示例#1
0
int
main (int argc, char **argv)
{
	int nt;			/* number of time samples		*/
	int nz;			/* number of migrated depth samples	*/
	int nx;			/* number of horizontal samples		*/
	int nxshot;		/* number of shots to be migrated	*/
	/*int nxshot_orig;*/	/* first value of nxshot		*/ 
	int iz,iw,ix,it;	/* loop counters 			*/
	int igx;		/* integerized gx value			*/
	int ntfft;		/* fft size				*/
	int nw,truenw;		/* number of wave numbers		*/	
	int dip=79;		/* dip angle				*/
	
	float sx,gx;		/* x source and geophone location	*/
	float gxmin=0.0,gxmax=0.0; /* x source and geophone location	*/
	float min_sx_gx;	/* min(sx,gx)				*/
	float oldgx;		/* old gx position			*/
/*	float oldgxmin;	*/	/* old gx position			*/
/*	float oldgxmax;	*/	/* old gx position			*/
	float oldsx=0.0;	/* old sx position			*/
	int isx=0,nxo;		/* index for source and geophone	*/	
	int oldisx=0;		/* old value of source index		*/	
	int oldigx=0;		/* old value of integerized gx value	*/
	int ix1,ix2,ix3,ixshot; /* dummy index				*/
	int lpad,rpad; /* padding on both sides of the migrated section */

	float *wl=NULL,*wtmp=NULL;
	float fmax;
	float f1,f2,f3,f4;
	int nf1,nf2,nf3,nf4;
	int ntw;

	float dt=0.004,dz;	/* time and depth sampling interval 	*/
	float dw;		/* frequency  sampling interval		*/
	float fw;		/* first frequency 			*/
	float w;		/* frequency				*/
	float dx;		/* spatial sampling interval		*/
	float **p=NULL;		/* input data				*/
	float **cresult=NULL;	/* output result			*/
	float v1;		/* average velocity			*/
	double kz2;	
	float **v=NULL,**vp=NULL;/* pointers for the velocity profile	*/
	complex cshift2;
	complex *wlsp=NULL;	/* complex input,output			*/
	complex **cp=NULL;	/* ...					*/	
	complex **cp1=NULL;	/* ...					*/	
	complex **cq=NULL;	/* ...					*/	
	char *vfile="";		/* name of file containing velocities	*/
	FILE *vfp=NULL;

	int verbose;		/* verbose flag				*/

	/* hook up getpar to handle the parameters */
	initargs(argc,argv);
	requestdoc(1);

	/* get required parameters */
	MUSTGETPARINT("nz",&nz);
	MUSTGETPARINT("nxo",&nxo);
	MUSTGETPARFLOAT("dz",&dz);
	MUSTGETPARSTRING("vfile",&vfile);
	MUSTGETPARINT("nxshot",&nxshot);

	/* get optional parameters */
	if (!getparfloat("fmax",&fmax)) fmax = 25.0;  
	if (!getparfloat("f1",&f1)) f1 = 10.0;
	if (!getparfloat("f2",&f2)) f2 = 20.0;
	if (!getparfloat("f3",&f3)) f3 = 40.0;
	if (!getparfloat("f4",&f4)) f4 = 50.0;

	if (!getparint("lpad",&lpad)) lpad=9999;
	if (!getparint("rpad",&rpad)) rpad=9999;
	if (!getparint("dip",&dip)) dip=79;

	if (!getparint("verbose",&verbose)) 	verbose = 0;

	/* allocating space */
	cresult = alloc2float(nz,nxo);
	vp = alloc2float(nxo,nz);

	/* load velicoty file */
	vfp=efopen(vfile,"r");
	efread(vp[0],FSIZE,nz*nxo,vfp);
	efclose(vfp);

	/* zero out cresult array */
	memset((void *) cresult[0], 0, nxo*nz*FSIZE);

	/* save value of nxshot */
/* nxshot_orig=nxshot; */

	/* get info from first trace */
	if (!gettr(&tr))  err("can't get first trace");
	nt = tr.ns;
	get_sx_gx(&sx,&gx);
	min_sx_gx = MIN(sx,gx);
	sx = sx - min_sx_gx;
	gx = gx - min_sx_gx;

