void KeyGenerator::generate() { // Handle test-mode case. if (mode_ == TEST_MODE) { public_key_.set_zero(); public_key_[0] = 1; secret_key_.set_zero(); secret_key_[0] = 1; for (int i = 0; i < evaluation_keys_.count(); ++i) { evaluation_keys_[i].set_zero(); evaluation_keys_[i][0] = 1; } return; } // Extract encryption parameters. int coeff_count = poly_modulus_.coeff_count(); int coeff_bit_count = poly_modulus_.coeff_bit_count(); int coeff_uint64_count = divide_round_up(coeff_bit_count, bits_per_uint64); // Loop until find a valid secret key. uint64_t *secret_key = secret_key_.pointer(); set_zero_poly(coeff_count, coeff_uint64_count, secret_key); Pointer secret_key_inv(allocate_poly(coeff_count, coeff_uint64_count, pool_)); while (true) { // Create noise with random [-1, 1] coefficients. set_poly_coeffs_zero_one_negone(secret_key); // Calculate secret_key * plaintext_modulus + 1. multiply_poly_scalar_coeffmod(secret_key, coeff_count, plain_modulus_.pointer(), mod_, secret_key, pool_); uint64_t *constant_coeff = get_poly_coeff(secret_key, 0, coeff_uint64_count); increment_uint_mod(constant_coeff, coeff_modulus_.pointer(), coeff_uint64_count, constant_coeff); // Attempt to invert secret_key. if (try_invert_poly_coeffmod(secret_key, poly_modulus_.pointer(), coeff_count, mod_, secret_key_inv.get(), pool_)) { // Secret_key is invertible, so is valid break; } } // Calculate plaintext_modulus * noise * secret_key_inv. Pointer noise(allocate_poly(coeff_count, coeff_uint64_count, pool_)); set_poly_coeffs_zero_one_negone(noise.get()); uint64_t *public_key = public_key_.pointer(); multiply_poly_poly_polymod_coeffmod(noise.get(), secret_key_inv.get(), polymod_, mod_, noise.get(), pool_); multiply_poly_scalar_coeffmod(noise.get(), coeff_count, plain_modulus_.pointer(), mod_, public_key, pool_); // Create evaluation keys. Pointer evaluation_factor(allocate_uint(coeff_uint64_count, pool_)); set_uint(1, coeff_uint64_count, evaluation_factor.get()); for (int i = 0; i < evaluation_keys_.count(); ++i) { // Multiply secret_key by evaluation_factor (mod coeff modulus). uint64_t *evaluation_key = evaluation_keys_[i].pointer(); multiply_poly_scalar_coeffmod(secret_key, coeff_count, evaluation_factor.get(), mod_, evaluation_key, pool_); // Multiply public_key*normal noise and add into evaluation_key. set_poly_coeffs_normal(noise.get()); multiply_poly_poly_polymod_coeffmod(noise.get(), public_key, polymod_, mod_, noise.get(), pool_); add_poly_poly_coeffmod(noise.get(), evaluation_key, coeff_count, coeff_modulus_.pointer(), coeff_uint64_count, evaluation_key); // Add-in more normal noise to evaluation_key. set_poly_coeffs_normal(noise.get()); add_poly_poly_coeffmod(noise.get(), evaluation_key, coeff_count, coeff_modulus_.pointer(), coeff_uint64_count, evaluation_key); // Left shift evaluation factor. left_shift_uint(evaluation_factor.get(), decomposition_bit_count_, coeff_uint64_count, evaluation_factor.get()); } }
void KeyGenerator::generate(const BigPoly &secret_key, uint64_t power) { // Validate arguments. if (secret_key.is_zero()) { throw invalid_argument("secret_key cannot be zero"); } if (power == 0) { throw invalid_argument("power cannot be zero"); } // Handle test-mode case. if (mode_ == TEST_MODE) { public_key_.set_zero(); public_key_[0] = 1; secret_key_.set_zero(); secret_key_[0] = 1; for (int i = 0; i < evaluation_keys_.count(); ++i) { evaluation_keys_[i].set_zero(); evaluation_keys_[i][0] = 1; } return; } // Extract encryption parameters. int coeff_count = poly_modulus_.coeff_count(); int coeff_bit_count = poly_modulus_.coeff_bit_count(); int coeff_uint64_count = divide_round_up(coeff_bit_count, bits_per_uint64); // Verify secret key looks