示例#1
0
/*
 * Merge the exists and forall variables of constraint i
 * - store the variables in solver->all_vars
 * - store their values in solver->all_values
 */
static void ef_build_full_map(ef_solver_t *solver, uint32_t i) {
  ef_cnstr_t *cnstr;
  ivector_t *v;
  uint32_t n;

  assert(i < ef_prob_num_constraints(solver->prob));
  cnstr = solver->prob->cnstr + i;

  // collect all variables of cnstr in solver->all_vars
  v = &solver->all_vars;
  ivector_reset(v);
  n = ef_constraint_num_evars(cnstr);
  ivector_add(v, cnstr->evars, n);
  n = ef_constraint_num_uvars(cnstr);
  ivector_add(v, cnstr->uvars, n);

  // project the evalues onto the exists variable of constraint i
  // store the results in all_values
  v = &solver->all_values;
  n = ef_constraint_num_evars(cnstr);
  resize_ivector(v, n);
  v->size = n;
  ef_project_exists_model(solver->prob, solver->evalue, cnstr->evars, v->data, n);

  // copy the uvalues for constraint i (from uvalue_aux to v)
  n = ef_constraint_num_uvars(cnstr);
  assert(n == solver->uvalue_aux.size);
  ivector_add(v, solver->uvalue_aux.data, n);

#if EF_VERBOSE
  printf("Full map\n");
  print_full_map(stdout, solver);
  fflush(stdout);
#endif
}
示例#2
0
/*
 * Option 2: generalize by substitution
 * - return (prob->cnstr[i].guarantee with y := value)
 */
static term_t ef_generalize2(ef_prob_t *prob, uint32_t i, term_t *value) {
  ef_cnstr_t *cnstr;
  uint32_t n;
  term_t g;

  assert(i < ef_prob_num_constraints(prob));
  cnstr = prob->cnstr + i;
  n = ef_constraint_num_uvars(cnstr);
  g = ef_substitution(prob, cnstr->uvars, value, n, cnstr->guarantee);
  return g;
}
示例#3
0
/*
 * Show witness found for constraint i
 */
void print_forall_witness(FILE *f, ef_solver_t *solver, uint32_t i) {
  ef_prob_t *prob;
  ef_cnstr_t *cnstr;
  uint32_t j, n;

  prob = solver->prob;
  assert(i < ef_prob_num_constraints(prob));
  cnstr = prob->cnstr + i;

  n = ef_constraint_num_uvars(cnstr);
  for (j=0; j<n; j++) {
    fprintf(f, "%s := ", yices_get_term_name(cnstr->uvars[j]));
    yices_pp_term(f, solver->uvalue_aux.data[j], 100, 1, 10);
  }
}
示例#4
0
/*
 * Sampling for the i-th constraint in solver->prob
 * - search for at most max_samples y's that satisfy the assumption of constraint i in prob
 * - for each such y, add a new constraint to the exist context ctx
 * - max_samples = bound on the number of samples to take (must be positive)
 *
 * Constraint i is of the form
 *    (FORALL Y_i: B_i(Y_i) => C(X_i, Y_i))
 * - every sample is a model y_i that satisfies B_i.
 * - for each sample, we learn that any good candidate X_i must satisfy C(X_i, y_i).
 *   So we add the constraint  C(X_i, y_i) to ctx.
 *
 * Update the solver->status to
 * - EF_STATUS_UNSAT if the exits context is trivially unsat
 * - EF_STATUS_..._ERRORif something goes wrong
 * - EF_STATUS_INTERRUPTED if a call to check/recheck context is interrupted
 * keep it unchanged otherwise (should be EF_STATUS_SEARCHING).
 */
static void ef_sample_constraint(ef_solver_t *solver, uint32_t i) {
  context_t *sampling_ctx;
  ef_cnstr_t *cnstr;
  term_t *value;
  uint32_t nvars, samples;
  int32_t ucode, ecode;
  smt_status_t status;
  term_t cnd;

  assert(i < ef_prob_num_constraints(solver->prob) && solver->max_samples > 0);

  cnstr = solver->prob->cnstr + i;