	/* let user give dt and/or dx from command line */
	if (!getparfloat("dt", &dt)) {
		if (tr.dt) { /* is dt field set? */
			dt = ((double) tr.dt)/1000000.0;
		} else { /* dt not set, assume 4 ms */
			dt = 0.004;
			if(verbose) warn("tr.dt not set, assuming dt=0.004");
		}
	}
	if (!getparfloat("dx",&dx)) {
		if (tr.d2) { /* is d2 field set? */
			dx = tr.d2;
		} else {
			dx = 1.0;
			if(verbose) warn("tr.d2 not set, assuming d2=1.0");
		}
	}

        checkpars();

	oldisx=0;

	do { 	/* begin loop over shots */


		/* determine frequency sampling interval*/
		ntfft = npfar(nt);
		nw = ntfft/2+1;
		dw = 2.0*PI/(ntfft*dt);

		/* compute the index of the frequency to be migrated*/
		fw=2.0*PI*f1;
		nf1=fw/dw+0.5;
		 
		fw=2.0*PI*f2;
		nf2=fw/dw+0.5;

		fw=2.0*PI*f3;
		nf3=fw/dw+0.5;

		fw=2.0*PI*f4;
		nf4=fw/dw+0.5;  

		/* the number of frequencies to migrated*/
		truenw=nf4-nf1+1;
		fw=0.0+nf1*dw;
		if(verbose)
			warn("nf1=%d nf2=%d nf3=%d nf4=%d nw=%d",nf1,nf2,nf3,nf4,truenw);

		/* allocate space */
		wl=alloc1float(ntfft);
		wlsp=alloc1complex(nw);
	
		/* generate the Ricker wavelet */
		wtmp=ricker(fmax,dt,&ntw);


		/* zero out wl[] array */
		memset((void *) wl, 0, ntfft*FSIZE);
	
		/* CHANGE BY CHRIS STOLK, Dec. 11, 2005 */
		/* The next two lines are the old code, */ 
		/* it is erroneous because the peak of	*/
		/* the wavelet occurs at positive time 	*/
		/* instead of time zero. */
		/*
		for(it=0;it<ntw;it++)
	  		wl[it]=wtmp[it];
		*/
		/* New code: we put in the wavelet in a centered fashion */ 

		for(it=0;it<ntw;it++) 
	  		wl[(it-ntw/2+ntfft) % ntfft]=wtmp[it];

		/* End of new code */
		free1float(wtmp);

		/* fourier transform wl array */
		pfarc(-1,ntfft,wl,wlsp);

		/* allocate space */
		p = alloc2float(ntfft,nxo);
		cq = alloc2complex(nw,nxo);

		/* zero out p[][] array */
		memset((void *) p[0], 0, ntfft*nxo*FSIZE);

		/* initialize a number of items before looping over traces */
		nx = 0;
		igx=0;
		oldigx=0;
		oldsx=sx;
		oldgx=gx;
		/* oldgxmax=gxmax; */
	/*	oldgxmin=gxmin; */
		do { /* begin looping over traces within a shot gather */

			memcpy( (void *) p[igx], (const void *) tr.data,nt*FSIZE);
			/* get sx and gx */
			get_sx_gx(&sx,&gx);
			sx = (sx - min_sx_gx);
			gx = (gx - min_sx_gx);

			igx = NINT(gx/dx);
			if (igx==oldigx) 
			   warn("repeated igx!!! check dx or scalco value!!!");
			oldigx = igx;


			if(gxmin>gx)gxmin=gx;
			if(gxmax<gx)gxmax=gx;

			if(verbose)
				warn(" inside loop:  min_sx_gx %f isx %d igx %d gx %f sx %f",min_sx_gx,isx,igx,gx,sx);

			/* sx, gx must increase monotonically */
			if (!(oldsx <= sx) ) 
			 err("sx field must be monotonically increasing!");
			if (!(oldgx <= gx) )
			 err("gx field must be monotonically increasing!");

			++nx;
		} while(gettr(&tr) && sx==oldsx);


		isx=NINT(oldsx/dx);
		ixshot=isx;
		if (isx==oldisx) 
			warn("repeated isx!!! check dx or scalco value!!!");
		oldisx=isx;
		if(verbose) {
			warn("sx %f, gx %f , gxmin %f  gxmax %f nx %d",sx,gx,gxmin,gxmax, nx);
			warn("isx %d igx %d ixshot %d" ,isx,igx,ixshot);
		}


