示例#1
0
文件: fdtdec.c 项目: kmkhailov/u-boot
int fdtdec_decode_display_timing(const void *blob, int parent, int index,
				 struct display_timing *dt)
{
	int i, node, timings_node;
	u32 val = 0;
	int ret = 0;

	timings_node = fdt_subnode_offset(blob, parent, "display-timings");
	if (timings_node < 0)
		return timings_node;

	for (i = 0, node = fdt_first_subnode(blob, timings_node);
	     node > 0 && i != index;
	     node = fdt_next_subnode(blob, node))
		i++;

	if (node < 0)
		return node;

	memset(dt, 0, sizeof(*dt));

	ret |= decode_timing_property(blob, node, "hback-porch",
				      &dt->hback_porch);
	ret |= decode_timing_property(blob, node, "hfront-porch",
				      &dt->hfront_porch);
	ret |= decode_timing_property(blob, node, "hactive", &dt->hactive);
	ret |= decode_timing_property(blob, node, "hsync-len", &dt->hsync_len);
	ret |= decode_timing_property(blob, node, "vback-porch",
				      &dt->vback_porch);
	ret |= decode_timing_property(blob, node, "vfront-porch",
				      &dt->vfront_porch);
	ret |= decode_timing_property(blob, node, "vactive", &dt->vactive);
	ret |= decode_timing_property(blob, node, "vsync-len", &dt->vsync_len);
	ret |= decode_timing_property(blob, node, "clock-frequency",
				      &dt->pixelclock);

	dt->flags = 0;
	val = fdtdec_get_int(blob, node, "vsync-active", -1);
	if (val != -1) {
		dt->flags |= val ? DISPLAY_FLAGS_VSYNC_HIGH :
				DISPLAY_FLAGS_VSYNC_LOW;
	}
	val = fdtdec_get_int(blob, node, "hsync-active", -1);
	if (val != -1) {
		dt->flags |= val ? DISPLAY_FLAGS_HSYNC_HIGH :
				DISPLAY_FLAGS_HSYNC_LOW;
	}
	val = fdtdec_get_int(blob, node, "de-active", -1);
	if (val != -1) {
		dt->flags |= val ? DISPLAY_FLAGS_DE_HIGH :
				DISPLAY_FLAGS_DE_LOW;
	}
	val = fdtdec_get_int(blob, node, "pixelclk-active", -1);
	if (val != -1) {
		dt->flags |= val ? DISPLAY_FLAGS_PIXDATA_POSEDGE :
				DISPLAY_FLAGS_PIXDATA_NEGEDGE;
	}

	if (fdtdec_get_bool(blob, node, "interlaced"))
		dt->flags |= DISPLAY_FLAGS_INTERLACED;
	if (fdtdec_get_bool(blob, node, "doublescan"))
		dt->flags |= DISPLAY_FLAGS_DOUBLESCAN;
	if (fdtdec_get_bool(blob, node, "doubleclk"))
		dt->flags |= DISPLAY_FLAGS_DOUBLECLK;

	return 0;
}
示例#2
0
文件: tegra_mmc.c 项目: eesuda/u-boot
/**
 * Get the host address and peripheral ID for a node.
 *
 * @param blob		fdt blob
 * @param node		Device index (0-3)
 * @param host		Structure to fill in (reg, width, mmc_id)
 */
static int mmc_get_config(const void *blob, int node, struct mmc_host *host,
			  bool *removablep)
{
	debug("%s: node = %d\n", __func__, node);

	host->enabled = fdtdec_get_is_enabled(blob, node);

	host->reg = (struct tegra_mmc *)fdtdec_get_addr(blob, node, "reg");
	if ((fdt_addr_t)host->reg == FDT_ADDR_T_NONE) {
		debug("%s: no sdmmc base reg info found\n", __func__);
		return -FDT_ERR_NOTFOUND;
	}

#ifdef CONFIG_TEGRA186
	{
		/*
		 * FIXME: This variable should go away when the MMC device
		 * actually is a udevice.
		 */
		struct udevice dev;
		int ret;
		dev.of_offset = node;
		ret = reset_get_by_name(&dev, "sdhci", &host->reset_ctl);
		if (ret) {
			debug("reset_get_by_name() failed: %d\n", ret);
			return ret;
		}
		ret = clk_get_by_index(&dev, 0, &host->clk);
		if (ret) {
			debug("clk_get_by_index() failed: %d\n", ret);
			return ret;
		}
	}
#else
	host->mmc_id = clock_decode_periph_id(blob, node);
	if (host->mmc_id == PERIPH_ID_NONE) {
		debug("%s: could not decode periph id\n", __func__);
		return -FDT_ERR_NOTFOUND;
	}
#endif

