示例#1
0
static tag_t *
eval_type(expr_t *expr)
{
    tag_t	*tag;
    symbol_t	*symbol;
    record_t	*record;

    switch (expr->token) {
	case tok_symbol:
	    if ((symbol = get_symbol(expr->data._unary.cp)) == NULL)
		error(expr, "syntax error");
	    return (symbol->tag);
	case tok_pointer:
	    tag = eval_type(expr->data._unary.expr);
	    if (!pointer_type_p(tag->type))
		error(expr, "not a pointer");
	    return (tag->tag);
	case tok_vector:
	    tag = eval_type(expr->data._binary.lvalue);
	    if (!pointer_type_p(tag->type))
		error(expr, "not a vector");
	    return (tag->tag);
	case tok_dot:
	    tag = eval_type(expr->data._binary.lvalue);
	    if (pointer_type_p(tag->type))
		error(expr, "not a struct or union");
	    goto record_tag;
	case tok_arrow:
	    tag = eval_type(expr->data._binary.lvalue);
	    if (!pointer_type_p(tag->type))
		error(expr, "not a pointer");
	    tag = tag->tag;
	record_tag:
	    if (type_mask(tag->type) != type_struct &&
		type_mask(tag->type) != type_union)
		error(expr, "not a struct or union");
	    record = tag->name;
	    expr = expr->data._binary.rvalue;
	    if (expr->token != tok_symbol)
		error(expr, "syntax error");
	    symbol = (symbol_t *)
		get_hash((hash_t *)record, expr->data._unary.cp);
	    if (symbol == NULL)
		error(expr, "no '%s' field in '%s'", expr->data._unary.cp,
		      record->name ? record->name->name.string : "<anonymous>");
	    return (symbol->tag);
	default:
	    error(expr, "syntax error");
    }
}
示例#2
0
static void
unary_sizeof(expr_t *expr)
{
    tag_t	*tag;
    int		 size;
    expr_t	*uexp;

    eval(expr->data._unary.expr);
    uexp = expr->data._unary.expr;
    switch (uexp->token) {
	case tok_type:
	    tag = uexp->data._unary.vp;
	    size = tag->size;
	    break;
	case tok_int:
	    size = sizeof(int);
	    break;
	case tok_float:
	    size = sizeof(double);
	    break;
	case tok_string:
	    size = strlen(uexp->data._unary.cp) + 1;
	    break;
	default:
	    tag = eval_type(uexp);
	    size = tag->size;
	    break;
    }
    del_expr(uexp);
    expr->token = tok_int;
    expr->data._unary.i = size;
}
示例#3
0
文件: eval.c 项目: dkazantzas/bfs
/**
 * -xtype test.
 */
bool eval_xtype(const struct expr *expr, struct eval_state *state) {
	struct BFTW *ftwbuf = state->ftwbuf;

	bool is_root = ftwbuf->depth == 0;
	bool follow = state->cmdline->flags & (is_root ? BFTW_FOLLOW_ROOT : BFTW_FOLLOW_NONROOT);

	bool is_link = ftwbuf->typeflag == BFTW_LNK;
	if (follow == is_link) {
		return eval_type(expr, state);
	}

	// -xtype does the opposite of everything else
	int at_flags = follow ? AT_SYMLINK_NOFOLLOW : 0;

	struct stat sb;
	if (fstatat(ftwbuf->at_fd, ftwbuf->at_path, &sb, at_flags) != 0) {
		if (!follow && errno == ENOENT) {
			// Broken symlink
			return eval_type(expr, state);
		} else {
			eval_error(state);
			return false;
		}
	}

	switch (expr->idata) {
	case BFTW_BLK:
		return S_ISBLK(sb.st_mode);
	case BFTW_CHR:
		return S_ISCHR(sb.st_mode);
	case BFTW_DIR:
		return S_ISDIR(sb.st_mode);
	case BFTW_FIFO:
		return S_ISFIFO(sb.st_mode);
	case BFTW_LNK:
		return S_ISLNK(sb.st_mode);
	case BFTW_REG:
		return S_ISREG(sb.st_mode);
	case BFTW_SOCK:
		return S_ISSOCK(sb.st_mode);
	}