		/* transform the shot gather from time to frequency domain */
		pfa2rc(1,1,ntfft,nxo,p[0],cq[0]);


		/* compute the most left and right index for the migrated */
		/* section */
		ix1=NINT(oldsx/dx);
		ix2=NINT(gxmin/dx);
		ix3=NINT(gxmax/dx);

		if(ix1>=ix3)ix3=ix1;
		if(ix1<=ix2)ix2=ix1;

		ix2-=lpad;
		ix3+=rpad;
		if(ix2<0)ix2=0;
		if(ix3>nxo-1)ix3=nxo-1;

		/* the total traces to be migrated */
		nx=ix3-ix2+1;
		nw=truenw;

		/* allocate space for velocity profile within the aperature */
		v=alloc2float(nx,nz);	
		for(iz=0;iz<nz;iz++)
			for(ix=0;ix<nx;ix++)
				v[iz][ix]=vp[iz][ix+ix2];


		/* allocate space */
		cp = alloc2complex(nx,nw);
		cp1 = alloc2complex(nx,nw);

		/* transpose the frequency domain data from	*/
		/* data[ix][iw] to data[iw][ix] and apply a 	*/
		/* Hamming at the same time			*/
		for (ix=0; ix<nx; ++ix) {
			for (iw=0; iw<nw; iw++){
				float tmpp=0.0,tmppp=0.0;

				if(iw>=(nf1-nf1)&&iw<=(nf2-nf1)){
					tmpp=PI/(nf2-nf1);
					tmppp=tmpp*(iw-nf1)-PI;
					tmpp=0.54+0.46*cos(tmppp);
					cp[iw][ix]=crmul(cq[ix+ix2][iw+nf1],tmpp);
				} else {
					if(iw>=(nf3-nf1)&&iw<=(nf4-nf1)) {
						tmpp=PI/(nf4-nf3);
						tmppp=tmpp*(iw-nf3);
						tmpp=0.54+0.46*cos(tmppp);
						cp[iw][ix]=crmul(cq[ix+ix2][iw+nf1],tmpp);
					} else {
						cp[iw][ix]=cq[ix+ix2][iw+nf1];
					}
				}
				cp1[iw][ix]=cmplx(0.0,0.0);
			}

		}

		for(iw=0;iw<nw;iw++){
			cp1[iw][ixshot-ix2]=wlsp[iw+nf1];
		}

		if(verbose) {
			warn("ixshot %d ix %d ix1 %d ix2 %d ix3 %d",ixshot,ix,ix1,ix2,ix3);
			warn("oldsx %f ",oldsx);
		}
			
		free2float(p);
		free2complex(cq);
		free1float(wl);
		free1complex(wlsp);


		/* loops over depth */
		for(iz=0; iz<nz; ++iz) {

			/* the imaging condition */
			for(ix=0; ix<nx; ++ix){
				for(iw=0,w=fw;iw<nw;w+=dw,iw++){	
					complex tmp;
					float ratio=10.0;
		
					if(fabs(ix+ix2-ixshot)*dx<ratio*iz*dz)
						tmp=cmul(cp[iw][ix],cp1[iw][ix]);
					else
						tmp=cmplx(0.0,0.0);  

					cresult[ix+ix2][iz]+=tmp.r/ntfft;
				}
			}

			/* get the average velocity */ 
			v1=0.0;
			for(ix=0;ix<nx;++ix) 
				v1+=v[iz][ix]/nx;

			/* compute time-invariant wavefield */
			for(ix=0;ix<nx;++ix) {
				for(iw=0,w=fw;iw<nw;w+=dw,++iw) {
					kz2=-(1.0/v1)*w*dz;
					cshift2=cmplx(cos(kz2),sin(kz2));
					cp[iw][ix]=cmul(cp[iw][ix],cshift2);
					cp1[iw][ix]=cmul(cp1[iw][ix],cshift2);
				}
			}

