(r, r, t[-n / 2]);
		}
	}
	/* Convert r to affine coordinates. */
	ed_norm(r, r);
}
示例#18
0
/**
 * Multiplies a prime elliptic curve point by an integer using the COMBS
 * method.
 *
 * @param[out] r 				- the result.
 * @param[in] t					- the precomputed table.
 * @param[in] k					- the integer.
 */
static void ed_mul_combs_endom(ed_t r, const ed_t *t, const bn_t k) {
	int i, j, l, w0, w1, n0, n1, p0, p1, s0, s1;
	bn_t n, k0, k1, v1[3], v2[3];
	ed_t u;

	bn_null(n);
	bn_null(k0);
	bn_null(k1);
	ed_null(u);

	TRY {
		bn_new(n);
		bn_new(k0);
		bn_new(k1);
		ed_new(u);
		for (i = 0; i < 3; i++) {
			bn_null(v1[i]);
			bn_null(v2[i]);
			bn_new(v1[i]);
			bn_new(v2[i]);
		}

		ed_curve_get_ord(n);
		ed_curve_get_v1(v1);
		ed_curve_get_v2(v2);
		l = bn_bits(n);
		l = ((l % (2 * ED_DEPTH)) ==
				0 ? (l / (2 * ED_DEPTH)) : (l / (2 * ED_DEPTH)) + 1);

		bn_rec_glv(k0, k1, k, n, (const bn_t *)v1, (const bn_t *)v2);
		s0 = bn_sign(k0);
		s1 = bn_sign(k1);
		bn_abs(k0, k0);
		bn_abs(k1, k1);

		n0 = bn_bits(k0);
		n1 = bn_bits(k1);

		p0 = (ED_DEPTH) * l - 1;

		ed_set_infty(r);

		for (i = l - 1; i >= 0; i--) {
			ed_dbl(r, r);

			w0 = 0;
			w1 = 0;
			p1 = p0--;
			for (j = ED_DEPTH - 1; j >= 0; j--, p1 -= l) {
				w0 = w0 << 1;
				w1 = w1 << 1;
				if (p1 < n0 && bn_get_bit(k0, p1)) {
					w0 = w0 | 1;
				}
				if (p1 < n1 && bn_get_bit(k1, p1)) {
					w1 = w1 | 1;
				}
			}
			if (w0 > 0) {
				if (s0 == BN_POS) {
					ed_add(r, r, t[w0]);
				} else {
					ed_sub(r, r, t[w0]);
				}
			}
			if (w1 > 0) {
				ed_copy(u, t[w1]);
				fp_mul(u->x, u->x, ed_curve_get_beta());
				if (s1 == BN_NEG) {
					ed_neg(u, u);
				}
				ed_add(r, r, u);
			}
		}
		ed_norm(r, r);
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		bn_free(n);
		bn_free(k0);
		bn_free(k1);
		ed_free(u);
		for (i = 0; i < 3; i++) {
			bn_free(v1[i]);
			bn_free(v2[i]);
		}
	}
}
示例#19
0
void ed_mul_slide(ed_t r, const ed_t p, const bn_t k) {
	ed_t t[1 << (EP_WIDTH - 1)], q;
	int i, j, l;
	uint8_t win[RLC_FP_BITS + 1];

	ed_null(q);

	if (bn_is_zero(k) || ed_is_infty(p)) {
		ed_set_infty(r);
		return;
	}

	TRY {
		for (i = 0; i < (1 << (EP_WIDTH - 1)); i ++) {
			ed_null(t[i]);
			ed_new(t[i]);
		}

		ed_new(q);

		ed_copy(t[0], p);
		ed_dbl(q, p);

#if defined(EP_MIXED)
		ed_norm(q, q);
#endif

		/* Create table. */
		for (i = 1; i < (1 << (EP_WIDTH - 1)); i++) {
			ed_add(t[i], t[i - 1], q);
		}

#if defined(EP_MIXED)
		ed_norm_sim(t + 1, (const ed_t *)t + 1, (1 << (EP_WIDTH - 1)) - 1);
#endif

		ed_set_infty(q);
		l = RLC_FP_BITS + 1;
		bn_rec_slw(win, &l, k, EP_WIDTH);
		for (i = 0; i < l; i++) {
			if (win[i] == 0) {
				ed_dbl(q, q);
			} else {
				for (j = 0; j < util_bits_dig(win[i]); j++) {
					ed_dbl(q, q);
				}
				ed_add(q, q, t[win[i] >> 1]);
			}
		}

		ed_norm(r, q);
		if (bn_sign(k) == RLC_NEG) {
			ed_neg(r, r);
		}
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		for (i = 0; i < (1 << (EP_WIDTH - 1)); i++) {
			ed_free(t[i]);
		}
		ed_free(q);
	}
}
示例#20
0
static void ed_mul_naf_imp(ed_t r, const ed_t p, const bn_t k) {
	int l, i, n;
	int8_t naf[RLC_FP_BITS + 1];
	ed_t t[1 << (ED_WIDTH - 2)];

	if (bn_is_zero(k)) {
		ed_set_infty(r);
		return;
	}

	TRY {
		/* Prepare the precomputation table. */
		for (i = 0; i < (1 << (ED_WIDTH - 2)); i++) {
			ed_null(t[i]);
			ed_new(t[i]);
		}
		/* Compute the precomputation table. */
		ed_tab(t, p, ED_WIDTH);

		/* Compute the w-NAF representation of k. */
		l = sizeof(naf);
		bn_rec_naf(naf, &l, k, EP_WIDTH);

		ed_set_infty(r);
		for (i = l - 1; i > 0; i--) {
			n = naf[i];
			if (n == 0) {
				/* This point will be doubled in the previous iteration. */
				r->norm = 2;
				ed_dbl(r, r);
			} else {
				ed_dbl(r, r);
				if (n > 0) {
					ed_add(r, r, t[n / 2]);
				} else if (n < 0) {
					ed_sub(r, r, t[-n / 2]);
				}
			}
		}

		/* Last iteration. */
		n = naf[0];
		ed_dbl(r, r);
		if (n > 0) {
			ed_add(r, r, t[n / 2]);
		} else if (n < 0) {
			ed_sub(r, r, t[-n / 2]);
		}

		/* Convert r to affine coordinates. */
		ed_norm(r, r);
		if (bn_sign(k) == RLC_NEG) {
			ed_neg(r, r);
		}
	}
	CATCH_ANY {
		THROW(ERR_CAUGHT);
	}
	FINALLY {
		/* Free the precomputation table. */
		for (i = 0; i < (1 << (ED_WIDTH - 2)); i++) {
			ed_free(t[i]);
		}
	}
}