	/*
	 * NOTE: mmc->bus_width is determined by mmc.c dynamically.
	 * TBD: Override it with this value?
	 */
	host->width = fdtdec_get_int(blob, node, "bus-width", 0);
	if (!host->width)
		debug("%s: no sdmmc width found\n", __func__);

	/* These GPIOs are optional */
	gpio_request_by_name_nodev(blob, node, "cd-gpios", 0, &host->cd_gpio,
				   GPIOD_IS_IN);
	gpio_request_by_name_nodev(blob, node, "wp-gpios", 0, &host->wp_gpio,
				   GPIOD_IS_IN);
	gpio_request_by_name_nodev(blob, node, "power-gpios", 0,
				   &host->pwr_gpio, GPIOD_IS_OUT);
	*removablep = !fdtdec_get_bool(blob, node, "non-removable");

	debug("%s: found controller at %p, width = %d, periph_id = %d\n",
		__func__, host->reg, host->width,
#ifndef CONFIG_TEGRA186
		host->mmc_id
#else
		-1
#endif
	);
	return 0;
}
示例#3
0
static int omap_hsmmc_set_ios(struct mmc *mmc)
{
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
#else
static int omap_hsmmc_set_ios(struct udevice *dev)
{
	struct omap_hsmmc_data *priv = dev_get_priv(dev);
	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
	struct mmc *mmc = upriv->mmc;
#endif
	struct hsmmc *mmc_base;
	unsigned int dsor = 0;
	ulong start;

	mmc_base = priv->base_addr;
	/* configue bus width */
	switch (mmc->bus_width) {
	case 8:
		writel(readl(&mmc_base->con) | DTW_8_BITMODE,
			&mmc_base->con);
		break;

	case 4:
		writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
			&mmc_base->con);
		writel(readl(&mmc_base->hctl) | DTW_4_BITMODE,
			&mmc_base->hctl);
		break;

	case 1:
	default:
		writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
			&mmc_base->con);
		writel(readl(&mmc_base->hctl) & ~DTW_4_BITMODE,
			&mmc_base->hctl);
		break;
	}

	/* configure clock with 96Mhz system clock.
	 */
	if (mmc->clock != 0) {
		dsor = (MMC_CLOCK_REFERENCE * 1000000 / mmc->clock);
		if ((MMC_CLOCK_REFERENCE * 1000000) / dsor > mmc->clock)
			dsor++;
	}

	mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
				(ICE_STOP | DTO_15THDTO | CEN_DISABLE));

	mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
				(dsor << CLKD_OFFSET) | ICE_OSCILLATE);

	start = get_timer(0);
	while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
		if (get_timer(0) - start > MAX_RETRY_MS) {
			printf("%s: timedout waiting for ics!\n", __func__);
			return -ETIMEDOUT;
		}
	}
	writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);

	return 0;
}

#ifdef OMAP_HSMMC_USE_GPIO
#if CONFIG_IS_ENABLED(DM_MMC)
static int omap_hsmmc_getcd(struct udevice *dev)
{
	struct omap_hsmmc_data *priv = dev_get_priv(dev);
	int value;

	value = dm_gpio_get_value(&priv->cd_gpio);
	/* if no CD return as 1 */
	if (value < 0)
		return 1;

	if (priv->cd_inverted)
		return !value;
	return value;
}

static int omap_hsmmc_getwp(struct udevice *dev)
{
	struct omap_hsmmc_data *priv = dev_get_priv(dev);
	int value;

	value = dm_gpio_get_value(&priv->wp_gpio);
	/* if no WP return as 0 */
	if (value < 0)
		return 0;
	return value;
}
#else
static int omap_hsmmc_getcd(struct mmc *mmc)
{
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
	int cd_gpio;

	/* if no CD return as 1 */
	cd_gpio = priv->cd_gpio;
	if (cd_gpio < 0)
		return 1;

	/* NOTE: assumes card detect signal is active-low */
	return !gpio_get_value(cd_gpio);
}

static int omap_hsmmc_getwp(struct mmc *mmc)
{
	struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
	int wp_gpio;

	/* if no WP return as 0 */
	wp_gpio = priv->wp_gpio;
	if (wp_gpio < 0)
		return 0;

	/* NOTE: assumes write protect signal is active-high */
	return gpio_get_value(wp_gpio);
}
#endif
#endif

#if CONFIG_IS_ENABLED(DM_MMC)
static const struct dm_mmc_ops omap_hsmmc_ops = {
	.send_cmd	= omap_hsmmc_send_cmd,
	.set_ios	= omap_hsmmc_set_ios,
#ifdef OMAP_HSMMC_USE_GPIO
	.get_cd		= omap_hsmmc_getcd,
	.get_wp		= omap_hsmmc_getwp,
#endif
};
#else
static const struct mmc_ops omap_hsmmc_ops = {
	.send_cmd	= omap_hsmmc_send_cmd,
	.set_ios	= omap_hsmmc_set_ios,
	.init		= omap_hsmmc_init_setup,
#ifdef OMAP_HSMMC_USE_GPIO
	.getcd		= omap_hsmmc_getcd,
	.getwp		= omap_hsmmc_getwp,
#endif
};
#endif