valid. secret_key_ = secret_key; if (secret_key_.coeff_count() != coeff_count || secret_key_.coeff_bit_count() != coeff_bit_count) { throw invalid_argument("secret_key is not valid for encryption parameters"); } #ifdef _DEBUG if (secret_key_.significant_coeff_count() == coeff_count || !are_poly_coefficients_less_than(secret_key_, coeff_modulus_)) { throw invalid_argument("secret_key is not valid for encryption parameters"); } #endif // Raise level of secret key. if (power > 1) { exponentiate_poly_polymod_coeffmod(secret_key_.pointer(), &power, 1, polymod_, mod_, secret_key_.pointer(), pool_); } // Attempt to invert secret_key. Pointer secret_key_inv(allocate_poly(coeff_count, coeff_uint64_count, pool_)); if (!try_invert_poly_coeffmod(secret_key_.pointer(), poly_modulus_.pointer(), coeff_count, mod_, secret_key_inv.get(), pool_)) { // Secret_key is not invertible, so not valid. throw invalid_argument("secret_key is not valid for encryption parameters"); } // Calculate plaintext_modulus * noise * secret_key_inv. Pointer noise(allocate_poly(coeff_count, coeff_uint64_count, pool_)); set_poly_coeffs_zero_one_negone(noise.get()); uint64_t *public_key = public_key_.pointer(); multiply_poly_poly_polymod_coeffmod(noise.get(), secret_key_inv.get(), polymod_, mod_, noise.get(), pool_); multiply_poly_scalar_coeffmod(noise.get(), coeff_count, plain_modulus_.pointer(), mod_, public_key, pool_); // Create evaluation keys. Pointer evaluation_factor(allocate_uint(coeff_uint64_count, pool_)); set_uint(1, coeff_uint64_count, evaluation_factor.get()); for (int i = 0; i < evaluation_keys_.count(); ++i) { // Multiply secret_key by evaluation_factor (mod coeff modulus). uint64_t *evaluation_key = evaluation_keys_[i].pointer(); multiply_poly_scalar_coeffmod(secret_key_.pointer(), coeff_count, evaluation_factor.get(), mod_, evaluation_key, pool_); // Multiply public_key*normal noise and add into evaluation_key. set_poly_coeffs_normal(noise.get()); multiply_poly_poly_polymod_coeffmod(noise.get(), public_key, polymod_, mod_, noise.get(), pool_); add_poly_poly_coeffmod(noise.get(), evaluation_key, coeff_count, coeff_modulus_.pointer(), coeff_uint64_count, evaluation_key); // Add-in more normal noise to evaluation_key. set_poly_coeffs_normal(noise.get()); add_poly_poly_coeffmod(noise.get(), evaluation_key, coeff_count, coeff_modulus_.pointer(), coeff_uint64_count, evaluation_key); // Left shift evaluation factor. left_shift_uint(evaluation_factor.get(), decomposition_bit_count_, coeff_uint64_count, evaluation_factor.get()); } }
KeyGenerator::KeyGenerator(const EncryptionParameters &parms) : poly_modulus_(parms.poly_modulus()), coeff_modulus_(parms.coeff_modulus()), plain_modulus_(parms.plain_modulus()), noise_standard_deviation_(parms.noise_standard_deviation()), noise_max_deviation_(parms.noise_max_deviation()), decomposition_bit_count_(parms.decomposition_bit_count()), mode_(parms.mode()), random_generator_(parms.random_generator() != nullptr ? parms.random_generator()->create() : UniformRandomGeneratorFactory::default_factory()->create()) { // Verify required parameters are non-zero and non-nullptr. if (poly_modulus_.is_zero()) { throw invalid_argument("poly_modulus cannot be zero"); } if (coeff_modulus_.is_zero()) { throw invalid_argument("coeff_modulus cannot be zero"); } if (plain_modulus_.is_zero()) { throw invalid_argument("plain_modulus cannot be zero"); } if (noise_standard_deviation_ < 0) { throw invalid_argument("noise_standard_deviation must be non-negative"); } if (noise_max_deviation_ < 0) { throw invalid_argument("noise_max_deviation must be non-negative"); } if (decomposition_bit_count_ <= 0) { throw invalid_argument("decomposition_bit_count