	return false;
}
示例#4
0
void Breakpoint::calc_support() {
	std::vector<short> SV;
	for (size_t i = 0; i < 5; i++) {
		SV.push_back(0);
	}
//run over all supports and check the majority type:
	for (std::map<std::string, read_str>::iterator i = positions.support.begin(); i != positions.support.end(); i++) {
		summarize_type((*i).second.SV, SV);
	}
//given the majority type get the stats:
	this->sv_type = eval_type(SV);

}
示例#5
0
文件: eval.c 项目: merolle/ripe
EE* eval_expr(Node* expr)
{
  if (is_unary_op(expr))
    return ee_new(UNTYPED, 
                  mem_asprintf("%s(%s)",
                               unary_op_map(expr->type),
                               eval_Value(node_get_child(expr, 0))));
  if (is_binary_op(expr))
    return ee_new (UNTYPED, 
                   mem_asprintf("%s(%s, %s)",
                                binary_op_map(expr->type),
                                eval_Value(node_get_child(expr, 0)),
                                eval_Value(node_get_child(expr, 1))));

  switch(expr->type){
  case K_TRUE:
    return ee_new("Bool", "VALUE_TRUE");
  case K_FALSE:
    return ee_new("Bool", "VALUE_FALSE");
  case K_NIL:
    return ee_new("Nil", "VALUE_NIL");
  case K_EOF:
    return ee_new("Eof", "VALUE_EOF");
  case ID:
    if (context_block != NULL){
      // If it's a block param, then OK.
      if (var_query_kind(expr->text) == VAR_BLOCK_PARAM)
        return ee_new(var_query_type(expr->text), var_query_c_name(expr->text));
      else 
        return ee_new(var_query_type(expr->text),
                      closure_add(expr->text, var_query_c_name(expr->text)));
    } else return ee_new(var_query_type(expr->text), var_query_c_name(expr->text));
  case SYMBOL:
    return ee_new("Integer", cache_dsym(expr->text + 1));
  case INT:
    return ee_new("Integer", mem_asprintf("int64_to_val(%s)", expr->text));
  case DOUBLE:
    return ee_new("Double", mem_asprintf("double_to_val(%s)", expr->text));
  case STRING:
    {
      const char* str = expr->text;
      return ee_new("String", mem_asprintf("string_to_val(\"%s\")", str));
    }
    break;
  case CHARACTER:
    {
      const char* str = expr->text;
      return ee_new("Integer", mem_asprintf("int64_to_val(%d)", (int) str[1]));
    }
    break;
  case EXPR_ARRAY:
    {
      Node* expr_list = node_get_child(expr, 0);
      return ee_new("Array", mem_asprintf("array1_to_val2(%u %s)",
                                          expr_list->children.size,
                                          eval_expr_list(expr_list, true)));
    }
  case EXPR_MAP:
    {
      Node* m_list = node_get_child(expr, 0);
      bool is_map = false, is_set = false;
      const char* args = "";

      const int num_ms = node_num_children(m_list);
      assert(num_ms > 0);
      for (int i = 0; i < num_ms; i++){
        Node* m = node_get_child(m_list, i);
        switch (node_num_children(m)){
          case 2:
            is_map = true;
            args = mem_asprintf("%s, %s, %s", args,
                                eval_Value(node_get_child(m, 0)),
                                eval_Value(node_get_child(m, 1)));
            break;
          case 1:
            is_set = true;
            args = mem_asprintf("%s, %s", args,
                                eval_Value(node_get_child(m, 0)));
            break;
          default:
            assert_never();
            break;
        }
      }

