/** * Find non-zero bits for fast trace computation. * * @throw ERR_NO_MEMORY if there is no available memory. * @throw ERR_NO_VALID if the polynomial is invalid. */ static void find_trace() { fb_t t0, t1; int counter; ctx_t *ctx = core_get(); fb_null(t0); fb_null(t1); ctx->fb_ta = ctx->fb_tb = ctx->fb_tc = -1; TRY { fb_new(t0); fb_new(t1); counter = 0; for (int i = 0; i < FB_BITS; i++) { fb_zero(t0); fb_set_bit(t0, i, 1); fb_copy(t1, t0); for (int j = 1; j < FB_BITS; j++) { fb_sqr(t1, t1); fb_add(t0, t0, t1); } if (!fb_is_zero(t0)) { switch (counter) { case 0: ctx->fb_ta = i; ctx->fb_tb = ctx->fb_tc = -1; break; case 1: ctx->fb_tb = i; ctx->fb_tc = -1; break; case 2: ctx->fb_tc = i; break; default: THROW(ERR_NO_VALID); break; } counter++; } } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(t0); fb_free(t1); } }
/** * Find non-zero bits for fast trace computation. * * @throw ERR_NO_MEMORY if there is no available memory. * @throw ERR_INVALID if the polynomial is invalid. */ static void find_trace() { fb_t t0, t1; int i, j, counter; fb_null(t0); fb_null(t1); trc_a = trc_b = trc_c = -1; TRY { fb_new(t0); fb_new(t1); counter = 0; for (i = 0; i < FB_BITS; i++) { fb_zero(t0); fb_set_bit(t0, i, 1); fb_copy(t1, t0); for (j = 1; j < FB_BITS; j++) { fb_sqr(t1, t1); fb_add(t0, t0, t1); } if (!fb_is_zero(t0)) { switch (counter) { case 0: trc_a = i; trc_b = trc_c = -1; break; case 1: trc_b = i; trc_c = -1; break; case 2: trc_c = i; break; default: THROW(ERR_INVALID); break; } counter++; } } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(t0); fb_free(t1); } }
/** * Detects an optimization based on the curve coefficients. * * @param opt - the resulting optimization. * @param a - the curve coefficient. */ static void detect_opt(int *opt, fb_t a) { if (fb_is_zero(a)) { *opt = OPT_ZERO; } else { if (fb_cmp_dig(a, 1) == CMP_EQ) { *opt = OPT_ONE; } else { if (fb_bits(a) <= FB_DIGIT) { *opt = OPT_DIGIT; } else { *opt = OPT_NONE; } } } }
int eb_is_infty(const eb_t p) { return (fb_is_zero(p->z) == 1); }
/** * Adds a point represented in affine coordinates to a point represented in * projective coordinates. * * @param r - the result. * @param p - the affine point. * @param q - the projective point. */ static void eb_add_projc_ordin_mix(eb_t r, eb_t p, eb_t q) { fb_t t0, t1, t2, t3, t4, t5; fb_null(t0); fb_null(t1); fb_null(t2); fb_null(t3); fb_null(t4); fb_null(t5); TRY { fb_new(t0); fb_new(t1); fb_new(t2); fb_new(t3); fb_new(t4); fb_new(t5); if (!p->norm) { /* A = y1 + y2 * z1^2. */ fb_sqr(t0, p->z); fb_mul(t0, t0, q->y); fb_add(t0, t0, p->y); /* B = x1 + x2 * z1. */ fb_mul(t1, p->z, q->x); fb_add(t1, t1, p->x); } else { /* t0 = A = y1 + y2. */ fb_add(t0, p->y, q->y); /* t1 = B = x1 + x2. */ fb_add(t1, p->x, q->x); } if (fb_is_zero(t1)) { if (fb_is_zero(t0)) { /* If t0 = 0 and t1 = 0, p = q, should have doubled! */ eb_dbl_projc(r, p); } else { /* If t0 = 0, r is infinity. */ eb_set_infty(r); } } else { if (!p->norm) { /* t2 = C = B * z1. */ fb_mul(t2, p->z, t1); /* z3 = C^2. */ fb_sqr(r->z, t2); /* t1 = B^2. */ fb_sqr(t1, t1); /* t1 = A + B^2. */ fb_add(t1, t0, t1); } else { /* If z1 = 0, t2 = C = B. */ fb_copy(t2, t1); /* z3 = B^2. */ fb_sqr(r->z, t1); /* t1 = A + z3. */ fb_add(t1, t0, r->z); } /* t3 = D = x2 * z3. */ fb_mul(t3, r->z, q->x); /* t4 = (y2 + x2). */ fb_add(t4, q->x, q->y); /* z3 = A^2. */ fb_sqr(r->x, t0); /* t1 = A + B^2 + a2 * C. */ switch (eb_curve_opt_a()) { case OPT_ZERO: break; case OPT_ONE: fb_add(t1, t1, t2); break; case OPT_DIGIT: /* t5 = a2 * C. */ fb_mul_dig(t5, t2, eb_curve_get_a()[0]); fb_add(t1, t1, t5); break; default: /* t5 = a2 * C. */ fb_mul(t5, eb_curve_get_a(), t2); fb_add(t1, t1, t5); break; } /* t1 = C * (A + B^2 + a2 * C). */ fb_mul(t1, t1, t2); /* x3 = A^2 + C * (A + B^2 + a2 * C). */ fb_add(r->x, r->x, t1); /* t3 = D + x3. */ fb_add(t3, t3, r->x); /* t2 = A * B. */ fb_mul(t2, t0, t2); /* y3 = (D + x3) * (A * B + z3). */ fb_add(r->y, t2, r->z); fb_mul(r->y, r->y, t3); /* t0 = z3^2. */ fb_sqr(t0, r->z); /* t0 = (y2 + x2) * z3^2. */ fb_mul(t0, t0, t4); /* y3 = (D + x3) * (A * B + z3) + (y2 + x2) * z3^2. */ fb_add(r->y, r->y, t0); } r->norm = 0; } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(t0); fb_free(t1); fb_free(t2); fb_free(t3); fb_free(t4); fb_free(t5); } }
/** * Adds two points represented in projective coordinates on an ordinary binary * elliptic curve. * * @param r - the result. * @param p - the first point to add. * @param q - the second point to add. */ static void eb_add_projc_ordin(eb_t r, eb_t p, eb_t q) { #if defined(EB_MIXED) && defined(STRIP) eb_add_projc_ordin_mix(r, p, q); #else /* General addition. */ fb_t t0, t1, t2, t3, t4, t5, t6, t7; fb_null(t0); fb_null(t1); fb_null(t2); fb_null(t3); fb_null(t4); fb_null(t5); fb_null(t6); fb_null(t7); TRY { fb_new(t0); fb_new(t1); fb_new(t2); fb_new(t3); fb_new(t4); fb_new(t5); fb_new(t6); fb_new(t7); if (q->norm) { eb_add_projc_ordin_mix(r, p, q); } else { /* t0 = B = x2 * z1. */ fb_mul(t0, q->x, p->z); /* A = x1 * z2 */ fb_mul(t1, p->x, q->z); /* t2 = E = A + B. */ fb_add(t2, t1, t0); /* t3 = D = B^2. */ fb_sqr(t3, t0); /* t4 = C = A^2. */ fb_sqr(t4, t1); /* t5 = F = C + D. */ fb_add(t5, t3, t4); /* t6 = H = y2 * z1^2. */ fb_sqr(t6, p->z); fb_mul(t6, t6, q->y); /* t7 = G = y1 * z2^2. */ fb_sqr(t7, q->z); fb_mul(t7, t7, p->y); /* t3 = D + H. */ fb_add(t3, t3, t6); /* t4 = C + G. */ fb_add(t4, t4, t7); /* t6 = I = G + H. */ fb_add(t6, t7, t6); /* If E is zero. */ if (fb_is_zero(t2)) { if (fb_is_zero(t6)) { /* If I is zero, p = q, should have doubled. */ eb_dbl_projc(r, p); } else { /* If I is not zero, q = -p, r = infinity. */ eb_set_infty(r); } } else { /* t6 = J = I * E. */ fb_mul(t6, t6, t2); /* z3 = F * z1 * z2. */ fb_mul(r->z, p->z, q->z); fb_mul(r->z, t5, r->z); /* t4 = B * (C + G). */ fb_mul(t4, t0, t4); /* t2 = A * J. */ fb_mul(t2, t1, t6); /* x3 = A * (D + H) + B * (C + G). */ fb_mul(r->x, t1, t3); fb_add(r->x, r->x, t4); /* t7 = F * G. */ fb_mul(t7, t7, t5); /* Y3 = (A * J + F * G) * F + (J + z3) * x3. */ fb_add(r->y, t2, t7); fb_mul(r->y, r->y, t5); /* t7 = (J + z3) * x3. */ fb_add(t7, t6, r->z); fb_mul(t7, t7, r->x); fb_add(r->y, r->y, t7); } } r->norm = 0; } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(t0); fb_free(t1); fb_free(t2); fb_free(t3); fb_free(t4); fb_free(t5); fb_free(t6); fb_free(t7); } #endif }