must be positive"); } // Verify parameters. if (plain_modulus_ >= coeff_modulus_) { throw invalid_argument("plain_modulus must be smaller than coeff_modulus"); } if (!are_poly_coefficients_less_than(poly_modulus_, coeff_modulus_)) { throw invalid_argument("poly_modulus cannot have coefficients larger than coeff_modulus"); } // Resize encryption parameters to consistent size. int coeff_count = poly_modulus_.significant_coeff_count(); int coeff_bit_count = coeff_modulus_.significant_bit_count(); int coeff_uint64_count = divide_round_up(coeff_bit_count, bits_per_uint64); if (poly_modulus_.coeff_count() != coeff_count || poly_modulus_.coeff_bit_count() != coeff_bit_count) { poly_modulus_.resize(coeff_count, coeff_bit_count); } if (coeff_modulus_.bit_count() != coeff_bit_count) { coeff_modulus_.resize(coeff_bit_count); } if (plain_modulus_.bit_count() != coeff_bit_count) { plain_modulus_.resize(coeff_bit_count); } if (decomposition_bit_count_ > coeff_bit_count) { decomposition_bit_count_ = coeff_bit_count; } // Calculate -1 (mod coeff_modulus). coeff_modulus_minus_one_.resize(coeff_bit_count); decrement_uint(coeff_modulus_.pointer(), coeff_uint64_count, coeff_modulus_minus_one_.pointer()); // Initialize public and secret key. public_key_.resize(coeff_count, coeff_bit_count); secret_key_.resize(coeff_count, coeff_bit_count); // Initialize evaluation keys. int evaluation_key_count = 0; Pointer evaluation_factor(allocate_uint(coeff_uint64_count, pool_)); set_uint(1, coeff_uint64_count, evaluation_factor.get()); while (!is_zero_uint(evaluation_factor.get(), coeff_uint64_count) && is_less_than_uint_uint(evaluation_factor.get(), coeff_modulus_.pointer(), coeff_uint64_count)) { left_shift_uint(evaluation_factor.get(), decomposition_bit_count_, coeff_uint64_count, evaluation_factor.get()); evaluation_key_count++; } evaluation_keys_.resize(evaluation_key_count); for (int i = 0; i < evaluation_key_count; ++i) { evaluation_keys_[i].resize(coeff_count, coeff_bit_count); } // Initialize moduli. polymod_ = PolyModulus(poly_modulus_.pointer(), coeff_count, coeff_uint64_count); mod_ = Modulus(coeff_modulus_.pointer(), coeff_uint64_count, pool_); }
Evaluator::Evaluator(const EncryptionParameters &parms, const EvaluationKeys &evaluation_keys) : poly_modulus_(parms.poly_modulus()), coeff_modulus_(parms.coeff_modulus()), plain_modulus_(parms.plain_modulus()), decomposition_bit_count_(parms.decomposition_bit_count()), evaluation_keys_(evaluation_keys), mode_(parms.mode()) { // Verify required parameters are non-zero and non-nullptr. if (poly_modulus_.is_zero()) { throw invalid_argument("poly_modulus cannot be zero"); } if (coeff_modulus_.is_zero()) { throw invalid_argument("coeff_modulus cannot be zero"); } if (plain_modulus_.is_zero()) { throw invalid_argument("plain_modulus cannot be zero"); } if (decomposition_bit_count_ <= 0) { throw invalid_argument("decomposition_bit_count must be positive"); } if (evaluation_keys_.count() == 0) { throw invalid_argument("evaluation_keys cannot be empty"); } // Verify parameters. if (plain_modulus_ >= coeff_modulus_) { throw invalid_argument("plain_modulus must be smaller than coeff_modulus"); } if (!are_poly_coefficients_less_than(poly_modulus_, coeff_modulus_)) { throw invalid_argument("poly_modulus cannot have coefficients larger than coeff_modulus"); } // Resize encryption parameters to consistent size. int coeff_count = poly_modulus_.significant_coeff_count(); int coeff_bit_count = coeff_modulus_.significant_bit_count(); int coeff_uint64_count = divide_round_up(coeff_bit_count, bits_per_uint64); if (poly_modulus_.coeff_count() != coeff_count || poly_modulus_.coeff_bit_count() != coeff_bit_count) { poly_modulus_.resize(coeff_count, coeff_bit_count); } if (coeff_modulus_.bit_count() != coeff_bit_count) { coeff_modulus_.resize(coeff_bit_count); } if (plain_modulus_.bit_count() != coeff_bit_count) { plain_modulus_.resize(coeff_bit_count); } if (decomposition_bit_count_ > coeff_bit_count) { decomposition_bit_count_ = coeff_bit_count; } // Determine correct number of evaluation keys. int evaluation_key_count = 0; Pointer evaluation_factor(allocate_uint(coeff_uint64_count, pool_)); set_uint(1, coeff_uint64_count, evaluation_factor.get()); while (!is_zero_uint(evaluation_factor.get(), coeff_uint64_count) && is_less_than_uint_uint(evaluation_factor.get(), coeff_modulus_.pointer(), coeff_uint64_count)) { left_shift_uint(evaluation_factor.get(), decomposition_bit_count_, coeff_uint64_count, evaluation_factor.get()); evaluation_key_count++; } // Verify evaluation keys. if (evaluation_keys_.count() != evaluation_key_count) { throw invalid_argument("evaluation_keys is not valid for encryption parameters"); } for (int i = 0; i < evaluation_keys_.count(); ++i) { BigPoly &evaluation_key = evaluation_keys_[i]; if (evaluation_key.coeff_count() != coeff_count || evaluation_key.coeff_bit_count() != coeff_bit_count || evaluation_key.significant_coeff_count() == coeff_count || !are_poly_coefficients_less_than(evaluation_key, coeff_modulus_)) { throw invalid_argument("evaluation_keys is not valid for encryption parameters"); } } // Calculate coeff_modulus / plain_modulus. coeff_div_plain_modulus_.resize(coeff_bit_count); Pointer temp(allocate_uint(coeff_uint64_count, pool_)); divide_uint_uint(coeff_modulus_.pointer(), plain_modulus_.pointer(), coeff_uint64_count, coeff_div_plain_modulus_.pointer(), temp.get(), pool_); // Calculate (plain_modulus + 1) / 2. plain_upper_half_threshold_.resize(coeff_bit_count); half_round_up_uint(plain_modulus_.pointer(), coeff_uint64_count, plain_upper_half_threshold_.pointer()); // Calculate coeff_modulus - plain_modulus. plain_upper_half_increment_.resize(coeff_bit_count); sub_uint_uint(coeff_modulus_.pointer(), plain_modulus_.pointer(), coeff_uint64_count, plain_upper_half_increment_.pointer()); // Calculate (plain_modulus + 1) / 2 * coeff_div_plain_modulus. upper_half_threshold_.resize(coeff_bit_count); multiply_truncate_uint_uint(plain_upper_half_threshold_.pointer(), coeff_div_plain_modulus_.pointer(), coeff_uint64_count, upper_half_threshold_.pointer()); // Calculate upper_half_increment. upper_half_increment_.resize(coeff_bit_count); multiply_truncate_uint_uint(plain_modulus_.pointer(), coeff_div_plain_modulus_.pointer(), coeff_uint64_count, upper_half_increment_.pointer()); sub_uint_uint(coeff_modulus_.pointer(), upper_half_increment_.pointer(), coeff_uint64_count, upper_half_increment_.pointer()); // Widen coeff modulus. int product_coeff_bit_count = coeff_bit_count + coeff_bit_count + get_significant_bit_count(static_cast<uint64_t>(coeff_count)); int plain_modulus_bit_count = plain_modulus_.significant_bit_count(); int wide_bit_count = product_coeff_bit_count + plain_modulus_bit_count; int wide_uint64_count = divide_round_up(wide_bit_count, bits_per_uint64); wide_coeff_modulus_.resize(wide_bit_count); wide_coeff_modulus_ = coeff_modulus_; // Calculate wide_coeff_modulus_ / 2. wide_coeff_modulus_div_two_.resize(wide_bit_count); right_shift_uint(wide_coeff_modulus_.pointer(), 1, wide_uint64_count, wide_coeff_modulus_div_two_.pointer()); // Initialize moduli. polymod_ = PolyModulus(poly_modulus_.pointer(), coeff_count, coeff_uint64_count); if (mode_ == TEST_MODE) { mod_ = Modulus(plain_modulus_.pointer(), coeff_uint64_count, pool_); } else { mod_ = Modulus(coeff_modulus_.pointer(), coeff_uint64_count, pool_); } }