      if (is_map and is_set){
        fatal_node(expr, "invalid curly braces: is this a set or a map?");
      }
      if (is_map) return ee_new("Map",
                                mem_asprintf("ht_new_map(%d%s)", num_ms, args));
      if (is_set) return ee_new("Set", 
                                mem_asprintf("ht_new_set(%d%s)", num_ms, args));
      assert_never();
    }
    break;
  case EXPR_INDEX:
    return ee_new(UNTYPED, 
                  eval_index(node_get_child(expr, 0), node_get_child(expr, 1), NULL));
  case EXPR_CALL:
    {
      Node* callee = node_get_node(expr, "callee");
      Node* args = node_get_node(expr, "args");
      
      // If callee is a field, then we must check if its a method call.
      if (callee->type == EXPR_FIELD){
        const char* field_name = node_get_string(callee, "name");
        Node* left = node_get_child(callee, 0);
        
        const char* s = eval_expr_as_id(left);
        if (s == NULL or var_query(s))
          return ee_new(UNTYPED, eval_obj_call(left, field_name, args));
      }
      
      const char* s = eval_expr_as_id(callee);
      if (s != NULL){
        // Could be a tuple constructor.
        if (strequal(s, "tuple")){
          return ee_new("Tuple", mem_asprintf("tuple_to_val(%u %s)",
                                              node_num_children(args),
                                              eval_expr_list(args, true)));
        }

        // If all of callee can be evaluated as an id, then it must be a static
        // call.
        return ee_new(UNTYPED, eval_static_call(s, args));
      }
      

      return ee_new(UNTYPED, mem_asprintf("func_call%d(%s %s)", 
                                          node_num_children(args),
                                          eval_Value(callee),
                                          eval_expr_list(args, true)));
    }
  case EXPR_RANGE_BOUNDED:
    {
      Node* left = node_get_child(expr, 0);
      Node* right = node_get_child(expr, 1);
      return ee_new("Range",
                    mem_asprintf("range_to_val(RANGE_BOUNDED, "
                                 "val_to_int64(%s), val_to_int64(%s))",
                                 eval_Value(left),
                                 eval_Value(right)));
    }
  case EXPR_RANGE_BOUNDED_LEFT:
    return ee_new("Range", 
                  mem_asprintf("range_to_val(RANGE_BOUNDED_LEFT, "
                               "val_to_int64(%s), 0)",
                               eval_Value(node_get_child(expr, 0))));
  case EXPR_RANGE_BOUNDED_RIGHT:
    return ee_new("Range",
                  mem_asprintf("range_to_val(RANGE_BOUNDED_RIGHT, "
                               "0, val_to_int64(%s))",
                               eval_Value(node_get_child(expr, 0))));
  case EXPR_RANGE_UNBOUNDED:
    return ee_new("Range", "range_to_val(RANGE_UNBOUNDED, 0, 0)");
  case EXPR_FIELD:
    {
      // Attempt to evaluate this field as a static symbol.
      Node* left = node_get_child(expr, 0);
      const char* s = eval_expr_as_id(left);
      if (s == NULL or var_query(s)){
        // Dynamic field.
        const char* field = node_get_string(expr, "name");

        return ee_new(UNTYPED, 
                      mem_asprintf("field_get(%s, %s)",
                                   eval_Value(left),
                                   cache_dsym(field)));
      } else {
        // Could be a global variable.
        s = eval_expr_as_id(expr);

        if (context_block != NULL){
          return ee_new(var_query_type(s), closure_add(s, var_query_c_name(s)));
        } else return ee_new(var_query_type(s), var_query_c_name(s));
      }
    }
    break;
  case EXPR_AT_VAR:
    {
      const char* name = node_get_string(expr, "name");
      if (context_ci == NULL){
        fatal_node(expr, "'@%s' in something that's not a class", name);
      }
      if (context_ci->type != CLASS_FIELD){
        fatal_node(expr, "'@%s' in a class that's not a field class", name);
      }
      return ee_new(UNTYPED,
                    mem_asprintf("field_get(__self, %s)", cache_dsym(name)));
    }
  case C_CODE:
    {
      const char* str = util_trim_ends(expr->text);
      if (strstr(expr->text, "return")){
        fatal_warn("careless return in C code may disrupt the stack (use RRETURN)");
      }