/** * Adds two points represented in affine coordinates on an ordinary binary * elliptic curve. * * @param[out] r - the result. * @param[in] p - the first point to add. * @param[in] q - the second point to add. */ static void eb_add_basic_imp(eb_t r, const eb_t p, const eb_t q) { fb_t t0, t1, t2; fb_null(t0); fb_null(t1); fb_null(t2); TRY { fb_new(t0); fb_new(t1); fb_new(t2); /* t0 = (y1 + y2). */ fb_add(t0, p->y, q->y); /* t1 = (x1 + x2). */ fb_add(t1, p->x, q->x); if (fb_is_zero(t1)) { if (fb_is_zero(t0)) { /* If t1 is zero and t0 is zero, p = q, should have doubled. */ eb_dbl_basic(r, p); } else { /* If t0 is not zero and t1 is zero, q = -p and r = infinity. */ eb_set_infty(r); } } else { /* t2 = 1/(x1 + x2). */ fb_inv(t2, t1); /* t0 = lambda = (y1 + y2)/(x1 + x2). */ fb_mul(t0, t0, t2); /* t2 = lambda^2. */ fb_sqr(t2, t0); /* t2 = lambda^2 + lambda + x1 + x2 + a. */ fb_add(t2, t2, t0); fb_add(t2, t2, t1); switch (eb_curve_opt_a()) { case OPT_ZERO: break; case OPT_ONE: fb_add_dig(t2, t2, (dig_t)1); break; case OPT_DIGIT: fb_add_dig(t2, t2, eb_curve_get_a()[0]); break; default: fb_add(t2, t2, eb_curve_get_a()); break; } /* y3 = lambda*(x3 + x1) + x3 + y1. */ fb_add(t1, t2, p->x); fb_mul(t1, t1, t0); fb_add(t1, t1, t2); fb_add(r->y, p->y, t1); /* x3 = lambda^2 + lambda + x1 + x2 + a. */ fb_copy(r->x, t2); fb_copy(r->z, p->z); r->norm = 1; } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(t0); fb_free(t1); fb_free(t2); } }
/** * Adds a point represented in affine coordinates to a point represented in * projective coordinates. * * @param[out] r - the result. * @param[in] p - the affine point. * @param[in] q - the projective point. */ static void eb_add_projc_mix(eb_t r, const eb_t p, const eb_t q) { fb_t t0, t1, t2, t3, t4, t5; fb_null(t0); fb_null(t1); fb_null(t2); fb_null(t3); fb_null(t4); fb_null(t5); TRY { fb_new(t0); fb_new(t1); fb_new(t2); fb_new(t3); fb_new(t4); fb_new(t5); /* madd-2005-dl formulas: 7M + 4S + 9add + 1*4 + 3*2. */ /* http://www.hyperelliptic.org/EFD/g12o/auto-shortw-lopezdahab-1.html#addition-madd-2005-dl */ if (!p->norm) { /* A = y1 + y2 * z1^2. */ fb_sqr(t0, p->z); fb_mul(t0, t0, q->y); fb_add(t0, t0, p->y); /* B = x1 + x2 * z1. */ fb_mul(t1, p->z, q->x); fb_add(t1, t1, p->x); } else { /* t0 = A = y1 + y2. */ fb_add(t0, p->y, q->y); /* t1 = B = x1 + x2. */ fb_add(t1, p->x, q->x); } if (fb_is_zero(t1)) { if (fb_is_zero(t0)) { /* If t0 = 0 and t1 = 0, p = q, should have doubled! */ eb_dbl_projc(r, p); } else { /* If t0 = 0, r is infinity. */ eb_set_infty(r); } } else { if (!p->norm) { /* t2 = C = B * z1. */ fb_mul(t2, p->z, t1); /* z3 = C^2. */ fb_sqr(r->z, t2); /* t1 = B^2. */ fb_sqr(t1, t1); /* t1 = A + B^2. */ fb_add(t1, t0, t1); } else { /* If z1 = 0, t2 = C = B. */ fb_copy(t2, t1); /* z3 = B^2. */ fb_sqr(r->z, t1); /* t1 = A + z3. */ fb_add(t1, t0, r->z); } /* t3 = D = x2 * z3. */ fb_mul(t3, r->z, q->x); /* t4 = (y2 + x2). */ fb_add(t4, q->x, q->y); /* z3 = A^2. */ fb_sqr(r->x, t0); /* t1 = A + B^2 + a2 * C. */ switch (eb_curve_opt_a()) { case OPT_ZERO: break; case OPT_ONE: fb_add(t1, t1, t2); break; case OPT_DIGIT: /* t5 = a2 * C. */ fb_mul_dig(t5, t2, eb_curve_get_a()[0]); fb_add(t1, t1, t5); break; default: /* t5 = a2 * C. */ fb_mul(t5, eb_curve_get_a(), t2); fb_add(t1, t1, t5); break; } /* t1 = C * (A + B^2 + a2 * C). */ fb_mul(t1, t1, t2); /* x3 = A^2 + C * (A + B^2 + a2 * C). */ fb_add(r->x, r->x, t1); /* t3 = D + x3. */ fb_add(t3, t3, r->x); /* t2 = A * B. */ fb_mul(t2, t0, t2); /* y3 = (D + x3) * (A * B + z3). */ fb_add(r->y, t2, r->z); fb_mul(r->y, r->y, t3); /* t0 = z3^2. */ fb_sqr(t0, r->z); /* t0 = (y2 + x2) * z3^2. */ fb_mul(t0, t0, t4); /* y3 = (D + x3) * (A * B + z3) + (y2 + x2) * z3^2. */ fb_add(r->y, r->y, t0); } r->norm = 0; } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { fb_free(t0); fb_free(t1); fb_free(t2); fb_free(t3); fb_free(t4); fb_free(t5); } }