			/* wave-propagation using finite-difference method */
			fdmig(cp, nx, nw,v[iz],fw,dw,dz,dx,dt,dip);
			fdmig(cp1,nx, nw,v[iz],fw,dw,dz,dx,dt,dip);

			/* apply thin lens term here */
			for(ix=0;ix<nx;++ix) {
				for(iw=0,w=fw;iw<nw;w+=dw,++iw){
					kz2=-(1.0/v[iz][ix]-1.0/v1)*w*dz;
					cshift2=cmplx(cos(kz2),sin(kz2));
					cp[iw][ix]=cmul(cp[iw][ix],cshift2);
					cp1[iw][ix]=cmul(cp1[iw][ix],cshift2);
				}
			}
	
		}

		free2complex(cp);
		free2complex(cp1);
		free2float(v);
	
		--nxshot;

 	} while(nxshot);


	/* restore header fields and write output */
	for(ix=0; ix<nxo; ix++){
		tr.ns = nz;
		tr.d1 = dz;
		tr.d2 = dx;
		tr.offset = 0; 
		tr.cdp = tr.tracl = ix;
		memcpy( (void *) tr.data, (const void *) cresult[ix],nz*FSIZE);
		puttr(&tr);
	}
	

	return(CWP_Exit());	

}
示例#2
0
int main (int argc, char **argv)
 
{
	int Finish,dip=65;
        int nz;                 /* number of migrated depth samples */
        int nxo,nx;             /* number of midpoints  */
        int iz,iw,ix,ix2,ix3,ixshot;     /* loop counters*/
        int ntfft;        	/* fft size*/
        int nw;              /* number of frequency*/
        int mytid,msgtype,rc,parent_tid;


        float dt=0.004,dz;         /*time and depth sampling interval*/
        float dw;            /*frequency sampling interval */
        float fw;            /* first frequency*/
        float w;              /* frequency*/
        float dx;               /* spatial sampling interval*/
        float **cresult;    /*output data*/
        float v1;
        float para;
        double kz2;
        float **vp,**v;
        complex cshift2;
        complex **cp,**cp1;  /* complex input,output         */

	/*get my and father pids*/
	mytid=pvm_mytid();
	parent_tid=pvm_parent();

	/*receive global parameters*/
	msgtype=PARA_MSGTYPE;	
	rc=pvm_recv(-1,msgtype);
	rc=pvm_upkint(&nxo,1,1);
	rc=pvm_upkint(&nz,1,1);
	rc=pvm_upkint(&dip,1,1);
        rc=pvm_upkfloat(&para,1,1);
	
	/*allocate space for velocity profile and receive velocity from father*/
        vp=alloc2float(nxo,nz);
        msgtype=VEL_MSGTYPE;
        rc=pvm_recv(-1,msgtype);
        rc=pvm_upkfloat(vp[0],nxo*nz,1);

	/*allocate space for the storage of partial image and zero it out now*/ 
        cresult = alloc2float(nz,nxo);
	for(ix=0;ix<nxo;ix++)
	for(iz=0;iz<nz;iz++)
	cresult[ix][iz]=0.0;

/*loop over shotgather*/
loop:

	/*receive parameters for each shot gather*/
        msgtype=PARA_MSGTYPE;
        rc=pvm_recv(parent_tid,msgtype);
	rc=pvm_upkint(&Finish,1,1);
	if(Finish==FinalDone)goto end;

 	rc=pvm_upkint(&ntfft,1,1);
        rc=pvm_upkint(&ix2,1,1);
        rc=pvm_upkint(&ix3,1,1);
	rc=pvm_upkint(&ixshot,1,1);

	nx=ix3-ix2+1;	

	rc=pvm_upkfloat(&dx,1,1);
	rc=pvm_upkfloat(&dz,1,1);
 	rc=pvm_upkfloat(&dw,1,1);
        rc=pvm_upkfloat(&dt,1,1);