      if (context_fi != NULL){
        if (context_fi->type == METHOD
             or context_fi->type == CONSTRUCTOR
             or context_fi->type == VIRTUAL_GET
             or context_fi->type == VIRTUAL_SET){
          if (strchr(str, '@') != NULL and context_ci->type != CLASS_CDATA)
            fatal_node(expr, "@ in C code in a class that is not cdata");
          str = util_replace(str, '@', "_c_data->");
        }
      }

      return ee_new(UNTYPED, str);
    }
  case EXPR_IS_TYPE:
    {
      const char* type = eval_type(node_get_child(expr, 1));
      if (var_query(type)){
        fatal_node(expr, "type '%s' in 'is' expression is a variable", type);
      }
      return ee_new("Bool", 
                    mem_asprintf("pack_bool(obj_klass(%s) == %s)",
                    eval_Value(node_get_child(expr, 0)),
                    cache_type(type)));
    }
  case EXPR_BLOCK:
    {
      fatal_push("in anonymous block");
      if (context_block != NULL){
        fatal_node(expr, "nested blocks are not implemented yet");
      }

      // Initialize context_block  
      context_block = mem_new(BlockContext);
      sbuf_init(&(context_block->sbuf_code), "");
      sarray_init(&(context_block->closure_names));
      sarray_init(&(context_block->closure_exprs));
      static int counter = 0; counter++;
      context_block->func_name = mem_asprintf("ripe_blk%d", counter);

      Node* param_list = node_get_node(expr, "param_list");
      Node* stmt_list = node_get_node(expr, "stmt_list");
      var_push();

      // Print out the header of the anonymous function
      sbuf_printf(&(context_block->sbuf_code), "static Value %s(Value __block",
                  context_block->func_name);
      for (int i = 0; i < node_num_children(param_list); i++){
        Node* param = node_get_child(param_list, i);
        const char* name = node_get_string(param, "name");
        const char* c_name = util_c_name(name);
        if (node_has_string(param, "array"))
          fatal_node(expr,
                     "array parameters for blocks are not implemented yet");
        const char* type = "?"; // TODO: Deal with type.
        var_add_local2(name, c_name, type, VAR_BLOCK_PARAM);
        sbuf_printf(&(context_block->sbuf_code), ", Value %s", c_name);
      }
      sbuf_printf(&(context_block->sbuf_code), ")\n");
      
      // Generate block code
      sbuf_printf(&(context_block->sbuf_code), "{\n");
      sbuf_printf(&(context_block->sbuf_code), 
                  "  Func* _c_data = obj_c_data(__block);\n");

      sbuf_printf(&(context_block->sbuf_code), 
                  "  stack_annot_push(\"anonymous function\");\n");
      sbuf_printf(&(context_block->sbuf_code), "%s", gen_block(stmt_list));
      sbuf_printf(&(context_block->sbuf_code), "}\n");

      // Now, print out the block function to WR_HEADER
      wr_print(WR_HEADER, "%s", context_block->sbuf_code.str);
      const char* result = mem_asprintf("block_to_val(%s, %d, %d",
                                        context_block->func_name,
                                        node_num_children(param_list),
                                        context_block->closure_names.size);
      for (uint i = 0; i < context_block->closure_names.size; i++){
        const char* evaluated = sarray_get_ptr(&(context_block->closure_exprs),
                                               i);
        result = mem_asprintf("%s, %s", result, evaluated);
      }
      result = mem_asprintf("%s)", result);

      // End EXPR_BLOCK
      var_pop();
      context_block = NULL;
      fatal_pop();
      return ee_new("Function", result);
    }
  default:
    assert_never();
  }
  return NULL;
}