  /*
   * make uvalue_aux large enough
   * its size = number of universal variables in constraint i
   */
  nvars = ef_constraint_num_uvars(cnstr);
  resize_ivector(&solver->uvalue_aux, nvars);
  solver->uvalue_aux.size = nvars;
  value = solver->uvalue_aux.data;

  samples = solver->max_samples;

  /*
   * assert the assumption in the forall context
   */
  sampling_ctx = get_forall_context(solver);
  ucode = assert_formula(sampling_ctx, cnstr->assumption);
  while (ucode == CTX_NO_ERROR) {
    status = satisfy_context(sampling_ctx, solver->parameters, cnstr->uvars, nvars, value, NULL);
    switch (status) {
    case STATUS_SAT:
    case STATUS_UNKNOWN:
      // learned condition on X:
      cnd = ef_substitution(solver->prob, cnstr->uvars, value, nvars, cnstr->guarantee);
      if (cnd < 0) {
	solver->status = EF_STATUS_SUBST_ERROR;
	solver->error_code = cnd;
	goto done;
      }
      ecode = update_exists_context(solver, cnd);
      if (ecode < 0) {
	solver->status = EF_STATUS_ASSERT_ERROR;
	solver->error_code = ecode;
	goto done;
      }
      if (ecode == TRIVIALLY_UNSAT) {
	solver->status = EF_STATUS_UNSAT;
	goto done;
      }
      break;

    case STATUS_UNSAT:
      // no more samples for this constraints
      goto done;

    case STATUS_INTERRUPTED:
      solver->status = EF_STATUS_INTERRUPTED;
      goto done;

    default:
      solver->status = EF_STATUS_CHECK_ERROR;
      solver->error_code = status;
      goto done;
    }

    samples --;
    if (samples == 0) goto done;

    ucode = assert_blocking_clause(sampling_ctx);
  }

  /*
   * if ucode < 0, something went wrong in assert_formula
   * or in assert_blocking_clause
   */
  if (ucode < 0) {
    solver->status = EF_STATUS_ASSERT_ERROR;
    solver->error_code = ucode;
  }

 done:
  clear_forall_context(solver, true);
}
示例#5
0
/*
 * Test the current exists model using universal constraint i
 * - i must be a valid index (i.e., 0 <= i < solver->prob->num_cnstr)
 * - this checks the assertion B_i and not C_i after replacing existential
 *   variables by their values (stored in evalue)
 * - return code:
 *   if STATUS_SAT (or STATUS_UNKNOWN): a model of (B_i and not C_i)
 *   is found and stored in uvalue_aux
 *   if STATUS_UNSAT: no model found (current exists model is good as
 *   far as constraint i is concerned)
 *   anything else: an error or interruption
 *
 * - if we get an error or interruption, solver->status is updated
 *   otherwise, it is kept as is (should be EF_STATUS_SEARCHING)
 */
static smt_status_t ef_solver_test_exists_model(ef_solver_t *solver, uint32_t i) {
  context_t *forall_ctx;
  ef_cnstr_t *cnstr;
  term_t *value;
  term_t g;
  uint32_t n;
  int32_t code;
  smt_status_t status;

  assert(i < ef_prob_num_constraints(solver->prob));
  cnstr = solver->prob->cnstr + i;

  n = ef_prob_num_evars(solver->prob);
  g = ef_substitution(solver->prob, solver->prob->all_evars, solver->evalue, n, cnstr->guarantee);
  if (g < 0) {
    // error in substitution
    solver->status = EF_STATUS_SUBST_ERROR;
    solver->error_code = g;
    return STATUS_ERROR;
  }

  /*
   * make uvalue_aux large enough
   */
  n = ef_constraint_num_uvars(cnstr);
  resize_ivector(&solver->uvalue_aux, n);
  solver->uvalue_aux.size = n;
  value = solver->uvalue_aux.data;

  forall_ctx = get_forall_context(solver);

  code = forall_context_assert(solver, cnstr->assumption, g); // assert B_i(Y_i) and not g(Y_i)
  if (code == CTX_NO_ERROR) {
    status = satisfy_context(forall_ctx, solver->parameters, cnstr->uvars, n, value, NULL);
    switch (status) {
    case STATUS_SAT:
    case STATUS_UNKNOWN:
    case STATUS_UNSAT:
      break;

    case STATUS_INTERRUPTED:
      solver->status = EF_STATUS_INTERRUPTED;
      break;

    default:
      solver->status = EF_STATUS_CHECK_ERROR;
      solver->error_code = status;
      break;
    }