	/*allocate space for velocity profile within the aperature*/
	v=alloc2float(nx,nz);

	for(iz=0;iz<nz;iz++)
	for(ix=0;ix<nx;ix++){
	v[iz][ix]=vp[iz][ix+ix2];
	}




	while(1){
		/*receive parameters and data for processing*/
		msgtype=DATA_MSGTYPE;
		rc=pvm_recv(parent_tid,msgtype);
		rc=pvm_upkint(&Finish,1,1);

		if(Finish==Done) {free2float(v);goto loop; }
		rc=pvm_upkfloat(&fw,1,1);

		rc=pvm_upkint(&nw,1,1);
		cp = alloc2complex(nx,nw);
		cp1 = alloc2complex(nx,nw);
		rc=pvm_upkfloat((float *)cp[0],nx*nw*2,1);
		rc=pvm_upkfloat((float *)cp1[0],nx*nw*2,1);



        /* loops over depth */
        for(iz=0;iz<nz;++iz){

	/*the imaging condition*/
/*	for(ix=0;ix<nx;ix++){
	for(iw=0,w=fw;iw<nw;w+=dw,iw++){
		complex tmp;
		float ratio=10.0;

		if(fabs(ix+ix2-ixshot)*dx<ratio*iz*dz)
		tmp=cmul(cp[iw][ix],cp1[iw][ix]);
		else tmp=cmplx(0.0,0.0);
		cresult[ix+ix2][iz]+=tmp.r/ntfft;
	}
	}
*/


/* anothe imaging condition, slightly different from the above one, but not quite
slow*/


        for(iw=0,w=fw;iw<nw;w+=dw,iw++){ 
		float kk=0.0;
		complex tmp;
		float ratio=1.5;
		if(dip<80)ratio=1.5;
		else ratio=1.5;
        
		for(ix=0;ix<nx;ix++){
		kk+=(pow(cp1[iw][ix].i,2.0)+pow(cp1[iw][ix].r,2.0))/nx;
		}       
                
		for(ix=0;ix<nx;ix++){
		tmp=cmul(cp[iw][ix],cp1[iw][ix]);

		if(fabs(ix+ix2-ixshot)*dx<ratio*iz*dz)

		tmp=crmul(tmp,1.0/(kk+1.0e-10));

		else tmp=cmplx(0.0,0.0);

		cresult[ix+ix2][iz]+=tmp.r/ntfft;

		}
		}


		/*get the average velocity*/
		v1=0.0;
                for(ix=0;ix<nx;++ix)
		{v1+=v[iz][ix]/nx;}
		
		/*compute time-invariant wavefield*/
/*                for(ix=0;ix<nx;++ix)
                for(iw=0,w=fw;iw<nw;w+=dw,++iw) {
                        kz2=-(1.0/v1)*w*dz;
                        cshift2=cmplx(cos(kz2),sin(kz2));   
                        cp[iw][ix]=cmul(cp[iw][ix],cshift2);
                        cp1[iw][ix]=cmul(cp1[iw][ix],cshift2);
                }
*/
		/*wave-propagation using finite-difference method*/
                fdmig( cp, nx, nw,v[iz],fw,dw,dz,dx,dt,dip,para);
                fdmig( cp1,nx, nw,v[iz],fw,dw,dz,dx,dt,dip,para);

		/*apply thin lens term here*/                                
                for(ix=0;ix<nx;++ix)
                for(iw=0,w=fw;iw<nw;w+=dw,++iw){
		float Wi=-dw;
		kz2=-(1.0/v[iz][ix])*dz;
/*			kz2=-(1.0/v[iz][ix]-1.0/v1)*w*dz;
			cshift2=cmplx(cos(kz2),sin(kz2));*/
			cshift2=cexp(cmplx(-Wi*kz2,w*kz2));
			cp[iw][ix]=cmul(cp[iw][ix],cshift2);
			cp1[iw][ix]=cmul(cp1[iw][ix],cshift2);
		}
                
}

/*finish a portion of the data, request more*/
pvm_initsend(PvmDataDefault);
pvm_pkint(&mytid,1,1);
msgtype=COM_MSGTYPE;
pvm_send(parent_tid,msgtype);
         
free2complex(cp);
free2complex(cp1);

}


end:

/*everything done,send back partial image and wait for signal to kill itself*/
pvm_initsend(PvmDataDefault);
pvm_pkfloat(cresult[0],nxo*nz,1);
msgtype=RESULT_MSGTYPE;
pvm_send(parent_tid,msgtype);
msgtype=COM_MSGTYPE;
pvm_recv(-1,msgtype);
pvm_exit();
exit(0);
}