#if !CONFIG_IS_ENABLED(DM_MMC)
int omap_mmc_init(int dev_index, uint host_caps_mask, uint f_max, int cd_gpio,
		int wp_gpio)
{
	struct mmc *mmc;
	struct omap_hsmmc_data *priv;
	struct mmc_config *cfg;
	uint host_caps_val;

	priv = malloc(sizeof(*priv));
	if (priv == NULL)
		return -1;

	host_caps_val = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS;

	switch (dev_index) {
	case 0:
		priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
		break;
#ifdef OMAP_HSMMC2_BASE
	case 1:
		priv->base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE;
#if (defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
	defined(CONFIG_DRA7XX) || defined(CONFIG_AM33XX) || \
	defined(CONFIG_AM43XX) || defined(CONFIG_SOC_KEYSTONE)) && \
		defined(CONFIG_HSMMC2_8BIT)
		/* Enable 8-bit interface for eMMC on OMAP4/5 or DRA7XX */
		host_caps_val |= MMC_MODE_8BIT;
#endif
		break;
#endif
#ifdef OMAP_HSMMC3_BASE
	case 2:
		priv->base_addr = (struct hsmmc *)OMAP_HSMMC3_BASE;
#if defined(CONFIG_DRA7XX) && defined(CONFIG_HSMMC3_8BIT)
		/* Enable 8-bit interface for eMMC on DRA7XX */
		host_caps_val |= MMC_MODE_8BIT;
#endif
		break;
#endif
	default:
		priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
		return 1;
	}
#ifdef OMAP_HSMMC_USE_GPIO
	/* on error gpio values are set to -1, which is what we want */
	priv->cd_gpio = omap_mmc_setup_gpio_in(cd_gpio, "mmc_cd");
	priv->wp_gpio = omap_mmc_setup_gpio_in(wp_gpio, "mmc_wp");
#endif

	cfg = &priv->cfg;

	cfg->name = "OMAP SD/MMC";
	cfg->ops = &omap_hsmmc_ops;

	cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
	cfg->host_caps = host_caps_val & ~host_caps_mask;

	cfg->f_min = 400000;

	if (f_max != 0)
		cfg->f_max = f_max;
	else {
		if (cfg->host_caps & MMC_MODE_HS) {
			if (cfg->host_caps & MMC_MODE_HS_52MHz)
				cfg->f_max = 52000000;
			else
				cfg->f_max = 26000000;
		} else
			cfg->f_max = 20000000;
	}

	cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;

#if defined(CONFIG_OMAP34XX)
	/*
	 * Silicon revs 2.1 and older do not support multiblock transfers.
	 */
	if ((get_cpu_family() == CPU_OMAP34XX) && (get_cpu_rev() <= CPU_3XX_ES21))
		cfg->b_max = 1;
#endif
	mmc = mmc_create(cfg, priv);
	if (mmc == NULL)
		return -1;

	return 0;
}
#else
#if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
static int omap_hsmmc_ofdata_to_platdata(struct udevice *dev)
{
	struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
	struct mmc_config *cfg = &plat->cfg;
	struct omap2_mmc_platform_config *data =
		(struct omap2_mmc_platform_config *)dev_get_driver_data(dev);
	const void *fdt = gd->fdt_blob;
	int node = dev_of_offset(dev);
	int val;

	plat->base_addr = map_physmem(devfdt_get_addr(dev),
				      sizeof(struct hsmmc *),
				      MAP_NOCACHE) + data->reg_offset;

	cfg->host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS;
	val = fdtdec_get_int(fdt, node, "bus-width", -1);
	if (val < 0) {
		printf("error: bus-width property missing\n");
		return -ENOENT;
	}

	switch (val) {
	case 0x8:
		cfg->host_caps |= MMC_MODE_8BIT;
	case 0x4:
		cfg->host_caps |= MMC_MODE_4BIT;
		break;
	default:
		printf("error: invalid bus-width property\n");
		return -ENOENT;
	}

	cfg->f_min = 400000;
	cfg->f_max = fdtdec_get_int(fdt, node, "max-frequency", 52000000);
	cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
	cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;

#ifdef OMAP_HSMMC_USE_GPIO
	plat->cd_inverted = fdtdec_get_bool(fdt, node, "cd-inverted");
#endif

	return 0;
}
#endif

#ifdef CONFIG_BLK

static int omap_hsmmc_bind(struct udevice *dev)
{
	struct omap_hsmmc_plat *plat = dev_get_platdata(dev);

	return mmc_bind(dev, &plat->mmc, &plat->cfg);
}
#endif
static int omap_hsmmc_probe(struct udevice *dev)
{
	struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
	struct omap_hsmmc_data *priv = dev_get_priv(dev);
	struct mmc_config *cfg = &plat->cfg;
	struct mmc *mmc;

	cfg->name = "OMAP SD/MMC";
	priv->base_addr = plat->base_addr;
#ifdef OMAP_HSMMC_USE_GPIO
	priv->cd_inverted = plat->cd_inverted;
#endif