  } else if (code == TRIVIALLY_UNSAT) {
    assert(context_status(forall_ctx) == STATUS_UNSAT);
    status = STATUS_UNSAT;

  } else {
    // error in assertion
    solver->status = EF_STATUS_ASSERT_ERROR;
    solver->error_code = code;
    status = STATUS_ERROR;
  }

  clear_forall_context(solver, true);

  return status;
}
示例#6
0
/*
 * Option 3: generalize by computing an implicant then
 * applying projection.
 */
static term_t ef_generalize3(ef_solver_t *solver, uint32_t i) {
  model_t *mdl;
  ef_cnstr_t *cnstr;
  ivector_t *v, *w;
  term_t a[2];
  uint32_t n;
  int32_t code;
  proj_flag_t pflag;
  term_t result;

  assert(i < ef_prob_num_constraints(solver->prob));

  // free the current full model if any
  if (solver->full_model != NULL) {
    yices_free_model(solver->full_model);
    solver->full_model = NULL;
  }

  // build the full_map and the corresponding model.
  ef_build_full_map(solver, i);
  n = solver->all_vars.size;
  assert(n == solver->all_values.size);
  mdl = yices_model_from_map(n, solver->all_vars.data, solver->all_values.data);
  if (mdl == NULL) {
    // error in the model construction
    solver->status = EF_STATUS_MDL_ERROR;
    solver->error_code = yices_error_code();
    return NULL_TERM;
  }
  solver->full_model = mdl;


  // Constraint
  cnstr = solver->prob->cnstr + i;
  a[0] = cnstr->assumption;                 // B(y)
  a[1] = opposite_term(cnstr->guarantee);   // not C(x, y)


#if EF_VERBOSE
  printf("Constraint:\n");
  yices_pp_term_array(stdout, 2, a, 120, UINT32_MAX, 0, 0);
  printf("(%"PRIu32" literals)\n", 2);
#endif

  // Compute the implicant
  v = &solver->implicant;
  ivector_reset(v);
  code = get_implicant(mdl, solver->prob->manager, LIT_COLLECTOR_ALL_OPTIONS, 2, a, v);
  if (code < 0) {
    solver->status = EF_STATUS_IMPLICANT_ERROR;
    solver->error_code = code;
    return NULL_TERM;
  }

#if EF_VERBOSE
  printf("Implicant:\n");
  yices_pp_term_array(stdout, v->size, v->data, 120, UINT32_MAX, 0, 0);
  printf("(%"PRIu32" literals)\n", v->size);
#endif

  // Projection
  w = &solver->projection;
  ivector_reset(w);
  n = ef_constraint_num_uvars(cnstr);

#if EF_VERBOSE
  printf("(%"PRIu32" universals)\n", n);
  yices_pp_term_array(stdout, n, cnstr->uvars, 120, UINT32_MAX, 0, 0);
#endif

  
  pflag = project_literals(mdl, solver->prob->manager, v->size, v->data, n, cnstr->uvars, w);

  if (pflag != PROJ_NO_ERROR) {
    solver->status = EF_STATUS_PROJECTION_ERROR;
    solver->error_code = pflag;
    return NULL_TERM;
  }

#if EF_VERBOSE
  printf("Projection:\n");
  yices_pp_term_array(stdout, w->size, w->data, 120, UINT32_MAX, 0, 0);
  printf("(%"PRIu32" literals)\n", w->size);
#endif

  switch (w->size) {
  case 0:
    result = true_term;
    break;

  case 1:
    result = w->data[0];
    break;

  default:
    result = mk_and(solver->prob->manager, w->size, w->data);
    break;
  }

  return opposite_term(result);
}