#ifdef CONFIG_BLK
	mmc = &plat->mmc;
#else
	mmc = mmc_create(cfg, priv);
	if (mmc == NULL)
		return -1;
#endif

#if defined(OMAP_HSMMC_USE_GPIO) && CONFIG_IS_ENABLED(OF_CONTROL)
	gpio_request_by_name(dev, "cd-gpios", 0, &priv->cd_gpio, GPIOD_IS_IN);
	gpio_request_by_name(dev, "wp-gpios", 0, &priv->wp_gpio, GPIOD_IS_IN);
#endif

	mmc->dev = dev;
	upriv->mmc = mmc;

	return omap_hsmmc_init_setup(mmc);
}

#if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
static const struct omap2_mmc_platform_config omap3_mmc_pdata = {
	.reg_offset = 0,
};

static const struct omap2_mmc_platform_config am33xx_mmc_pdata = {
	.reg_offset = 0x100,
};

static const struct omap2_mmc_platform_config omap4_mmc_pdata = {
	.reg_offset = 0x100,
};

static const struct udevice_id omap_hsmmc_ids[] = {
	{
			.compatible = "ti,omap3-hsmmc",
			.data = (ulong)&omap3_mmc_pdata
	},
	{
			.compatible = "ti,omap4-hsmmc",
			.data = (ulong)&omap4_mmc_pdata
	},
	{
			.compatible = "ti,am33xx-hsmmc",
			.data = (ulong)&am33xx_mmc_pdata
	},
	{ }
};
示例#4
0
文件: i8042.c 项目: OpenNoah/u-boot
/* i8042_kbd_init - reset keyboard and init state flags */
static int i8042_start(struct udevice *dev)
{
	struct keyboard_priv *uc_priv = dev_get_uclass_priv(dev);
	struct i8042_kbd_priv *priv = dev_get_priv(dev);
	struct input_config *input = &uc_priv->input;
	int keymap, try;
	char *penv;
	int ret;

	if (!kbd_controller_present() || board_i8042_skip()) {
		debug("i8042 keyboard controller is not present\n");
		return -ENOENT;
	}

	/* Init keyboard device (default US layout) */
	keymap = KBD_US;
	penv = env_get("keymap");
	if (penv != NULL) {
		if (strncmp(penv, "de", 3) == 0)
			keymap = KBD_GER;
	}

	for (try = 0; kbd_reset(priv->quirks) != 0; try++) {
		if (try >= KBD_RESET_TRIES)
			return -1;
	}

	ret = input_add_tables(input, keymap == KBD_GER);
	if (ret)
		return ret;

	i8042_kbd_update_leds(dev, NORMAL);
	debug("%s: started\n", __func__);

	return 0;
}

/**
 * Set up the i8042 keyboard. This is called by the stdio device handler
 *
 * We want to do this init when the keyboard is actually used rather than
 * at start-up, since keyboard input may not currently be selected.
 *
 * Once the keyboard starts there will be a period during which we must
 * wait for the keyboard to init. We do this only when a key is first
 * read - see kbd_wait_for_fifo_init().
 *
 * @return 0 if ok, -ve on error
 */
static int i8042_kbd_probe(struct udevice *dev)
{
	struct keyboard_priv *uc_priv = dev_get_uclass_priv(dev);
	struct i8042_kbd_priv *priv = dev_get_priv(dev);
	struct stdio_dev *sdev = &uc_priv->sdev;
	struct input_config *input = &uc_priv->input;
	int ret;

	if (fdtdec_get_bool(gd->fdt_blob, dev_of_offset(dev),
			    "intel,duplicate-por"))
		priv->quirks |= QUIRK_DUP_POR;

	/* Register the device. i8042_start() will be called soon */
	input->dev = dev;
	input->read_keys = i8042_kbd_check;
	input_allow_repeats(input, true);
	strcpy(sdev->name, "i8042-kbd");
	ret = input_stdio_register(sdev);
	if (ret) {
		debug("%s: input_stdio_register() failed\n", __func__);
		return ret;
	}
	debug("%s: ready\n", __func__);

	return 0;
}

static const struct keyboard_ops i8042_kbd_ops = {
	.start	= i8042_start,
	.update_leds	= i8042_kbd_update_leds,
};

static const struct udevice_id i8042_kbd_ids[] = {
	{ .compatible = "intel,i8042-keyboard" },
	{ }
};